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Abstract

Measures of divergence or discrepancy are used either to measure mutual information
concerning two variables or to construct model selection criteria. In this paper we focus on
divergence measures that are based on a class of measures known as Csiszár’s divergence
measures. In particular, we propose a measure of divergence between residual lives of
two items that have both survived up to some time t as well as a measure of divergence
between past lives, both based on Csiszár’s class of measures. Furthermore, we derive
properties of these measures and provide examples based on the Cox model and frailty
or transformation model.
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1. Introduction

A measure of divergence is used as a way to evaluate the distance (divergence) between any
two populations or functions. In the present work we concentrate on divergence measures that
are based on a class of measures known as Csiszár’s family of divergence measures or Csiszár’s
ϕ-divergence (see Csiszár (1963) and Ali and Silvey (1966)).

An issue of fundamental importance in statistics is the investigation of information measures.
These measures are classified in different categories and measure the quantity of information
contained in the data with respect to a parameter θ , the divergence between two populations
or functions, the information we get after the execution of an experiment, and other important
information according to the application they are used for. Traditionally, the measures of
information are classified into four main categories, namely divergence type, entropy type,
Fisher type, and Bayesian type.

Measures of divergence between two probability distributions have a very long history,
beginning with the pioneering work of Pearson (1900), Mahalanobis (1936), Lévy (1925)
and Kolmogorov (1933). Among the most popular measures of divergence are the Kullback–
Leibler measure of divergence (see Kullback and Leibler (1951)) and the Csiszár’sϕ-divergence
family of measures (see Csiszár (1963) and Ali and Silvey (1966)). A unified analysis has been
provided in Cressie and Read (1984), who introduced the power divergence family of statistics
that depends on a parameter λ and is used for goodness-of-fit tests for multinomial distributions.
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Generalized measures of divergence 217

The Cressie and Read family includes among others the well-known Pearson’s X2 divergence
measure and, for multinomial models, the log-likelihood ratio statistic. Recently, the BHHJ
divergence measure was proposed in Basu et al. (1998) and generalized to the BHHJ family of
measures in Mattheou et al. (2009). The BHHJ family depends on an index a which controls the
trade-off between robustness and efficiency when the measure is used as an estimating criterion
for robust parameter estimation.

Ebrahimi and Kirmani (1996b) introduced a measure of discrepancy between the lifetimes
X and Y of two items at time t . In survival analysis or in reliability we might know the current
age t of a biomedical or technical system. We need to take this information into consideration
when we compare two systems or populations. Ebrahimi and Kirmani (1996b) achieved this by
replacing the distribution functions of the random variables X and Y in the Kullback–Leibler
divergence of X and Y (see Kullback and Leibler (1951)) by the distributions of their residual
lifetimes. Di Crescenzo and Longobardi (2004) defined a dual measure of divergence which
constitutes a distance between past-life distributions.

In this paper we focus on the distance between lifetimes and propose generalized measures of
divergence between residual lives of two items that have both survived up to some time t as well
as between past lives, based on Csiszár’s family of measures. In Section 2 we define the proposed
measures of divergence for Csiszár’s class of functions, which are referred to as ϕ-distances
between lifetimes. In Section 3 we examine properties of these measures of divergence, and in
Section 4 we find various discrimination measures in cases like the proportional hazards model,
the proportional reverse hazards model, and the frailty or transformation model. For the latter
case, we provide the divergence between the distribution functions associated with the Cox and
frailty models as well as the ϕ-distance between the respective residual and past lifetimes.

2. The proposed generalized divergence measures

Let X and Y be absolutely continuous, nonnegative random variables that describe the
lifetimes of two items. Let f (x), F(x), and F(x) be the density function, the cumulative
distribution function, and the survival function of X, respectively. Also, let g(x), G(x), and
G(x) be the density function, the cumulative distribution function, and the survival function of
Y , respectively. Let hX(x) = f (x)/F (x) and hY (x) = g(x)/G(x) be the hazard rate functions
of X and Y , and let τX(x) = f (x)/F (x) and τY (x) = g(x)/G(x) be the reversed hazard rate
functions of X and Y . Without loss of generality, we assume throughout the paper that the
support of f and g is (0,+∞).

The Kullback–Leibler distance between F and G (see Kullback and Leibler (1951)) is
defined by

IX,Y =
∫ ∞

0
f (x) log

(
f (x)

g(x)

)
dx,

where log denotes the natural logarithm. A generalization of this distance is defined as

I
ϕ
X,Y =

∫ ∞

0
g(x)ϕ

(
f (x)

g(x)

)
dx,

which is known as Csiszár’s family of measures of divergence.
When the function ϕ is defined as ϕ(u) = u log u or ϕ(u) = u log u + 1 − u, then the

above measure reduces to the Kullback–Leibler measure. If ϕ(u) = 1
2 (1 − u)2, Csiszár’s

measure yields the Pearson’s chi-square divergence (also known as Kagan’s divergence; see
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218 F. VONTA AND A. KARAGRIGORIOU

Kagan (1963)). If

ϕ(u) := ϕ1(u) = ua+1 − u− a(u− 1)

a(a + 1)
,

we obtain the Cressie and Read power divergence (see Cressie and Read (1984)), a �= 0,−1. If
ϕ(u) = (1 − √

u)2, we obtain the Matusita’s divergence (see Matusita (1967)), and if ϕ(u) =
−log(u) + u − 1 or ϕ(u) = −log(u), we obtain the Kullback–Leibler divergence between G
and F , also known as the minimum discrimination information (see Pardo (2006, p. 4)).

Other functions that we consider are

ϕ(u) := ϕ2(u) = u1+a −
(

1 + 1

a

)
ua + 1

a
, a �= 0,

and

ϕ(u) := ϕ3(u) = 1 −
(

1 + 1

a

)
u+ u1+a

a
, a �= 0.

The latter is related to a recently proposed measure of divergence (the BHHJ power divergence
proposed in Basu et al. (1998)), while both ϕ2(·) and ϕ3(·) are special cases of the BHHJ family
of divergence measures proposed in Mattheou et al. (2009):

IαX(g, f ) = Eg

(
gα(X)ϕ

(
f (X)

g(X)

))
=

∫
g1+α(z)ϕ

(
f (z)

g(z)

)
dµ, α ≥ 0,

where µ represents the Lebesgue measure. Appropriately chosen functions ϕ(·) give rise to
special measures mentioned above, while, for α = 0, the BHHJ family reduces to the Csiszár
family.

Ebrahimi and Kirmani (1996b) introduced the following measure of discrepancy between
X and Y at time t :

IX,Y (t) =
∫ ∞

t

f (x)

F (t)
log

(
f (x)/F (t)

g(x)/G(t)

)
dx, t > 0. (1)

A dual measure which constitutes a distance between past lifetimes was defined in Di
Crescenzo and Longobardi (2004) as

IX,Y (t) =
∫ t

0

f (x)

F (t)
log

(
f (x)/F (t)

g(x)/G(t)

)
dx, t > 0. (2)

We now propose two new measures of discrepancy which are based on the Csiszár’s
ϕ-divergence family, namely, the ϕ-distance between residual lifetimes,

I
ϕ
X,Y (t) =

∫ ∞

t

g(x)

G(t)
ϕ

(
f (x)/F (t)

g(x)/G(t)

)
dx, t > 0, (3)

and the ϕ-distance between past lifetimes,

I
ϕ

X,Y (t) =
∫ t

0

g(x)

G(t)
ϕ

(
f (x)/F (t)

g(x)/G(t)

)
dx, t > 0, (4)

where the function ϕ belongs to a class of functions � with the following properties:

(i) ϕ(x) is continuous, differentiable, and convex for x ≥ 0;

(ii) ϕ(1) = 0;

(iii) ϕ′(1) = 0.
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From the above assumptions we deduce that ϕ(x) ≥ 0 for all x > 0, ϕ′(x) > 0 for x > 1,
and ϕ′(x) < 0 for x < 1.

Let us now denote byft (x) = f (x)/F (t), 0 < x < t , the probability density function (PDF)
of Xt = [X | X ≤ t] (or [t −X | X ≤ t]) and by gt (x) = g(x)/G(t), 0 < x < t , the PDF of
Yt = [Y | Y ≤ t] (or [t − Y | Y ≤ t]). Similarly, let f t (x) = f (x)/F (t), x > t , denote the
PDF of Xt = [X | X > t] (or [X − t | X > t]) and let gt (x) = g(x)/G(t), x > t , denote the
PDF of Y t = [Y | Y > t] (or [Y − t | Y > t]). Finally, we define Ft := P(Xt ≤ x) =
F(x)/F (t) andGt := P(Yt ≤ x) = G(x)/G(t) for 0 < x < t to be the cumulative distribution
functions (CDFs) of Xt and Yt . Similarly, we define F t and Gt to be the CDFs of the residual
lifetimes Xt and Y t .

Remarks. Let�� ⊂ � be the class of functions ϕ(·) satisfying properties (i) and (ii) above. It
is not difficult to see that, for every function ϕ ∈ �� which is differentiable at 1, we can
always define the function ψ(u) = ϕ(u)− ϕ′(1)(u− 1) such that ψ(·) ∈ �, ψ ′(1) = 0,
I
ψ
X,Y (t) = I

ϕ
X,Y (t), and I

ψ

X,Y (t) = I
ϕ

X,Y (t). Observe that, for the function �� 
 ϕ(u) =
u log(u), the discrepancy measure (3) is reduced to the measure (1) and, equivalently, the
discrepancy measure (4) is reduced to the measure (2). In this case, the function ψ ∈ � for
which Iψ = Iϕ is given by ψ(u) = u log u + 1 − u. As a result, from now on and without
loss of generality, we focus solely on functions that belong to the Csiszár family, that is, the
class of functions � that satisfy properties (i)–(iii). Finally, observe that, for the function
ϕ(u) = −log(u)+ u− 1, the discrepancy measure (3) is equal to the measure IY,X(t), and the
discrepancy measure (4) becomes IY,X(t).

3. Properties of the proposed measures

In this section we present a number of properties of the proposed generalized measures. First
we examine the nonegativity property of the proposed measures as well as their connection to
the standard Csiszár family of measures. Owing to the assumptions made about the function ϕ
and Jensen’s inequality we have

Egt
(
ϕ

(
f t

gt

))
≥ ϕ

(
Egt

(
f t

gt

))
= 0.

Therefore, IϕX,Y ≥ 0 and, similarly, I
ϕ

X,Y ≥ 0, with equality holding in both cases if and only
if f t (x) = gt (x) almost everywhere (a.e.) for x > t and ft (x) = gt (x) a.e. for 0 < x < t ,
respectively.

It is also very easy to see that

lim
t→∞ I

ϕ

X,Y (t) = I
ϕ
X,Y = lim

t→0
I
ϕ
X,Y (t).

Let us now define some stochastic orders useful in our case (see Shaked and Shanthikumar
(1994, Chapter 1) for definitions and basic results).

Definition. Let X and Y be nonnegative, absolutely continuous random variables.

(a) If F(x) ≤ G(x) for all real x or, equivalently, F(x) ≥ G(x) for all real x, thenX ≤st Y ,
the usual stochastic ordering.

(b) If f (t)/g(t) is increasing in t for t > 0 then X ≥lr Y , the likelihood ratio ordering.
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(c) If f (t)/g(t) is increasing in t for t > 0 then τX(t) ≥ τY (t) for t > 0, the reverse hazard
ordering, denoted by X ≥rh Y , which is true if and only if Xt ≥st Yt for all t > 0.

(d) If f (t)/g(t) is increasing in t for t > 0 then hX(t) ≤ hY (t) for t > 0, the hazard rate
ordering, denoted by X ≥hr Y , which is true if and only if Xt ≥st Y

t for all t > 0.

It is true that
X ≥lr Y ⇒ X ≥hr Y ⇒ X ≥st Y,

X ≥lr Y ⇒ X ≥rh Y ⇒ X ≥st Y.

The next theorem provides bounds for the proposed measures.

Theorem 1. For the measures IϕX,Y (t) and I
ϕ

X,Y (t), we have

(i) I
ϕ
X,Y (t) < ϕ(0)+ lim

r→∞
ϕ(r)

r
(5)

and

(ii) I
ϕ

X,Y (t) < ϕ(0)+ lim
r→∞

ϕ(r)

r
. (6)

Proof. (i) For every convex function ϕ, it is known that

ϕ(t∗) ≤ ϕ(0)+ t∗ lim
r→∞

ϕ(r)

r
(7)

for t∗ ≥ 0, with the strict inequality holding for strictly positive t∗. Therefore, the measure
I
ϕ
X,Y (t), which is equal to

∫ ∞

t

g(x)

G(t)
ϕ

(
f (x)/F (t)

g(x)/G(t)

)
dx, t > 0,

by (7), is strictly less than
∫ ∞

t

g(x)

G(t)

(
ϕ(0)+ f (x)/F (t)

g(x)/G(t)
lim
r→∞

ϕ(r)

r

)
dx,

and the result is immediate. Part (ii) is proved similarly.

Remarks. (a) It should be pointed out that bounds (5) and (6) are in full accordance with
the bound obtained for the measures of divergence between two distribution functions (see
Proposition 1.1 of Pardo (2006)).

(b) Let t0 be the point where f (t0)/F (t) = g(t0)/G(t). If we assume that t0 < t then a lower
bound can also be obtained for the measure IϕX,Y (t), that is,

I
ϕ
X,Y (t) ≥ ϕ

(
hX(t)

hY (t)

)
≥ 0.

If, on the other hand, we assume that t0 > t then a lower bound can be obtained for the measure
I
ϕ

X,Y (t), that is,

I
ϕ

X,Y (t) ≥ ϕ

(
τX(t)

τY (t)

)
≥ 0.

Recall that, for f (x)/g(x) increasing in x, hX(x)/hY (x) ≤ 1 and τX(x)/τY (x) ≥ 1 for all
x > 0.
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The effect of bijective transformations on the generalized divergence measures is discussed
in the following two theorems.

Theorem 2. Let X and X� have support (0,∞), and also let ψ be a bijective transformation
from (0,∞) to (0,∞). If ψ is strictly increasing then

(i) I
ϕ

ψ(X),ψ(X�)(t) = I
ϕ

X,X�(ψ
−1(t)), t > 0,

and
(ii) I

ϕ

ψ(X),ψ(X�)(t) = I
ϕ
X,X�(ψ

−1(t)), t > 0.

Proof. For (i), we have

I
ϕ

ψ(X),ψ(X�)(t)

=
∫ t

0

gψ(X�)(y)

Gψ(X�)(t)
ϕ

(
fψ(X)(y)/Fψ(X)(t)

gψ(X�)(y)/Gψ(X�)(t)

)
dy

=
∫ t

0

g(ψ−1(y))|dψ−1(y)/dy|
G(ψ−1(t))

ϕ

(
f (ψ−1(y))|dψ−1(y)/dy|/F (ψ−1(t))

g(ψ−1(y))|dψ−1(y)/dy|/G(ψ−1(t))

)
dy,

which, by a change of variable x = ψ−1(y), becomes

∫ ψ−1(t)

0

g(x)

G(ψ−1(t))
ϕ

(
f (x)/F (ψ−1(t))

g(x)/G(ψ−1(t))

)
dx.

This completes the proof. Part (ii) is proved similarly.

Theorem 3. Let X and X� have support (0,∞) and distribution functions F and G, respec-
tively, and also let ψ be a bijective transformation from (0,∞) to (0,∞).

(i) If ψ is strictly decreasing then I
ϕ

ψ(X),ψ(X�)(t) is given as

∫ ψ−1(t)

0

g(x)

ϑX�(ψ−1(t))G(ψ−1(t))
ϕ

(
f (x)/(ϑX(ψ

−1(t))F (ψ−1(t)))

g(x)/(ϑX�(ψ−1(t))G(ψ−1(t)))

)
dx

for t > 0.

(ii) If ψ is strictly decreasing then Iϕψ(X),ψ(X�)(t) is given as

∫ ∞

ψ−1(t)

g(x)

G(ψ−1(t))/ϑX�(ψ−1(t))
ϕ

(
f (x)/(F (ψ−1(t))/ϑX(ψ

−1(t)))

g(x)/(G(ψ−1(t))/ϑX�(ψ−1(t)))

)
dx

for t > 0, where ϑX(t) = FX(t)/FX(t) is known in reliability theory as the ‘odds
function’ (see Kirmani and Gupta (2001)).

Proof. Since ψ is decreasing, we have

Gψ(X�)(t) = G(ψ−1(t))

G(ψ−1(t))
G(ψ−1(t)) = ϑX�(ψ

−1(t))G(ψ−1(t)).

Similarly,
Fψ(X)(t) = ϑX(ψ

−1(t))F (ψ−1(t)).
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Then the distance I
ϕ

ψ(X),ψ(X�)(t) equals

∫ ψ−1(t)

0

g(x)

ϑX�(ψ−1(t))G(ψ−1(t))
ϕ

(
f (x)/(ϑX(ψ

−1(t))F (ψ−1(t)))

g(x)/(ϑX�(ψ−1(t))G(ψ−1(t)))

)
dx.

The second part is proved similarly.

Theorem 4. Let three random variablesX1,X2, and Y have PDFs f1, f2, and g, respectively.
If Xt2 ≥st X

t
1 and f1(x)/g(x) is increasing in x, then

I
ϕ
X1,Y

(t) ≤ I
ϕ
X2,Y

(t), t > 0.

If Xt1 ≥st X
t
2 and f2(x)/g(x) is increasing in x, the inequality is reversed.

Proof. Consider the difference under question,

I
ϕ
X1,Y

(t)− I
ϕ
X2,Y

(t) = Egt
(
ϕ

(
f t1

gt

)
− ϕ

(
f t2

gt

))
. (8)

From the mean value theorem, for

min

{
f t1 (x)

gt (x)
,
f t2 (x)

gt (x)

}
≤ f t�

gt�
≤ max

{
f t1 (x)

gt (x)
,
f t2 (x)

gt (x)

}
,

the expectation in (8) is equal to

∫ ∞

t

ϕ′
(
f t�

gt�

)(
f t1

gt
− f t2

gt

)
dGt =

∫ ∞

t

ϕ′
(
f t�

gt�

)
(f t1 (x)− f t2 (x)) dx.

Without loss of generality, assume that there is one change of sign in the difference f t1 (x)−
f t2 (x) from positive to negative at t0 > t . The opposite case or more general cases can be
treated similarly. The above integral could be written as

∫ t0

t

ϕ′
(
f t�

gt�

)
(f t1 (x)− f t2 (x)) dx +

∫ ∞

t0

ϕ′
(
f t�

gt�

)
(f t1 (x)− f t2 (x)) dx. (9)

For x ∈ [t, t0), f t1 (x)− f t2 (x) > 0, and since ϕ′ is an increasing function, the first integral in
(9) is less than or equal to

∫ t0

t

ϕ′
(

max

{
f t1 (x)

gt (x)
,
f t2 (x)

gt (x)

})
(f t1 (x)− f t2 (x)) dx =

∫ t0

t

ϕ′
(
f t1 (x)

gt (x)

)
(f t1 (x)− f t2 (x)) dx.

(10)
For x ∈ (t0,∞), f t2 (x) − f t1 (x) > 0, and since −ϕ′(f t� /gt�) ≤ −ϕ′(min{f t1 (x)/gt (x),
f t2 (x)/g

t (x)}) = −ϕ′(f t1 (x)/gt (x)), the second integral in (9) is less than or equal to

∫ ∞

t0

ϕ′
(
f t1 (x)

gt (x)

)
(f t1 (x)− f t2 (x)) dx.

Finally, (9) is less than or equal to

∫ ∞

t

ϕ′
(
f t1 (x)

gt (x)

)
(f t1 (x)− f t2 (x)) dx. (11)
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By an integration by parts, (11) becomes
∫ ∞

t

(
F2(x)

F 2(t)
− F1(x)

F 1(t)

)
d

(
ϕ′

(
f t1 (x)

gt (x)

))
, (12)

and since Xt2 is stochastically larger than Xt1, ϕ′ is increasing, and f1(x)/g(x) is increasing in
x, the integral in (12) is nonpositive. This completes the proof.

From the above we deduce that, under the assumptions of Theorem 4, at any point t the
reference distribution Gt is closer to F t1 than to F t2.

Theorem 5. Let three random variablesX1,X2, and Y have PDFs f1, f2, and g, respectively.
If X2,t ≥st X1,t and f1(x)/g(x) is increasing in x, then

I
ϕ

X1,Y
(t) ≤ I

ϕ

X2,Y
(t), t > 0.

If X1,t ≥st X2,t and f2(x)/g(x) is increasing in x, the inequality is reversed.

Proof. An argument similar to that used in the proof of Theorem 4 gives the results.

From the above we deduce that, under the assumptions of Theorem 5, at any point t the
reference distribution Gt is closer to F1,t than to F2,t .

Theorem 6. Let three random variables X, Y1, and Y2 have PDFs f , g1, and g2, respectively.
If Y t1 ≥st Y

t
2 and f (x)/g1(x) is increasing in x, then

I
ϕ
X,Y1

(t) < I
ϕ
X,Y2

(t)+ lim
r→∞

ϕ(r)

r

(
1 − hX(t)

hY1(t)

)
, t > 0. (13)

Proof. Observe that the difference IϕX,Y1
(t)− I

ϕ
X,Y2

(t) can be written as

Egt1

(
ϕ

(
f t

gt1

))
− Egt2

(
ϕ

(
f t

gt1

))
+ Egt2

(
ϕ

(
f t

gt1

)
− ϕ

(
f t

gt2

))
. (14)

The difference in the first two terms above, by (7) with the strict inequality, becomes strictly
less than∫ ∞

t

(
ϕ(0)+f

t

gt1
lim
r→∞

ϕ(r)

r

)
d(Gt1−Gt2) = lim

r→∞
ϕ(r)

r

(∫ ∞

t

f t (x) dx−
∫ ∞

t

f t (x)
gt2(x)

gt1(x)
dx

)
.

Since, by our assumption that f t (x)/gt1(x) is increasing in x, we have f t (x)/gt1(x) ≥
f t (t)/gt1(t) for all x ∈ (t,∞), so that the above relation is less than or equal to

lim
r→∞

ϕ(r)

r

(
1 −

∫ ∞

t

hX(t)

hY1(t)
gt2(x) dx

)
= lim
r→∞

ϕ(r)

r

(
1 − hX(t)

hY1(t)

)
≥ 0.

From the mean value theorem, for

min

{
f t (x)

gt1(x)
,
f t (x)

gt2(x)

}
≤ f t�

gt�
≤ max

{
f t (x)

gt1(x)
,
f t (x)

gt2(x)

}
,

the last expectation in (14) is equal to

Egt2

(
ϕ′

(
f t�

gt�

)(
f t

gt1
− f t

gt2

))
=

∫ ∞

t

(gt2(x)− gt1(x))ϕ
′
(
f t�

gt�

)
f t (x)

gt1(x)
dx.
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An argument similar to that used in the proof of Theorem 4 shows that the above integral is less
than or equal to ∫ ∞

t

(gt2(x)− gt1(x))ϕ
′
(
f t (x)

gt1(x)

)
f t (x)

gt1(x)
dx.

By an integration by parts, the above integral becomes
∫ ∞

t

(
G1(x)

G1(t)
− G2(x)

G2(t)

)
d

(
ϕ′

(
f t (x)

gt1(x)

)
f t (x)

gt1(x)

)
≤ 0,

since Y t1 is stochastically larger than Y t2, f (x)/g1(x) is increasing in x, and ϕ′ is increasing.
This completes the proof.

Theorem 7. Let three random variables X, Y1, and Y2 have PDFs f , g1, and g2, respectively.
If Y1,t ≥lr Y2,t and f (x)/g1(x) is increasing in x, then

I
ϕ

X,Y1
(t) < I

ϕ

X,Y2
(t)+ lim

r→∞
ϕ(r)

r

(
1 − τY2(t)

τY1(t)

)
, t > 0. (15)

Proof. Observe that the difference I
ϕ

X,Y1
(t)− I

ϕ

X,Y2
(t) can be written as

Eg1,t

(
ϕ

(
ft

g1,t

))
− Eg2,t

(
ϕ

(
ft

g1,t

))
+ Eg2,t

(
ϕ

(
ft

g1,t

)
− ϕ

(
ft

g2,t

))
. (16)

As in the proof of Theorem 6, by using (7) with the strict inequality, the difference in the
first two terms in (16) is strictly less than

lim
r→∞

ϕ(r)

r

(∫ t

0
ft (x) dx −

∫ t

0
ft (x)

g2,t (x)

g1,t (x)
dx

)
.

Since by our assumption that g1,t (x)/g2,t (x) is increasing in x, we have g2,t (x)/g1,t (x) ≥
g2,t (t)/g1,t (t) for all x ∈ (0, t), so that the above relation is less than or equal to

lim
r→∞

ϕ(r)

r

(
1 −

∫ t

0

τY2(t)

τY1(t)
ft (x) dx

)
= lim
r→∞

ϕ(r)

r

(
1 − τY2(t)

τY1(t)

)
≥ 0.

Using an argument similar to that used for the corresponding term in the proof of Theorem 6,
the last expectation in (16) is nonpositive. This completes the proof.

Remark. Theorems 6 and 7 examine the relation between the distributions F t , Gt1, and Gt2,
and the distributions Ft , G1,t , and G2,t . It is interesting to point out here that whenever
limr→∞ ϕ(r)/r ≤ 0, (13) and (15) simplify to

I
ϕ
X,Y1

(t) < I
ϕ
X,Y2

(t) and I
ϕ

X,Y1
(t) < I

ϕ

X,Y2
(t),

respectively. The above results imply that the reference distribution F t is closer to Gt1 than
to Gt2 and that the reference distribution Ft is closer to G1,t than to G2,t . Such cases are
encountered when, among others, ϕ is taken to be equal to ϕ2(·) for a < 0, or ϕ3(·) for a < −1,
or ϕ(u) = −log(u), which corresponds to the minimum discrimination information measure, or
ϕ(u) = (u−1)2/(u+1)2, which is the function that corresponds to the measure of Balakrishnan
and Sanghvi (1968).
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4. Divergence measures in survival and reliability models

In this section we provide the formulae for the proposed discrimination measures between
two random variables for the case of the proportional hazards and reverse hazards models.
Then we evaluate the divergence between the Cox proportional hazards model and the frailty
or transformation model.

4.1. Proportional hazards and proportional reverse hazards models

We will concentrate first on the case of proportional hazards. Let X and Y be random
variables with distribution functions F and G, respectively, for which it holds that

G(x) = (F (x))θ for all x > 0 and θ > 0. (17)

See Cox (1972) for details and Ebrahimi and Kirmani (1996a) for a connection with divergence
measures.

Theorem 8. (i) The discrimination measure IϕX,Y (t) between the random variables X and Y
which satisfy the proportional hazards assumption (17) is independent of t and is given by

I
ϕ
X,Y (t) =

∫ 1

0
ϕ

(
1

θyθ−1

)
dyθ . (18)

(ii) If IϕX,Y (t) is independent of t and given by (18), then there exists a constant θ > 0 such that
(17) holds.

Proof. We have

I
ϕ
X,Y (t) =

∫ ∞

t

g(x)

G(t)
ϕ

(
f (x)/F (t)

g(x)/G(t)

)
dx

=
∫ ∞

t

θ(F (x))θ−1f (x)

(F (t))θ
ϕ

(
f (x)/F (t)

θ(F (x))θ−1f (x)/(F (t))θ

)
dx

=
∫ ∞

t

θ

(
F(x)

F (t)

)θ−1
f (x)

F (t)
ϕ

(
1

θ

(
F(t)

F (x)

)θ−1)
dx,

which, by a change of variable y = F(x)/F (t), is equal to

∫ 1

0
ϕ

(
1

θyθ−1

)
dyθ ,

which is independent of t .
The reverse is shown by following the reverse steps of the proof.

Now we will focus on the proportional reverse hazards model, which is defined as

G(x) = (F (x))θ for all x > 0 and θ > 0. (19)

See Gupta et al. (1998), Di Crescenzo (2000), and Di Crescenzo and Longobardi (2004) for
this model and its connection to divergence measures.

Theorem 9. (i) The discrimination measure I
ϕ

X,Y (t) between the random variables X and
Y which satisfy the proportional reverse hazards assumption (19) is independent of t and is
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given by

I
ϕ

X,Y (t) =
∫ 1

0
ϕ

(
1

θyθ−1

)
dyθ . (20)

(ii) If I
ϕ

X,Y (t) is independent of t and given by (20), then there exists a constant θ > 0 such
that (19) holds.

Proof. We have

I
ϕ

X,Y (t) =
∫ t

0

g(x)

G(t)
ϕ

(
f (x)/F (t)

g(x)/G(t)

)
dx

=
∫ t

0

θ(F (x))θ−1f (x)

(F (t))θ
ϕ

(
f (x)/F (t)

θ(F (x))θ−1f (x)/(F (t))θ

)
dx

=
∫ t

0
θ

(
F(x)

F (t)

)θ−1
f (x)

F (t)
ϕ

(
1

θ

(
F(t)

F (x)

)θ−1)
dx,

which, by a change of variable y = F(x)/F (t), is equal to

∫ 1

0
ϕ

(
1

θyθ−1

)
dyθ ,

which is independent of t .
The reverse is shown by following the reverse steps of the proof.

4.1.1. Examples and applications. If we consider the function ϕ(u) = −log(u) + u − 1, the
discrimination measure IϕX,Y (t) for model (17) and the discrimination measure I

ϕ

X,Y (t) for
model (19) simplify to

log(θ)− θ − 1

θ
,

which is known as the minimum discrimination information (MDI) between X and Y . Obvi-
ously, when θ = 1, the distance between X and Y becomes 0.

If we consider the function ϕ(u) = u log(u) − u + 1, the discrimination measure IϕX,Y (t)
for model (17) and the discrimination measure I

ϕ

X,Y (t) for model (19) simplify to

−log(θ)+ θ − 1,

which is the Kullback–Leibler (KL) divergence. Obviously, when θ = 1, the distance between
X and Y becomes 0. (The graph of the KL distance between X and Y as a function of θ is
given in Figure 3, below.)

If we consider the Cressie and Read (CR) function ϕ1(·), the discrimination measure Iϕ1
X,Y (t)

for model (17) and the discrimination measure I
ϕ1
X,Y (t) for model (19) become

1

a(1 + a)

(
1

θa(a(1 − θ)+ 1)
− 1

)
. (21)

The graph of the CR distance betweenX and Y for various values of the index a, including the
value a = 2

3 , which is considered to be the best choice of a for the CR function (for details,
see Cressie and Read (1984)), is given in Figure 1. As a tends to 0, the measure tends to
−log(θ)+ θ − 1, which is the KL divergence.
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Figure 1: The CR discrimination measure as a function of the index a and the parameter θ ∈ (0, 10).
The limit for a → 0 (not shown) is the KL measure.

If we consider the BHHJ function

ϕ2(u) = u1+a −
(

1 + 1

a

)
ua + 1

a
, a > 0,

the discrimination measures Iϕ2
X,Y (t) and I

ϕ2
X,Y (t) for models (17) and (19) take the form

1

θa(1 − a(θ − 1))
− a + 1

a

1

θa−1(θ − a(θ − 1))
+ 1

a
.

The graph of the BHHJ distance between X and Y as a function of θ , based on the function ϕ2
for various values of the index a is given in Figure 2. Note that, when a tends to 0, the measure
tends to the MDI measure between X and Y , that is, log(θ)− (θ − 1)/θ .

If we consider the function

ϕ3(u) = 1 −
(

1 + 1

a

)
u+ u1+a

a
, a > 0,

the discrimination measure Iϕ3
X,Y (t) for model (17) and the discrimination measure I

ϕ3
X,Y (t) for

model (19) become

1 − a + 1

a
+ 1

a

1

θa(1 + a(1 − θ))
. (22)

As a is tending to 0, the measure tends to −log(θ)+θ−1, which is the KL information. Observe
that function ϕ3 is the same as the CR function ϕ2, apart from a factor 1/(1 + a). Note that the
same relationship holds for the measures as well, that is, the measure that corresponds to Cressie
and Read given in (21) is the measure given in (22) multiplied by a factor 1/(1 + a). As a goes
to 0, they both tend to the KL divergence. The graph for the ϕ3 divergence is given in Figure 3.
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Figure 2: The BHHJ discrimination measure as a function of the index a and the parameter θ ∈ (0, 10).
The limit for a → 0 is the MDI measure.
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Figure 3: The ϕ3 discrimination measure as a function of the index a and the parameter θ ∈ (0, 10). The
limit for a → 0 is the KL measure.
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4.2. Frailty or transformation model versus Cox proportional hazards model

Let X and Y be random variables with distribution functions F1 and F2, probability density
functions f1 and f2, and survival functions S1 and S2, respectively. Let H be the baseline
cumulative hazard function, and let h be the baseline intensity hazard function. Let X follow
a Cox model (see Cox (1972)) under which

S1(x) = e−θH(x), θ > 0,

and let Y follow a frailty model (see Vonta (1996)) under which

S2(x) = e−G(θH(x)), θ > 0, (23)

where the functionG is assumed to be concave and increasing withG(0) = 0 andG(∞) = ∞.
In this section we provide the usual divergence between the distributions of X and Y using

the KL divergence (Theorem 10, below) and Csiszár’s divergence (Theorem 11, below), as
well as the ϕ-distance between the respective past (Theorem 12, below) and residual lifetimes
(Theorem 13, below) of X and Y .

Theorem 10. The discrimination measure IX,Y between the random variablesX and Y which
follow the Cox proportional hazards model and the frailty or transformation model (23),
respectively, is given by ∫ ∞

0
e−y(G(y)− log(G′(y))) dy − 1.

Proof. For the KL discrimination measure, we have

IX,Y =
∫ ∞

0
f1(x) log

(
f1(x)

f2(x)

)
dx

=
∫ ∞

0
e−θH(x)θh(x) log

(
e−θH(x)θh(x)

e−G(θH(x))G′(θH(x))θh(x)

)
dx

=
∫ ∞

0
e−θH(x)(G(θH(x))− θH(x)− log(G′(θH(x)))) d(θH(x)),

which, by the change of variable y = θH(x), becomes∫ ∞

0
e−y(G(y)− y − log(G′(y))) dy =

∫ ∞

0
e−y(G(y)− log(G′(y))) dy − 1.

Theorem 11. The discrimination measure IϕX,Y between the random variablesX and Y which
follow the Cox proportional hazards model and the frailty or transformation model (23),
respectively, is given by

∫ ∞

0
e−G(y)G′(y)ϕ

(
e−y

e−G(y)G′(y)

)
dy.

Proof. It is easy to see that the IϕX,Y measure is equal to
∫ ∞

0
e−G(θH(x))G′(θH(x))θh(x)ϕ

(
e−θH(x)θh(x)

e−G(θH(x))G′(θH(x))θh(x)

)
dx,

which, by the change of variable y = θH(x), takes the desired form.
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4.2.1. The measure IϕX,Y (t).

Theorem 12. The discrimination measure IϕX,Y (t) between the random variables X and Y
which follow the Cox proportional hazards model and the frailty or transformation model (23),
respectively, is given by

∫ ∞

θH(t)

e−G(y)G′(y)
e−G(θH(t)) ϕ

(
e−y/e−θH(t)

e−G(y)G′(y)/e−G(θH(t))

)
dy (24)

for t > 0.

Proof. The measure IϕX,Y (t) for t > 0 is equal to

∫ ∞

t

e−G(θH(x))G′(θH(x))
e−G(θH(t)) ϕ

(
e−θH(x)/e−θH(t)

e−G(θH(x))G′(θH(x))/e−G(θH(t))

)
d(θH(x)),

which, by a change of variable, yields (24).

Examples. For the function ϕ(u) = −log(u)+ u− 1, the measure defined in (24) becomes

1

e−G(θH(t))

∫ ∞

θH(t)

e−G(y)G′(y)(y −G(y)+ log(G′(y))) dy +G(θH(t))− θH(t),

since
∫ ∞
θH(t)

e−G(y)G′(y) dy = −∫ ∞
θH(t)

de−G(y) = e−G(θH(t)), and it is further simplified to

1

e−G(θH(t))

∫ ∞

θH(t)

e−G(y)G′(y)(y + log(G′(y))) dy − θH(t)− 1

= 1

e−G(θH(t))

∫ ∞

θH(t)

(e−G(y) + e−G(y)G′(y) log(G′(y))) dy − 1,

by integration by parts.
If we consider the function ϕ(u) = u log(u)− u+ 1, the measure defined in (24) becomes

1

e−θH(t)

∫ ∞

θH(t)

e−y(−y +G(y)− log(G′(y))) dy −G(θH(t))+ θH(t)), (25)

which, by integration by parts, becomes

1

e−θH(t)

∫ ∞

θH(t)

e−y(G′(y)− log(G′(y))) dy − 1. (26)

If we consider the function ϕ1 of Cressie and Read then the discrimination measure (24)
becomes

1

a(1 + a)

(
e−aG(θH(t))

e−(a+1)θH(t)

∫ ∞

θH(t)

e−(a+1)y

e−aG(y)(G′(y))a
dy − 1

)
. (27)

When a tends to 0, the above measure tends, as expected, to the measure that corresponds
to the function ϕ(u) = u log(u)− u+ 1 and is given in (25). This measure is the KL measure
at time t between two random variables X and Y that follow the Cox model and the frailty or
transformation model.
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If we consider the function ϕ2, the discrimination measure (24) becomes

∫ ∞

θH(t)

e−G(y)G′(y)
e−G(θH(t))

{(
e−y/e−θH(t)

e−G(y)G′(y)/e−G(θH(t))

)a

×
(

e−y/e−θH(t)

e−G(y)G′(y)/e−G(θH(t)) − a + 1

a

)
+ 1

a

}
dy

= e−aG(θH(t))

e−aθH(t)

{∫ ∞

θH(t)

1

e−G(θH(t))
e−(a+1)y

e−aG(y)(G′(y))a
dy

− a + 1

a

∫ ∞

θH(t)

1

e−G(θH(t))
e−ay

e−(a−1)G(y)(G′(y))a−1
dy

}
+ 1

a
.

As a tends to 0, the above discrimination measure tends to the measure that corresponds to
the function ϕ(u) = −log(u)+u−1, given in (31), below, which is the MDI at time t between
two random variables X and Y that follow the Cox model and the frailty or transformation
model.

Recall that the function ϕ3 is equal to the CR function multiplied by a factor of 1 + a and,
therefore, it is easy to prove that the discrimination measure (24), in the case of ϕ3, is the
measure (27) multiplied by a factor of 1 + a. The two measures (related to ϕ1 and ϕ3) become
equal and equal to the KL divergence given in (25) as a tends to 0.

4.2.2. The measure I
ϕ

X,Y (t).

Theorem 13. The discrimination measure I
ϕ

X,Y (t) between the random variables X and Y
which follow the Cox proportional hazards model and the frailty or transformation model (23),
respectively, is given by

∫ θH(t)

0

e−G(y)G′(y)
1 − e−G(θH(t)) ϕ

(
e−y/1 − e−θH(t)

e−G(y)G′(y)/1 − e−G(θH(t))

)
dy (28)

for t > 0.

Proof. The measure I
ϕ

X,Y (t) for t > 0 is equal to

∫ t

0

e−G(θH(x))G′(θH(x))
1 − e−G(θH(t)) ϕ

(
e−θH(x)/1 − e−θH(t)

e−G(θH(x))G′(θH(x))/1 − e−G(θH(t))

)
d(θH(x)),

which, by a change of variable, yields (28).

Examples. For the function ϕ(u) = −log(u)+ u− 1, the measure defined in (28) becomes

1

1 − e−G(θH(t))

∫ θH(t)

0
e−G(y)G′(y)(y −G(y)+ log(G′(y))) dy − log

(
1 − e−G(θH(t))

1 − e−θH(t)

)
.

(29)
If we consider the function ϕ(u) = u log(u)− u+ 1, the measure defined in (28) becomes

1

1 − e−θH(t)

∫ θH(t)

0
e−y(−y +G(y)− log(G′(y))) dy + log

(
1 − e−G(θH(t))

1 − e−θH(t)

)
. (30)
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If we consider the function ϕ1 of Cressie and Read then the discrimination measure (28)
becomes

1

a(1 + a)

(
(1 − e−G(θH(t)))a

(1 − e−θH(t))a+1

∫ θH(t)

0

e−(a+1)y

e−aG(y)(G′(y))a
dy − 1

)
. (31)

When a tends to 0, the above measure tends, as expected, to the measure that corresponds
to the function ϕ(u) = u log(u)− u+ 1 and is given in (30). This measure is the KL measure
between the past lifetimes of two random variablesX and Y that follow the Cox model and the
frailty or transformation model, respectively.

For the ϕ2 function, it is easy to see that the discrimination measure (28) takes the form

(1 − e−G(θH(t)))a

(1 − e−θH(t))a

{∫ θH(t)

0

1

1 − e−G(θH(t))
e−(a+1)y

e−aG(y)(G′(y))a
dy

− a + 1

a

∫ θH(t)

0

1

1 − e−G(θH(t))
e−ay

e−(a−1)G(y)(G′(y))a−1
dy

}
+ 1

a
.

As a tends to 0, the above discrimination measure tends to the measure that corresponds to
the function ϕ(u) = −log(u)+u−1, given in (29), which is the MDI between the past lifetimes
of two random variables X and Y that follow the Cox model and the frailty or transformation
model.

Recall that function ϕ3 is equal to the CR function multiplied by a factor of 1 + a and,
therefore, the discrimination measure (28) becomes, for ϕ3, equal to the one given in (31)
multiplied by a factor of 1 + a. The two measures (relative to ϕ1 and ϕ3) become equal and
equal to the KL divergence given in (30) as a tends to 0.

4.2.3. Examples of the function G. If G(x) = x, which is the function that corresponds to the
Cox model, the discrimination measures defined in this section become, as expected, equal to
0 (recall that ϕ(1) = 0).

If we consider the function G(x, c) = (1/c) log(1 + cx) for c > 0, which corresponds to a
gamma-distributed frailty with mean 1 and variance c, then we have the measure

IX,Y = 1 + c

c

∫ ∞

0
e−x log(1 + cx) dx − 1 = (1 + c)

∫ ∞

0

e−x

1 + cx
dx − 1,

by integration by parts.
If we consider the functionG(x, b) = 2

√
b(x + b)−2b for b > 0, which corresponds to an

inverse Gaussian-distributed frailty with mean 1 and variance 1/2b, then we have the measure

IX,Y =
∫ ∞

0
e−x

(
2
√
b(b + x)− 2b − log

( √
b√

b + x

))
dx − 1

= −2b − 1

2
log b + 2

√
b

∫ ∞

0
e−x(b + x)1/2 dx + 1

2

∫ ∞

0
e−x log(b + x) dx − 1

= −2b − 1

2
log b + 2

√
beb

∫ ∞

b

e−yy1/2 dy + 1

2
eb

∫ ∞

b

e−y log y dy − 1.

Similarly, we can evaluate the other discrimination measures defined in this paper, namely,
I
ϕ
X,Y , IϕX,Y (t), and I

ϕ

X,Y (t). For example, for the functions ϕ(u) = u log(u) + 1 − u and
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G(x, c) = (1/c) log(1 + cx), we have, from (26),

I
ϕ
X,Y (t) = 1

e−θH(t)

(∫ ∞

θH(t)

e−y
(
(1 + cy)−1 − log(1 + cy)−1

)
dy

)
− 1

= log(1 + θH(t))+ c + 1

e−θH(t)

∫ ∞

θH(t)

e−y

1 + cy
dy − 1,

by integration by parts.

5. Discussion

In this paper we defined measures of divergence between past lifetimes and between residual
lifetimes of two items that are known to have survived up to a time t . The measures are based on
a class of functions known as Csiszár’s class of functions that satisfy some regularity conditions.
We examined properties of these measures and also calculated the proposed divergence measures
between two distributions in a number of examples, such as the divergence measure between two
random variables that satisfy the proportional hazards assumption as well as the proportional
reverse hazards assumption.

It is worth pointing out that both measures of divergence, that is, between residual or past
lifetimes, are independent of t in the cases of proportional hazards or proportional reverse
hazards. More specifically, the measure IϕX,Y (t) for the proportional hazards case and I

ϕ

X,Y (t)

for the proportional reverse hazards case are equal and, therefore, the information that we obtain
for two items that have survived up to a point t is the same if we look in the past or in the future
as long as an appropriate proportionality holds for their distributions. The two measures are
also independent of how long the two items have survived.

In Figure 1 we provided the divergence measure based on the Cressie and Read (CR) function
for various values of the index a, including the value a = 2

3 , which is claimed to be the optimum
for tests in multinomial populations (see Cressie and Read (1984)). If we let a approach 0 then
the CR divergence resembles very closely that of Figure 3 due to the fact that, as a → 0,
the CR measure reduces to the KL measure. In Figure 2 we presented the BHHJ divergence
measure for the function ϕ2(u) for various values of the index a. It is interesting to point out that
this divergence is almost identical with the graph of the minimum discrimination information
divergence. This is due to the fact that the information based on ϕ2 as a tends to 0 converges
to the minimum discrimination information. The divergence based on the function ϕ3 was
presented in Figure 3. The graph also included the Kullback–Leibler distance between the
residual lives of X and Y that follow the model (17) or between past lives of X and Y that
follow the model (19), given that both items have survived up to time t . It was pointed out
that the KL divergence is the limit as a → 0 of both the ϕ3 function and the CR divergence
function.

We have also provided the distance between two random variables X and Y that follow a
Cox model and a frailty or transformation model, respectively. The frailty or transformation
model is an extension of the Cox model which arises when we introduce a random effect into the
Cox model in order to explain possible heterogeneity present in the population. This distance
depends on a functionG which is determined by the distribution of the frailty or random effect
and satisfies some regularity conditions. We further furnished the ϕ-divergence between past
lifetimes and residual lifetimes of X and Y when they have survived up to some time t .

Note that the proposed measures of divergence could be used for goodness-of-fit tests. We
could utilize these divergence measures to compare two lifetime distributions or to decide which

https://doi.org/10.1239/jap/1269610827 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610827


234 F. VONTA AND A. KARAGRIGORIOU

model is closest to the true model between competing candidate models. This part is left for
future research.
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