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Abstract

We present a compositional programme logic for call-by-value imperative higher-order functions
with general forms of aliasing, which can arise from the use of reference names as function paramet-
ers, return values, content of references and parts of data structures. The programme logic extends
our earlier logic for alias-free imperative higher-order functions with new operators which serve as
building blocks for clean structural reasoning about programms and data structures in the presence
of aliasing. This has been an open issue since the pioneering work by Cartwright–Oppen and Morris
twenty-five years ago. We illustrate usage of the logic for description and reasoning through concrete
examples including a higher-order polymorphic Quicksort. The logical status of the new operators is
clarified by translating them into (in)equalities of reference names.

1 Introduction

In high-level programming languages, names can be used to indicate either stateless entities
like procedures, or stateful constructs such as imperative variables. Aliasing, where distinct
names refer to the same entity, has no observable effects for the former, but strongly affects
the latter. This is because if state changes, that change should affect all names referring to
that entity. Consider

P
def= x := 1; y :=!z ; !y := 2,

where, following ML notation, !x stands for the content of an imperative variable or refer-
ence x. If z stores a reference name x initially, then the content of x after P runs is 2; if z
stores something else, the final content of x is 1. But if it is unclear what z stores, we cannot
know if !y is aliased to x or not, which makes reasoning difficult.

The situation gets more complicated with higher-order functions because programs with
side effects can be passed to procedures and stored in references. For example, let

R
def= λ(f xy). (let z = !x in !x := 1; !y := 2; f (x,y) ; z := 3)

where α = Ref(Ref(Nat)) is the type of x,y. R receives a function f and two references
x and y. Its behaviour is different depending on what it receives as f (for simplicity, let
us assume x and y store distinct references). If we pass a function λxy.(), which takes two
arguments and returns the unique value of Unit-type, as f , then, after execution, !x stores
3 and !y stores 2. But if the standard swapping function swap

def= λab.let c = !b in (b :=
!a;a := c) is passed, the content of x and y is swapped and !x now stores 2 while !y stores
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3. Such interplay between higher-order procedures and aliasing is common in many non-
trivial programs in ML, C and more recent typed and untyped low-level languages (Peyton
Jones et al. 1999; Grossman et al. 2002; Shao 1997).

Hoare logic (Hoare 1969), developed on the basis of Floyd’s assertion method (Floyd
1967), has been studied extensively as a verification method for first-order imperative
programs with diverse applications. However Hoare’s original proof system is sound only
when aliasing is absent (Apt 1981; Cousot 1999): while various extensions have been
studied, a general solution that extends the original method to treat aliasing, retaining its
semantic basis (Greif & Meyer 1981; Hoare & Jifeng 1998) and tractability, has not been
known, not to speak of its combination with arbitrary imperative higher-order functions
(our earlier work [Honda et al. 2005] extends Hoare logic with a treatment for a general
class of higher-order imperative functions including stored procedures, but does not treat
aliasing).

Resuming studies by Cartwright–Oppen and Morris from 25 years ago (Cartwright &
Oppen 1978, 1981; Morris 1982b), the present paper introduces a simple and tractable
compositional programme logic for general aliasing and imperative higher-order func-
tions. A central observation in the literature (Cartwright & Oppen 1978, 1981; Morris
1982b) is that (in)equations over names, simple as they may seem, are expressive enough
to describe general aliasing in first-order procedural languages, provided we distinguish
between reference names (written x) and the corresponding content (which we write !x)
in assertions. In particular, their work has shown that alias robust substitution, also called
semantic substitution, written C{|e/!x|} in our notation, defined by

M |=C{|e/!x|} iff M[x �→ [[e]]M] |= C (1)

(i.e. an update of a store at a memory cell referred to by x with value e), can be translated
into (in)equations of names through inductive decomposition of C, albeit at the expense
of an increase in formula size. This gives us the following semantic version of Hoare’s
assignment axiom:

{C{|e/!x|}}x := e{C} (2)

where the pre-condition uses semantic substitution. The rule subsumes the original axiom
but is now alias-robust. As clear evidence of descriptive power of this approach, Cartwright
and Oppen showed that the use of Equation (2) leads to a sound and (relatively) complete
logic for a programming language with first-order procedures and full aliasing (Cartwright
& Oppen 1978, 1981): Morris showed many non-trivial reasoning examples for data
structures with destructive update, including reasoning for the Schorr–Waite algorithm
(Morris 1982b).

The work by Cartwright–Oppen and Morris, remarkable as it is, still begs the question
how to reason about programs with aliasing in a tractable way. The first issue is calculation
of validity in assertions involving semantic substitutions. Cartwright and Oppen’s inductive
decomposition of {|e/!x|} into (in)equations has been the only syntactic tool available and
is hardly practical. As demonstrated through many examples by Morris (1982b) and, more
recently, Bornat (2000), this decomposition should be distributed to every part of a given
formula even if that part is irrelevant to the state change under consideration, making
reasoning extremely cumbersome. As an example, if we use the decomposition method
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for calculating the logical equivalence

C{|c/!x|}{|e/!x|} ≡ C{|c/!x|}

for general C, with c being a constant, we need either meta-logical reasoning (induction
on C) or an appeal to semantic means. Because such logical calculation is a key part of
programme proving (Hoare 1969), practical usability of this approach becomes unclear.
The second problem is the lack of structured reasoning principles for deriving precise
descriptions of extensional programme behaviour with aliasing. This makes reasoning
hard, because properties of complex programmes often depend crucially on how sub-
programmes interact through shared, possibly aliased references. Finally, the logics in the
authors (Cartwright & Oppen 1978, 1981; Morris 1982b) and their successors do not offer
a general treatment of higher-order procedures and mutable data structures that may store
such procedures.

We address these technical issues by augmenting the logic for imperative higher-order
functions introduced in Honda et al. (2005) with a pair of mutually dual logical primitives
called content quantifiers. They offer an effective middle layer with clear logical status for
reasoning about aliasing. The existential part of the primitives, written 〈!x〉C, is defined by
the following equivalence:

M |= 〈!x〉C
def≡ ∃V.(M[x �→V ] |= C) (3)

The defining clause says: “for some possible content of a reference named x, M satisfies C”
(which may not be about the current state, but about a possible state, hence the notation).
Syntactically 〈!x〉C does not bind free occurrences of x in C. Its universal counterpart is
written [!x]C, with the obvious semantics.

We mention several notable aspects of these operators. Firstly, content quantification
gives a clear logical description of alias-robust substitution:

C{|e/!x|} ≡ ∃m.(〈!x〉(C∧ !x=m)∧m=e) (4)

From Equations (3) and (4), the logical equivalence (1) is immediate, recovering (2) as
a rule of inference. As content quantification has a straightforward axiomatisation, this
decomposition enables a rich set of methods and axioms provided by first-order logic,
leading to efficient calculation of validity, while subsuming Cartwright–Oppen/Morris’s
methods. This is because logical calculation can now focus on those parts of a formula that
do get affected by state change: just like lazy evaluation, we do not have to calculate parts

not immediately needed. For example let C
def= C1 ∧ [!x]C2 ∧〈!x〉C3. To calculate C{|e/!x|},

we only have to consider C1{|e/!x|}, since, by axioms discussed later:

(C1 ∧ [!x]C2 ∧〈!x〉C3){|e/!x|} ≡ C1{|e/!x|}∧ ([!x]C2 ∧〈!x〉C3)

Here the two content quantifications, 〈!x〉 and [!x], respectively protect C2 and C3 from
manipulation of content (here substitution) of x. In later sections, we shall demonstrate this
point through examples.

Secondly, content quantification provides a powerful descriptive and reasoning frame-
work when used in conjunction with the standard logical primitives. By allowing hypo-
thetical statements about the content of references separate from statements about reference
names themselves (which is the central logical feature of these operators), complex aliasing
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situations are given simple, succinct descriptions: intuitively, [!x]C asserts, in one go, that
C holds regardless of what is stored at x and, in addition, if C makes a nontrivial assertion
about the content of a syntactically distinct reference y (e.g. C may state !y = 3), then x and
y cannot be aliased (and dually for 〈!x〉C). This is often useful, for example when reasoning
about the aliasing taking place when dealing with arrays and stack-located references.
Content quantification works seamlessly with the logical machinery for capturing pure and
imperative higher-order behaviour studied by the authors (Honda 2004; Honda & Yoshida
2004; Honda et al. 2005) and thus facilitates precise description and efficient reasoning for
a large class of higher-order behaviour and data structures.

Thirdly, and somewhat paradoxically, we can eliminate content quantification in the
logic presented here without losing expressiveness: any formula containing content quan-
tification can be translated, up to logical equivalence, into one without. While establishing
this result, we also show that content quantification and semantic update are mutually
definable. Thus name (in)equations, content quantification and semantic update are all
equivalent in the current setting. While this elimination result does not hold in programme
logics extending the logic presented here to capture more refined behaviours (such as a
logic for local state; Yoshida et al. 2007), this elimination result is, nevertheless, inform-
ative about the nature of content quantification: for example, the elimination procedure
suggests a straightforward extension of content quantification over single references to
content quantification for an arbitrary set of references, as we shall see in Section 7. The
elimination procedure also clarifies the merit of the aforementioned lazy calculation of
semantic substitution and the concise descriptions of programme behaviour that can be
obtained this way.

1.1 Structure of the paper

In the rest of the paper, Section 2 briefly summarises the programming language. Section 3
introduces the assertion language and its semantics. Section 4 discusses axioms. Section 5
introduces basic proof rules for the logic. Section 6 discusses several key technical proper-
ties of the proposed logic: elimination of content quantification and soundness of axioms
and proof rules. Section 7 introduces located assertions and associated reasoning principles
for effective reasoning about programmes with aliasing. Section 8 gives non-trivial reas-
oning examples using the logic, including that of a polymorphic higher-order Quicksort,
taken from the corresponding C programme by Kernighan and Ritchie. Section 9 discusses
related work and further topics.

This paper is a full version of Berger et al. (2005), with complete definitions and detailed
proofs. The present version gives not only more illustration of axioms and proof rules but
also more examples and comprehensive comparisons with related work.

1.2 The logic for aliasing in a hierarchy of logics

The logic presented here is part of a family of stratified programme logics, starting from
one for pure higher-order functions (Honda 2004; Honda & Yoshida 2004; Honda et al.
2006) and its immediate generalisation to imperative higher-order functions (Honda et al.
2005), to logics for languages with more complex behaviours. This allows us to use simple
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reasoning methods for more straightforward behaviour such as imperative programmes
without aliasing, while resorting to a complex logical apparatus only for a more complex
class of behaviours. This is the rationale for studying logics for cleanly delineated classes
of behaviour; this work focuses on general aliasing, an important instance of such a class,
extending our preceding programme logic (Honda et al. 2005). A significant class of
practical programmes written in C and ML combines higher-order functions, aliasing, and
reference declarations that are never exported beyond their scope (so-called stack-allocated
variables); this class of programmes can be reasoned about in the logic in this paper (see
Section 9).

2 Language

The programming language we shall use in the present study is call-by-value PCF with unit,
sums and products, augmented with imperative variables, but without dynamic allocation
of references (dynamic allocation is investigated in Yoshida et al. 2007). Assuming given
an infinite set of variables (x,y,z, . . . , also called names), the syntax of programmes is
standard (Pierce 2002) and given by the following grammar.

(values) V,W ::=c | x | λxα.M | µ f α⇒β.λyα.M | 〈V,W 〉 | ini(V )

(programme) M,N ::=V | MN | M := N | !M | op(M̃) | πi(M) | 〈M,N〉 | ini(M)

| if M then M1 else M2 | case M of {ini(x
αi
i ).Mi}i∈{1,2}

Abstraction, recursion and the case construct are annotated by types. Constants (c,c′, . . . )
include unit (), natural numbers n, booleans b (either true t or false f) and locations
(l, l′, ...). op(M̃) (where M̃ is a vector of programmes) is a standard n-ary first-order opera-
tion such as +, −, ×, = (equality of two numbers or that of reference names), ¬ (negation),
∧ and ∨. !M dereferences M while M := N first evaluates M and obtains a location (say
l), evaluates N and obtains a value (say V ), and assigns V to l. All these constructs are
standard (cf. Gunter 1995; Pierce 2002). The notions of binding and α-convertibility are
also conventional. fv(M) and fl(M) denote the sets of free variables and locations in M,
respectively. We use abbreviations such as

λ().M def= λxUnit.M (x ∈ fv(M))

M;N
def= (λ().N)M

let x = M in N
def= (λx.N)M (x ∈ fv(M))

Let X,Y, . . . , range over an infinite set of type variables. Types are ranged over by α,β, . . . ,
and are given by the following grammar:

α,β ::= Unit | Bool | Nat | α⇒β | α×β | α+β | Ref(α) | X | µX.α

We call types of the form Ref(α) reference types. All others are value types. A type is
closed if it does not contain free occurrences of type variables. We write ftv(α) to mean
the set of α’s free type variables. The type Listα is given by the recursive definition below.

Listα
def= µX.(Unit+(α×Ref(X))). As this type will be often used in examples, we intro-

duce some shorthands. We write nil for inj1(()) and a :: b to abbreviate inj2(〈a,b〉). To
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facilitate reasoning, we sugar the case-construct: case e of {nil�M1 | a::l�M2} is a short-
hand for case e of {ini(xi).Ni}i∈{1,2} where N1 = M1 and N2 = M2[π1(x2)/a][π2(x2)/b].
Naturally, e must be of type Listα.

A typing environment is a finite map from names and locations to closed types. Γ,Γ′ . . .
range over typing environments and dom(Γ) denotes the domain of Γ, while cod(Γ)
denotes the range of Γ. We let ∆, . . . range over typing environments whose codomains
are reference types and write Γ;∆ for a typing environment where Γ maps names to value
types, always assuming dom(Γ)∩ dom(∆) = /0. We take the equi-isomorphic approach
for recursive types, and will identify types and programmes up to equi-isomorphism. The
typing rules are standard (Pierce 2002) and listed in Appendix A, using sequents Γ � M : α,
which say that M has type α under typing environment Γ. We often write MΓ;α for Γ � M :
α.

The dynamics of the language is given by straightforward call-by-value reductions using
a store (Gunter 1995; Pierce 2002), where a store (σ,σ′, ...) is a finite map from locations
to closed values. We write dom(σ) for the domain of σ. A configuration is a pair of a
closed programme and a store. Then reduction is a binary relation over configurations,
written (M,σ) −→ (M′,σ′), generated by the rules in Appendix A. We use left-to-right
evaluation, but the proposed logic can treat other evaluation strategies and allows us to
infer properties which hold regardless of evaluation strategy.

3 Logic (1): Assertions

3.1 Terms and formulae

This section introduces our logical language and formalises its semantics. The logical lan-
guage is standard first-order logic with equality (Mendelson 1987) extended with assertions
for quantification over type variables, evaluation and quantification over store content. The
latter is the only substantial addition to the logic in Honda et al. (2005).

e ::= xα | c | op(ẽ) | 〈e,e′〉 | inj
α+β
i (e) | !e

C ::= e = e′ | ¬C | C �C′ | Qxα.C | QX.C | {C} e• e′ = x {C′} | [!x]C | 〈!x〉C

Here � ∈ {∧,∨,⊃} and Q ∈ {∀,∃}. The first set of expressions (ranged over by e,e′, . . . )
are terms while the second set are formulae (ranged over by A,B,C,C′ . . . ). The constants
(c, c′,...) include unit (), numerals n, booleans b (either true t or false f) and labels l.
Operators op(ẽ) range over first-order operations from the target programming language,
including the standard arithmetical operations over natural numbers. In addition, we have
pairing and the injection operation. The final term, !e, denotes the dereference of e, i.e. the
content of a store denoted by e. We denote fv(C) (resp. fl(C)) for the set of free variables
(resp. locations) in C.

The predicate {C} e • e′ = x {C′} is called evaluation formula (Honda et al. 2005),
where the name x binds its free occurrences in C′. C and C′ are called (internal) pre/post-
conditions. Intuitively, {C} e•e′ = x {C′} asserts that an invocation of e with an argument
e′ under the initial state C terminates with a final state and a resulting value, named x, both
described by C′. Clearly • is non-commutative.

https://doi.org/10.1017/S0956796807006417 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006417


A logical analysis of aliasing in imperative higher-order functions 479

−
Γ;∆ � x : Γ(x)

−
Γ;∆ � n : Nat

−
Γ;∆ � t, f : Bool

−
Γ;∆ � l : ∆(l)

Γ;∆ � e : Bool
Γ;∆ � ¬e : Bool

Γ;∆ � ei : αi
Γ;∆ � e1 = e2

Γ;∆ � ei : αi
Γ;∆ � (e1,e2) : α1 ×α2

Γ;∆ � e : αi
Γ;∆ � injα1+α2

i (e) : α1 +α2

Γ;∆ � e : Ref(α)
Γ;∆ �!e : α

Γ;∆ �C1,2
Γ;∆ �C1 �C2

� ∈ {∧,∨,⊃} Γ · x :α ·∆ �C
Γ;∆ � Qxα.C

Q ∈ {∀,∃} Γ;∆ � e : Ref(α) Γ;∆ �C
Γ;∆ � 〈!e〉C

Γ;∆ � e : Ref(α) Γ;∆ �C
Γ;∆ � [!e]C

Γ;∆ � e1 : α⇒β Γ;∆ � e2 : α Γ;∆ �C (Γ ; ∆) · z : β �C′

Γ;∆ � {C} e1 • e2 = z {C′}

Fig. 1. Typing rules for terms and formulae.

The remaining two constructs are non-standard quantifications that are at the heart of the
present logic. [!x]C is universal content quantification of x in C, while 〈!x〉C is existential
content quantification of x in C. In both, x should have a reference type. Both are explained
in detail below, but informally:

• [!x]C says C holds regardless of the value stored in a memory cell named x.
• 〈!x〉C says C holds for some value that may be stored in the memory cell named x.

In both, what is being quantified is the content of a store, not the name of that store. In [!x]C
and 〈!x〉C, C is the scope of the quantification. The free name x is not a binder: we have
fv(〈!x〉C) = fv([!x]C) = {x}∪ fv(C). We define 〈!e〉C as a shorthand for ∃x.(x = e∧〈!x〉C),
assuming x /∈ fv(C). Likewise, [!e]C is short for ∀x.(x = e ⊃ [!x]C) with x being fresh. The
scope of a content quantifier is as small as possible, e.g. [!x]C ⊃C′ stands for ([!x]C) ⊃C′.
Binding in formulae is induced only by standard quantifiers and the evaluation formulae.
Formulae are taken up to the induced α-convertibility. Note that expressions are pure
and side-effect-free, i.e. do not contain abstractions, applications and assignments because
these features involve non-trivial dynamics with possibly infinite reductions. Similarly, for
sums, and products, we do not provide destructors (like πi(·)), only constructors in the
expression language. Nevertheless, our language is sufficiently expressive for reasoning
about arbitrary data structures.

Terms are typed inductively starting from types for variables and constants and signa-
tures for operators. The typing rules are given in Figure 1. Recalling that Γ;∆ indicates a
map from names to types such that Γ (resp. ∆) is about non-reference types (resp. reference
types), we write Γ;∆ � e : α when e has type α such that free names in e have types
following Γ;∆; and Γ;∆ �C when all terms in C are well-typed under Γ;∆. It may be worth
pointing out that in equations e = e′ we do not require e and e′ to have the same type.
This allows us to type equations like yRef(Nat) = aRef(X) ∨ yRef(α⇒β) = aRef(X) using type
variables. This will be useful for reasoning about effectful programmes as we demonstrate
later (Sections 3.4 and 7). Equations between terms of different type will always evaluate
to F, where F is definable as 1 = 1, and T

def= ¬F. In the introduction rule for first-order
quantifiers, the variable under abstraction can be a reference or not. Syntactic substitution
C[e/!x] is also used frequently: the definition is standard, save for some subtlety regarding
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substitution into the pre/post-condition of evaluation formulae, details can be found in
Appendix B. We shall also use positive inductive formulae freely, without further comment.
Henceforth we only treat well-typed terms and formulae.

Further notational conventions follow.

Convention 1 (assertions)

• In the subsequent technical development, logical connectives are used with their
standard precedence/association, with content quantification given the same preced-
ence as standard quantification (i.e. they associate stronger than binary connectives).
For example,

¬A ∧ B ⊃ ∀x.C ∨ 〈!e〉D ⊃ E

is a shorthand for ((¬A) ∧ B) ⊃ (((∀x.C) ∨ (〈!e〉D)) ⊃ E). C1 ≡ C2 stands for
(C1 ⊃C2)∧ (C2 ⊃C1), stating the logical equivalence of C1 and C2. e = e′ stands for
¬e = e′. The standard binding convention is always assumed.

• Logical connectives are used not only syntactically but also semantically, i.e. when
discussing meta-logical and other notions of validity.

• If e′ is not a variable, {C} e1 •e2 = e′ {C′} stands for {C} e1 •e2 = x {x = e′ ∧C′},
with x fresh; and {C} e1 • e2 {C′} stands for {C} e1 • e2 = () {C′}.

• For convenience of rule presentation we will use projections πi(e) as a derived term.
They are redundant in that any formula containing projections can be translated into
one without: for example π1(e) = e′ can be expressed as ∃y.e = 〈e′,y〉.

3.2 Models and the semantics of terms and formulae

We continue by formalising the semantics of expressions and assertions in term models. A
detailed and informal description of content quantification follows in Section 3.3.

Models in the present setting are very much like those of Honda et al. (2005), which
used pairs (ξ,σ), where ξ maps non-reference names to its denotations and σ is a store.
The only change for modelling aliasing is that we employ locations: the denotation of a
reference name is now a location and stores are maps from locations.

Definition 1 (models) A term is closed if it has no free variables. A model of type Θ = Γ;∆,
ranged over by M,M′, ..., with fv(∆)∪ ftv(∆) = /0, is a tuple (ξ,σ) where

• ξ, called environment, is a finite map from (1) dom(Θ) to closed values such that,
for each x ∈ dom(Γ), ξ(x) is typed as Θ(x) under ∆, i.e. ∆ � ξ(x) : Θ(x); and (2)
from type variables to closed types.

• σ, called store, is a finite map from labels to closed values such that for each l ∈
dom(σ), if ∆(l) has type Ref(α), then σ(l) has type α under ∆, i.e. ∆ � σ(l) : α.

The interpretation of terms is straightforward.
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Definition 2 Let Γ;∆ � e : α, Γ;∆ � M and M = (ξ,σ). Then the interpretation of e under
M, denoted [[e]]M, is inductively given by the clauses below.

[[xα]]M = ξ(x) [[op(ẽ)]]M = op([[ẽ]]M)
[[!e]]M = σ([[e]]M) [[〈e,e′〉]]M = 〈[[e]]M, [[e′]]M〉
[[cα]]M = c [[inji(e)]]M = inji([[e]]M)

In the clause for op we omit details of the straightforward workings of op on first-order
values.

Notation 1 The following notation is useful. Let M = (ξ,σ).

• Given u ∈ fv(M), we write M ·u : V , or often (ξ ·u : V,σ), for a model that extends
M by one entry with the value V , and similarly for M ·X : α, provided X /∈ ftv(M)
and α closed.

• If l ∈ dom(σ), M · [l �→ V ] is the model obtained from M by updating the store at
l with V . Similarly, and assuming appropriate typing, M[x �→ V ] means M[l �→ V ],
where the reference x is mapped to location l by M.

• Given x ∈ fv(M1), we write M1 �x:α M2 if, for some V , either M2
def= M1 ·x : V α; or

α = Ref(β) and M2
def= M1 · x : l · [l �→ V ] with l ∈ fl(M1). We write M �x̃:α̃ M′ for

M �x0:α0 ... �xn−1:αn−1 M′.

Informally, M1 �x:α M2 when M2 is the result of adding exactly one free name to M1. If
α is a reference type, then M2 either adds a fresh location l as denotation for x and a value
stored at l, or, alternatively, coalesces x with another, existing reference name, by letting
the x’s denotation be an already-existing location. If, on the other hand, α is a value type,
then there is always a new entry in M2, which maps x to an appropriate value. Models
extensions �x:α are used in the interpretation of first-order quantifiers.

We use the following standard observational equivalence between terms.

Definition 3 (observational congruence) Assume that Γ;∆ � M1,2 : α. We write Γ;∆ �
(M1,σ1) ∼= (M2,σ2) if, for each typed context C[·] such that ∆ � C[Mi] : Unit for i = 1,2:
(C[M1], σ1) ⇓ iff (C[M2], σ2) ⇓.

Next we present the satisfaction relation M |= C. All definitions are standard except for
evaluation formulae which follow Honda et al. (2005) content quantification and standard
quantifiers, which use model extensions as introduced above.

Definition 4 Assume M = (ξ,σ) is a model. Assume in addition that Γ;∆ � C. Then we
say M satisfies C, written M |= C, if the following conditions hold inductively.

• M |= eα
1 = eβ

2 if α = β and ([[e1]]M,σ) ∼= ([[e2]]M,σ).
• M |= ¬C if M |= C, i.e. if it is not the case M |= C.
• M |= C1 ∧C2 if M |= C1 and M |= C2.
• M |= C1 ∨C2 if M |= C1 or M |= C2.
• M |= C1 ⊃C2 if M |= C1 implies M |= C2.
• M |= ∀X.C if for all closed types α, M·X : α |= C.
• M |= ∃X.C if for some closed types α, M·X : α |= C.
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• M |= ∀xα.C if M′ |= C for each M′ such that M �x:α M′.
• M |= ∃xα.C if M′ |= C for some M′ such that M �x:α M′.

• M |= {C}e • e′ = x{C′} if, for each M′ def= (ξ,σ′) of type Γ;∆ such that M′ |= C,
we have, for some V of appropriate type, we have ([[e]]M[[e′]]M, σ′) ⇓ (V,σ′′) and
(ξ·x :V, σ′′) |= C′.

• M |= [!e]C if [[e]]M = l and for all V of appropriate type, we have M[l �→V ] |= C.
• M |= 〈!e〉C if [[e]]M = l and for some V of appropriate type, we have M[l �→V ] |= C.

Some observations follow.

• The clauses for universal and existential quantification give the standard definition
whenever α is a value type. If it is a reference type, it allows x to be aliased to existing
locations, but does not require aliasing.

• The clause for M |= 〈!e〉C says: in order to see if 〈!e〉C holds in M, we evaluate e to
see which location it denotes. Let it be l. Then the value stored at l in M is irrelevant,
all we need to know is if there is some value V such that M[l �→V ] satisfies C.

3.3 Content quantification

We continue with a more in-depth explanation of content quantification and its genesis.

3.3.1 Aliasing and assignment

A good way of motivating content quantification might be by analysing Hoare’s original
assignment rule and its soundness proof.

[Assign-Orig]
−

{C[e/!x]} x := e {C} (5)

In the absence of aliasing, this rule allows us to derive a sound and indeed best possible
precondition for any programme x := e, given a post-condition C. The rule works by
applying a syntactic substitution [e/!x] to C which replaces every occurrence of !x with
e. As an example, since (!y = 2)[!x+1/!x] is equal to !y = 2 in the absence of aliasing,

{!y = 2} x :=!x+1 {!y = 2} (6)

can be derived from [Assign-Orig]. But if aliasing is a possibility, this last assertion is
inappropriate. Instead we need to consider two possibilities:

{x = y ∧ !y = 2} x :=!x+1 {!y = 2} {x = y ∧ !y = 1} x :=!x+1 {!y = 2}

Note that [Assign-Orig] corresponds to the left of those, but is useless for deriving the
assertion on the right, due to the syntactic nature of the substitution. In fact, we do not
usually want two assertions here, but rather one that covers both cases: the case when x
and y are aliases, and the case where they are not:

{(x = y ⊃!y = 2)∧ (x = y ⊃!y = 1)} x :=!x+1 {!y = 2} (7)

The key question is: What kind of rule would allow us to derive assertions like (7) con-
veniently?

https://doi.org/10.1017/S0956796807006417 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006417


A logical analysis of aliasing in imperative higher-order functions 483

3.3.2 Content quantification

To explain the role content quantifiers play in answering the last section’s closing question,
we consider Hoare’s [Assign-Orig] once more. Proving its soundness amounts to establish-
ing that C[e/!x] is the unique (up to logical equivalence) C0 such that equivalence

M |=C0 iff M[x �→ [[e]]M] |= C (8)

holds. Here M is an arbitrary model, [[e]]M gives the denotation of e in that model and
M[x �→ [[e]]M] is the model that coincides with M everywhere, except that the reference x
now stores [[e]]M. We leave the details of models informal as models of Hoare’s original
logic are well-understood. Later we shall be more precise.

M represents the state before the assignment, while M[x �→[[e]]M], the update of that state
by e’s denotation, is the state after assigning the denotation of e (calculated in the initial
state M) to the location referred to by x. Even if x is aliased, M[x �→ [[e]]M] gives the correct
update. Thus (8) says that, for C to hold as the description after the assignment x := e, the
pre-condition C0 should be such that M |= C0 holds if and only if M[x �→ [[e]]M] |= C holds.
We already know that we cannot use the result of syntactic substitution C[e/!x] for C0 in
the presence of aliasing. But why did it work in the alias-free setting? Let us consider a
typical soundness argument.

M[x �→ [[e]]M] |=C ⇔ M ·m : [[e]]M[x �→ [[e]]M] |=C ∧ !x = m (9)

⇔ M ·m : [[e]]M |=∃x.(C ∧ !x = m) (10)

⇔ M |=∃m.(∃x.(C∧ !x=m)∧m=e) (11)

⇔ M |=C[e/!x] (12)

In (9), we simply adjoin a fresh name m, denoting [[e]]M to M and add !x = m to the
formula. In the next step (10) we hide x by existential abstraction, thus making the truth
value of ∃x.(C∧!x = m) independent from what the model stores at x. Hence we can
drop the update operation [x �→ [[e]]M]. This independence of the formula’s truth value
from x and its content holds because in the absence of aliasing the only way to access x
or its content is by explicit dereference !x of x (note that in Hoare’s original logic non-
trivial equations between references are prohibited). Equivalence (11) hides m, again using
existential abstraction. The last line appeals to the equivalence

C[e/!x] ≡ ∃m.(∃x.(C∧ !x=m)∧m=e) (13)

which gives a logical characterisation of syntactic substitution (we cannot simplify the
right-hand side into ∃x.(C∧ !x=e) because !x may occur in e).

We wish to extend this result so it also holds when references may be aliased. This means
to find, given a post-condition C and an assignment x := e, a formula C{|e/!x|} such that

M |=C{|e/!x|} iff M[x �→ [[e]]M] |= C. (14)

To find this formula, we mimic the derivation above: the first step is as (9) before, but the
second fails:

M[x �→ [[e]]M] |=C ⇔ M ·m : [[e]]M[x �→ [[e]]M] |=C ∧ !x = m

⇔ M ·m : [[e]]M |=∃x.(C ∧ !x = m)
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The problem is that although x is no longer free in ∃x.(C∧!m = x), the truth value of this
formula may still depend on what is stored at x: for example, C may be !y = 7 and the
model might stipulate that y is an alias of x. To see how to deal with this conundrum, we
note that for all M′,C′:

M′[x �→ [[e]]M′ ] |=C′ ≡ ∃V.M′[x �→V ] |=C′ ∧ !x = e

Since we are looking to make the truth value of C∧!x = m independent from what stored
at x in the model, not from x itself, this last equivalence is suggestive of our new quantifier
〈!x〉C with the following semantics, cf. (3):

M′ |= 〈!x〉C′ def≡ ∃V.M′[x �→V ] |= C′

It is the content V of x, rather than x itself, that is existentially abstracted. C′ may still talk
about x, for example, saying that x = y, but the truth value of 〈!x〉C′ is now independent
from what M′ stores at x. With content quantification we could reason:

M[x �→ [[e]]M] |=C ⇔ M ·m : [[e]]M[x �→ [[e]]M] |=C ∧ !x = m (15)

⇔ M ·m : [[e]]M |=〈!x〉(C ∧ !x = m) (16)

⇔ M |=∃m.(m = e ∧ 〈!x〉(C ∧ !x = m)) (17)

Hence content quantification allows to re-introduce the equivalence (13) that witnessed the
correctness of the original Hoare rule, but enhanced, so it is robust under aliasing.

Definition 5 (logical substitutions) Assume m is fresh.

C{|e/!x|} def= ∃m.(〈!x〉(C ∧ !x = m) ∧ m = e)

We call {|e/!x|} logical substitution of e for x. It substitutes e for !y whenever y is an alias
of e. We write C{|e′/!e|} as a short hand for ∃x.(x = e∧C{|e′/!x|}) with x being fresh.

There is a dual operation C{|e/!x|} def= ∀m.(e = m ⊃ [!x] (m = !x ⊃ C)), and C{|e′/!e|} is
short for ∀x.(x = e⊃C{|e′/!x|}) (x fresh). These substitutions may be called logical content
substitutions or simply logical substitutions.

By the semantics of content quantification, derivation (15)–(17) re-establishes the logical
equivalence in (8), but in an alias-robust way by replacing C[e/!x] with C{|e/!x|}. Thus we
now arrive at the following proof rule:

[AssignBasic]
−

{C{|e/!x|}} x := e {C} (18)

This rule subsumes the original rule (5) since C{|e/!x|} coincides with C[e/!x] whenever
there is no aliasing. The semantic status of [AssignBasic] is clear from the semantics of
content quantification, offering the weakest precondition of C under arbitrary aliasing.

So we seem to have arrived at an analogue of Hoare’s assignment axiom in the presence
of full aliasing by replacing syntactic substitution with its logical counterpart. But does
this new setting help us reason about programmes with various forms of aliasing after all?
More concretely, can we derive the judgement such as (7) easily? Does it allow exten-
sions/generalisation to higher-order programming languages, for example those with the
generalised assignment of the form M := N, where both M and N are appropriately typed
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arbitrary expressions? And, can we reason about programmes with aliasing tractably and
modularly using content quantification? We explore these topics in the following sections.

3.4 Examples of assertions

Before presenting the formal semantics of expressions and formulae in Section 3.1, we
discuss various example assertions.

3.4.1 Dereference

The assertion “y = 6” says y is equal to 6. In fact, we should write “yNat = 6” with a type
annotation on y, but often omit obvious or irrelevant detail. A programme that satisfies
this assertion is 6 itself, named y. Another programme that satisfies this assertion is 3+3,
again named y. Next, “!y = 6”, says the content of a memory cell named y is equal to 6.
If both z and y refer to the same cell, and if the above assertion holds, then !y = 6 entails
!z = 6. A reference can store another reference in the target programming language, which
is easily describable with assertions. For example, “!!y = 6” (with y formally typed as
Ref(Ref(Nat))) says that the content of a memory cell whose name is stored in another
memory cell y, is equal to 6. Any store where a memory cell named y stores some reference
name which in turn names another cell that stores 6, satisfies this assertion. Of course
neither of these cells may be aliased.

3.4.2 Evaluation formulae

The following assertion can be considered as a specification for the programme λz.z :=
!z×2, named u.

∀x.∀i.{!x = i}u• x{!x = 2× i} (19)

We recall from Convention 1 that the formula “{!x = i}u•x{!x = 2× i}” is an abbreviation
for “{!x = i}u• x = z{z = () ∧ !x = 2× i}”. The returned value () can be omitted because
it is insignificant – () is the unique inhabitant of type Unit. The short-hand also conforms
nicely to standard Hoare triples. The assertion says that u, which denotes a procedure,
always doubles the content of an argument, which should be a reference storing a natural
number.

The following assertion refines (19), giving a more focused specification for λz.z :=
!z× 2. It uses inequalities on reference names and evaluation formulae to assert a strong
property of imperative behaviour.

∀x, i,X,yRef(X), jX. {!x = i ∧ x = y ∧ !y = j}u• x{!x = 2× i ∧ x = y ∧ !y = j} (20)

The assertion says that, in addition to the property already stated in (19), the programme
guarantees that x is the only reference it may alter. It will be convenient to use the following
abbreviation for (20):

∀x, i. {!x = i}u• x{!x = 2× i}@x (21)

Such assertions are called located assertions. Equation (21) says the same thing as (20) but
more concisely. This is discussed in more detail in Section 7.
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3.4.3 Content quantification (1): Existential

We now consider assertions that involve content quantification and substitution. These
examples demonstrate how a complex situation can be written down concisely using our
new quantifiers.

First, as a very simple example, consider an assertion

〈!y〉 !y = 1 (22)

where we have omitted to annotate y with Ref(Nat). The assertion says:

In some possible state, the reference cell y (of type Ref(Nat)) may store 1.

In a hypothetical state, the content of a store may differ from the current one. Since we
can surely hypothesise such a state, the statement is always true, so that (22) is a tautology.

Next we consider an assertion which, by a trivial transformation, is (!x = 2){|m/!x|} and
may be considered as the precondition for having “!x = 2” after executing the assignment
“x := m”.

〈!x〉(!x = 2 ∧ !x = m). (23)

A model M satisfies this assertion if and only if there is a model M′, which is exactly like
M except possibly for the value stored at a memory cell referred to by x and which satisfies,
at that memory cell, !x = 2 ∧ !x = m. What this means is that the assertion above does not
talk about what is stored at x. All it says is that it is possible to fill a memory cell named x
such that we have both !x = 2 and m = !x. This entails m and 2 being equal. As this does
not claim anything about the content of x, only about its possible content, the only thing
being asserted in (23) is that m denotes 2 in the model, hence (23) is logically equivalent
to m = 2.

The next two examples show how equality and inequality over names interact with
existential content quantification. First, consider

〈!x〉(x = y ∧ !y = 1) (24)

This formula hides the content of x, but also claims that both x and y name the same
memory cell. This latter information is not existentially abstracted by the content quanti-
fication since it is about x and y, not their content. Because x and y denote the same cell,
the quantification hides not only the content of x but also that of y. This is an immediate
consequence of the standard equality law (Mendelson 1987), “x = y ∧ C(x,x) ⊃ C(x,y)”,
where C(x,y) rewrites some of the free occurrences of x in C(x,x) (to be precise this rule
is applicable since x is free for y in “x = y∧!y = 1”). Hence (24) is logically equivalent to
x = y.

The next example uses inequality instead of equality in the assertion above.

〈!x〉(x = y ∧ !y = 1) (25)

The truth value of x = y is independent from content quantification. Because of this in-
equality, we also know that the content of y is independent from that of x: in other words,
〈!x〉 does not hide the content of y, hence (25) is logically equivalent to x = y ∧ !y = 1, i.e.
we can take off the content quantification completely.
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Now consider changing “!x = m” in (23) into “!y = m”, obtaining:

〈!y〉(!x = 2 ∧ !y = m) (26)

which is the same thing as “(!x = 2){|m/!y|}” up to logical equivalence. Thus (26) may
be considered as representing the precondition for arriving at “!x = 2” after executing the
assignment command “y := m”. From our previous examples, we know there are two cases
to consider.

1. If x = y, then the content quantification hides both !y and !x (which are one and the
same thing), hence the formula says m = 2.

2. If x = y, then !y is hidden so m cannot be determined, while x is not hidden. Hence
in this case the formula says !x = 2.

In summary, (26) is equivalent to (x = y⊃m = 2)∧(x = y⊃!x = 2), or equivalently to (x =
y∧m = 2)∨(x = y∧!x = 2). This is quite different from, say, ∃i.(!y = i ∧ !x = 2 ∧ m = !y).

3.4.4 Content quantification (2): Universal

The following two examples use universal content quantification. It is the de Morgan dual
of its existential counterpart: [!e]C is equivalent to ¬〈!e〉¬C. In general, [!x]C says that C
does not mention anything substantial about the content of (a memory cell named by) x.
As a first example, consider the assertion

[!x] !y = 3 (27)

assuming x is typed with Ref(Nat). By definition, (27) literally says the following:

Whatever natural number we may store in x, the number stored in y is 3.

When can this be satisfied? Clearly the content of y should be 3. Moreover, this should be
true when we store in x something different from 3, say 0, so it also says x and y name
distinct memory cells. Thus the assertion (27) is logically equivalent to “x = y ∧ !y = 3”.
From this we can easily see [!x] !x = 3 is equivalent to falsity since it should mean x =
x ∧ !x = 3 which is impossible.

Universal content quantification offers a powerful tool when combined with located
evaluation formulae. Recall the located assertion (21), which is for the programme λz.z :=
!z×2, reproduced below:

∀x, i. {!x = i}u• x{!x = 2× i}@x (28)

Equation (28) says the programme leaves untouched any property of a memory cell except
for what it receives as an argument. So, for example, if the programme is fed with x, then,
after running, it leaves an even number in y still even, as far as y is distinct from x.

∀x, i. {!x = i ∧ [!x]Odd(!y)}u• x{!x = 2× i ∧ [!x]Odd(!y)}@x (29)

which is a consequence of (28) (hence holds for λz.z :=!z× 2 named u), remembering
[!x]Odd(!y) says the content of y is odd regardless of the content of x, that is we have
both Odd(!y) and y = x. The entailment from (28) to (29) is the analogue of the standard
invariance rule, albeit it is purely logical – the notorious side condition, that a programme
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does not touch a variable, is directly asserted. It might be useful to note that [!x]C does not
say that C does not dereference x. [!x]C merely asserts that the truth of C is independent
from x’s content. That this is a different statement is clear because, for example, [!x] !x =!x
holds.

Another occasion where the combination of evaluation formulae and universal content
quantification becomes useful is when we wish to perform the analogue of the consequence
rule at the level of evaluation formulae. Here it is essential to be able to have hypothetical
assertions on state, as the following example shows:

!x = 2 ∧ [!x] (!x = 3 ⊃ Odd(!x)) ∧ {Odd(!x)}u• (){Even(!x)} (30)

It says that the current content of a memory cell named x is 2, the assertion !x = 3 ⊃
Odd(!x) should hold in all hypothetical situations about the content of x, and that invoking
at u will turn an odd content of x to an even one. It is thus natural to conclude (formally
using axioms discussed in Section 4):

!x = 2 ∧ [!x] (!x = 3 ⊃ Odd(!x)) ∧ {!x = 3}u• (){Even(!x)} (31)

By comparing (30) with the following assertion, we can see the role of content quantifica-
tion in the assertion above.

!x = 2 ∧ (!x = 3 ⊃ Odd(!x)) ∧ {Odd(!x)}u• (){Even(!x)}

But if !x = 2 holds then the assertion “!x = 3 ⊃ Odd(!x)” (which is now also about the
current state) is always true, hence we can no longer obtain {!x = 3}u• (){Even(!x)} by
entailment.

3.4.5 Assertions for the “questionable double”

We continue with assertions for two simple programmes. In Section 8, we shall show that
these programmes do satisfy these specifications using the proof rules of the logic to be
introduced in Section 5.

The first programme is the “Questionable Double”:

double?
def= λxRef(Nat).λyRef(Nat).(x :=!x+!x ; y :=!y+!y) (32)

It is intended to assign the double of the original value for each of two references it receives
as arguments. However, as one can easily see, the programme will not behave that way if
we apply the same reference to this programme twice, as in ((double?)r)r. For suppose r
originally stores 2. The programme takes a pair of two names, which is syntactic sugar for
two subsequent λ-abstractions, and can be given the following specification:

∀x,y, i, j.{x = y ∧ !x = i ∧ !y = j}u• (x,y){!x = 2i ∧ !y = 2 j}

The assertion is silent on what happens when x = y. The next specification, which is also
satisfied by double?, talks just about this case.

∀x,y, i, j. {x = y ∧ !x = i}u• (x,y){!x = 4i}

Combining these two, we get a fuller specification.

∀x,y, i, j. {!x = i∧ !y = j}u• (x,y){(x = y∧!x = 4i)∨ ( x = y∧!x = 2i∧!y = 2 j)}
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The specification for double? suggests how we can refine this programme so that it is
robust with respect to aliasing. This is done by “internalising” the condition x = y as
follows.

double!
def= λ(x,y).if x = y then x :=!x+!x else x :=!x+!x ; y :=!y+!y

This meets the “expected” specification:

∀x,y, i, j. {!x = i ∧ !y = j} u• (x,y) {!x = 2i ∧ !y = 2 j} (33)

If we use a located assertion, we can further refine (33) to

∀x,y, i, j. {!x = i ∧ !y = j} u• (x,y) {!x = 2i ∧ !y = 2 j}@xy (34)

The quantification of x and y extends to the whole formula, including the terminal @xy.
(34) says that we can guarantee, in addition to the functional property described above, that
no reference cells other than those passed as arguments to this programme are modified.

3.4.6 Assertions for swap

A classical example for reasoning about aliasing (cf. Cartwright & Oppen 1978, 1981;
Kulczycki et al. 2003) is the swapping routine:

swap
def= λ(x,y).let z = !x in (x :=!y;y := z)

It receives two references of the same type and exchanges their content. The assertion that
specifies the behaviour of swap named u is

Swap(u) def= ∀xyi j.{!x = i∧!y = j}u• (x,y){!x = j∧!y = i}.

Again we can refine the programme using a located assertion:

Swap(u) def= ∀xyi j.{!x = i∧!y = j}u• (x,y){!x = j∧!y = i}@xy (35)

which gives the full specification for swap.
Our swap above, in fact, works for a pair of references of an arbitrary type, and is indeed

typable as such in polymorphic programming languages like ML and Haskell. Although
the programming language under consideration does not offer polymorphism, we could
easily add this feature following Honda & Yoshida (2004). With this extension, we can
refine (35).

∀X.∀xRef(X).∀yRef(X).∀iX.∀ jX.

{!x = i∧!y = j}u• (x,y){!x = j∧!y = i}@xy
(36)

3.4.7 Circular references

We close this run of example assertions with discussing assignment to circular references.
An assertion for x :=!!x could be the following:

{!x = y ∧ !y = x} x :=!!x {!x = x}

Since originally x and y refer to each other, after putting !!x to x, x should be pointing
to itself. Correct treatment of circular references is often significant in low-level systems
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(CA1) [!x] (C-!x
1 ⊃C2) ⊃ (C1 ⊃ [!x]C2) (CA2) [!x]C ⊃C

(CA3) [!x] (!x = m ⊃C) ≡ 〈!x〉(C∧ !x = m) (CGen) C
[!x]C

Fig. 2. Axioms and rule of inference for content quantification.

programming: as seen above, the proposed logical framework can treat programmes with
circular references without extra effort.

Similarly we can easily specify

{!y = x} x := 〈1,inr(!y)〉 {!x = 〈1,inr(x)〉}

where x is typed with µX .Ref((Nat× (Unit + X))), the type of a mutable list of natural
numbers (one may also use the null pointer as a terminator of a list). The assertion !x =
〈1,inr(x)〉 says x stores a pair of 1 and the right injection of a reference to itself, precisely
capturing the graphical structure of the datum.

4 Logic (2): Axioms

The purpose of this section is to introduce axioms for deriving valid assertions in our
assertion language. We take for granted the usual notions of axiom system, inference rule,
deduction and the like. As is standard (Hoare 1969), we shall assume that the axioms and
rules from propositional calculus, first-order logic with equality (Mendelson 1987) and
formal number theory are freely available.

4.1 Axioms for content quantification

We start with the axioms for content quantification. Hoare’s logic (Hoare 1969) allows
tractable reasoning about simple stateful programmes because, due to the lack of aliasing,
state change by assignment has a logical description given in (13), obtained from an
analysis of syntactic substitution. This logical description leads to succinct logical laws
and reasoning principles, because the logical operations used in the decomposition of
substitution come with associated logical laws and reasoning principles.

For similarly tractable reasoning about stateful programmes with aliasing we likewise
need succinct logical laws and reasoning principles, but for logical substitution. Since
logical substitution has a logical decomposition through content quantification (Def. 5),
we need to axiomatise the new quantifiers. The latter’s semantics suggests fashioning this
axiomatisation along the lines of axiomatisations for first-order quantifiers. For example,
Mendelson (1987) uses two axioms and a single rule of inference (in addition to Modus
Ponens) as a formalisation of first-order universal quantification:

• ∀x.(A ⊃ B) ⊃ A ⊃ ∀x.B provided x does not occur freely in A and
• ∀x.A ⊃ A[e/x].
• infer ∀x.A from A provided x does not appear freely in assumptions.

Our axiomatisation of content quantification given in Figure 2 is analogous: we replace
first-order universal quantification by universal content quantification and instead of
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requiring “provided x does not occur freely in ...” we stipulate that the formula in question
is syntactically !x-free, to be defined below. Just like “provided x does not occur in A” is
a syntactic approximation to A’s truth value being independent from what x’s denotation
may be, so C’s syntactic !x-freedom, written C-!x, is a sufficient condition for C’s truth value
being independent from what a model stores at x. Finally, we regard 〈!x〉C as standing for
¬[!x] (¬C) and add an axiom that connects the two forms of logical substitution given in
Definition 5.

4.1.1 Syntactic !x-freedom

As just mentioned, syntactic !x-freedom is needed to express a crucial axiom for content
quantification. To define this, we begin with the notion of active dereference ad(·). The
intuition behind ad(·) is that if two models M1,M2 agree on their stateless part and on
ad(e), then [[e]]M1 and [[e]]M2 are observationally equivalent, and similarly for formulae.

Definition 6 (active dereference) The active dereferences of an expression e, ad(e), are
inductively defined:

ad(x) = ad(c) def= /0 ad(op(ẽ)) def=
⋃

i ad(ei) . . . ad(!e) def= {!e}∪ad(e)

The active dereferences of a formula C, ad(C), have the definition given next.

ad(e = e′) def= ad(e)∪ad(e′) ad(¬C) def= ad(C)

ad(C �C′) def= ad(C)∪ad(C′) ad({C}e• e′ = x{C′}) def= ad(e)∪ad(e′)

ad([!e]C) def= (ad(C)\{!e})∪ad(e) ad(〈!e〉C) def= (ad(C)\{!e})∪ad(e)

ad(Qx.C) def= ad(C)

The need for the – on first glance possibly peculiar – definition ad([!e]C) def= (ad(C) \
{!e})∪ad(e), and likewise for existential content quantification, is this: the truth value of
[!!x]C does not depend on what a model stores at !!x. It does, however, depend on what is
being stored at !x. Assume that M |=!x = y and M′ |=!x = y. Then M |= [!!x] !!x =!y, but
M′ |= [!!x] !!x =!y.

Example 1 (active dereferences)

1. T and F contain no active dereferences.
2. !x = 3 has !x as sole active dereference.
3. In !!x =!y we have three: !y, !x and !!x.
4. {!x = 2}! f•!y = z{!z = 1} has ! f and !y as active dereferences.
5. [!!x] (!!x =!y) has two active dereferences, !x and !y.
6. ∀x.!!x =!y has !!x, !x and !y as active dereferences, but the α-equivalent ∀z.!!z =!y

has !!z, !z and !y. Hence active dereferences are not stable under renaming of bound
variables. This is not problematic as all subsequent uses of active dereferences will
insist on no member of ad(·) being quantified in the relevant formula. An α-stable
notion of active dereferences can be devised, but would be more complicated.

Definition 7 (syntactic !x-freedom) We generate the set of syntactically !x-free formulae,
SY-!x, as follows:
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1. [!x]C ∈ SY-!x, dually 〈!x〉C ∈ SY-!x.
2. C∧∧

i ei = x ∈ SY-!x and, dually,
∧

i ei = x ⊃C ∈ SY-!x, in both cases assuming that
{!e1, .., !en} = ad(C) and that no occurrence of a free name in an ei is bound in C.

3. The result of applying any of the logical connectives (including negation) or stand-
ard/content quantifiers, except ∀x and ∃x, to formulae in SY-!x is again in SY-!x.

We write C-!x to indicate that C ∈ SY-!x.

Example 2 (syntactic !x-freedom)

1. T and F are syntactically !x-free.
2. Similarly for [!x]C and 〈!x〉C, as well as !y = 3∧ x = y.
3. !!y = 3 ∧ x =!y is not syntactically !x-free, but !!y = 3 ∧ x =!y ∧ x = y is.
4. On the other hand, !y = 3 is not syntactically !x-free, even up to ≡. Intuitively, C-!x

says C does not mention the content of x.

4.1.2 Explanation of the axiomatisation

Among the axioms, (CA1) corresponds to the familiar ∀x.(C-x
1 ⊃C2)⊃ (C1 ⊃∀x.C2) except

that we require C1 to be syntactically !x-free instead of x-free. (CA2) is analogous to first-
order logic’s ∀x.C ⊃ C[e/x] and says that if and assertion holds for any content of x, then
it must surely hold for whatever is currently stored in the model at x. (CA3) says that the
two ways of representing logical substitutions coincide, which is important to recover all
properties of semantic update (Cartwright & Oppen, 1978, 1981; Morris, 1982a, 1982d,
1982c), as discussed in the next section. Finally, we add an inference rule (CGen), that
is the analogue of standard generalisation, which says: “If we can derive C from the
axioms, then we may conclude [!x]C”. This rule assumes deductions without assumptions
(e.g. all leaves of a proof tree should be axioms). If we are to use deduction with non-
trivial assumptions, we demand assumptions to be syntactically !x-free if the deduction
uses (CGen) for !x. By a standard argument, we obtain a deduction theorem (Mendelson
1987). Once a deduction theorem is proven, we can use it to derive many laws for content
quantification.1

For example, given the assumption [!x] (C1 ∧C2), we can derive C1 ∧C2 by (CA2) and
Modus Ponens. Then we obtain C1 by the elimination rule for ∧. To the latter we apply
(CGen), which is possible because the assumptions are !x-free, to obtain [!x]C1; similarly
we get [!x]C2, so we obtain [!x]C1 ∧ [!x]C2 by the ∧-introduction rule; the other way round
is similar.

4.1.3 Derived laws

Now we discuss various useful formulae that are derivable in our axiomatisation of con-
tent quantification. Proofs are straightforward and mostly omitted, but a few are listed in
Appendix C.

1 A different and equivalent axiomatisation of content quantification can be given, again following a first-order
logic, by replacing the rule (CGen) with the axiom C-!x ⊃ [!x]C, and closing all axioms under universal content
quantification (cf. Enderton 2001).
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Proposition 1 (modal laws) All these laws have existential counterparts.

1. [!x](C1 ⊃C2) ⊃ [!x]C1 ⊃ [!x]C2.
2. [!x]C′ ≡ [!x] ((C′ ⊃C) ⊃C).
3. ([!x]C ∧ [!x]C′) ≡ [!x] (C∧C′).
4. [!x]C ≡ [!x] [!x]C.
5. ([!x]C ∨ [!x]C′) ⊃ [!x] (C∨C′).
6. [!x] (C∨C′) ⊃ ([!x]C ∨ 〈!x〉C′).

(2) allows us to infer [!x]C from [!x]C′ when C′ ⊃ C is a tautology. The existential coun-
terpart of (4) is: 〈!x〉〈!x〉C ≡ 〈!x〉C.

Proposition 2 (miscellaneous laws) In (1, 2, 3) below we have omitted the dual exist-
ential counterparts.

1. Let x and y be distinct symbols. Then: ∀y.[!x]C ≡ [!x]∀y.C, and ∃y.〈!x〉C ≡ 〈!x〉∃y.C.
2. [!y] [!x]C ≡ [!x] [!y]C.
3. 〈!x〉 [!x]C ≡ [!x]C.
4. ∃x.!x = y.
5. ¬[!x] !x = y.
6. C-!x ⊃ [!x]C.
7. ¬[!x]C ≡ 〈!x〉¬C.
8. [!x] (!x = m ⊃C) ≡ 〈!x〉(C ∧ !x = m).
9. C{|e′/!e|} ≡C{|e′/!e|}.

10. C{|!x/!x|} ≡C.
11. [!x]C ⊃C{|e/!x|}.
12. C{|e/!x|} ⊃ 〈!x〉C.

Derived axiom (4) does not mention content quantification, but its derivation seems to
require it. Laws (5) and (6) allow us to eliminate and introduce universal content quantific-
ations, and play the key role in reasoning about aliasing. Law (5) is easily understood as an
analogue of ∀x.(x = y)⊃ y = y ( ≡ F). Note that the reverse of (6) does not hold: [!x] !x =!x
is true, despite !x =!x not being syntactically !x-free. Laws (7) and (8) connect universal
content quantification and its dual. From (8) we immediately infer (9), the equivalence
between the two forms of logical substitutions introduced in Definition 5. (11) corresponds
to the well-known implication ∀x.A ⊃ A and (12) has the same relationship to A[e/x] ⊃
∃x.A.

To state further derivable laws, we need the semantic counterpart of syntactic !x-freeness,
given next.

Definition 8 (!x-free and stateless) C is semantically !e-free or simply !e-free when [!e]C ≡
C. C is α-stateless (resp. stateless) if C has no active dereferences of type α (resp. of any
type).

Clearly C being α-stateless and x being typed by Ref(α) in C imply C is !x-free. Since
[!x]C ⊃C for any C by (CA2), we know C is !x-free if and only if C ⊃ [!x]C. Furthermore,
〈!x〉C ≡C also characterises !x-freedom.
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Remark 1 We usually regard ≡ in Definition 8 as a syntactic notion (i.e. derivability of
[!x]C ≡C as a theorem in the present logic, involving the axioms in the present section as
well as the ambient logical system such as Peano Arithmetic).

Example 3 (!x-freedom)

• By Axiom 6, any syntactically !x-free assertion is !x-free. Thus T and F are !x-free;
so are [!x]C and 〈!x〉C. However reverse implication does not hold, e.g. !x =!x is
easily !x-free but not syntactically so.

• Since !x-freedom is closed under ≡ by definition, any tautologies/unsatisfiable for-
mulae are !x-free. Also C is !x-free iff C ≡C0 such that C0 is syntactically !x-free.

• Assume C
def= !!e = 3∧ !e = x (where x is of type Ref(Nat)). Then C is !x-free.

Indeed, we can write C ≡ ∃r.(!e = r∧!r = 3∧ r = x).

Proposition 3 (further derived laws) In (1, 2, 3) below we assume C1 to be !x-free.

1. [!x] (C1 ∨ C2) ≡ (C1 ∨ [!x]C2).
2. 〈!x〉(C1 ∧ C2) ≡ (C1 ∧ 〈!x〉C2).
3. [!x] (C1 ⊃ C2) ≡ (C1 ⊃ [!x]C2).
4. [!x] (C∧ (C ⊃C′)) ⊃ [!x]C′, dually 〈!x〉C ⊃ 〈!x〉((C ⊃C′) ⊃C′).
5. If C ⊃C′ is a tautology then [!x]C ⊃ [!x]C′.
6. C is !x-free iff C ≡ 〈!x〉C iff ∃C′.(C ≡ 〈!x〉C′) iff [!x]C ≡C iff ∃C′.(C ≡ [!x]C′).
7. If C1,2 are !x-free, then C1 �C2 (� ∈ {∧,∨,⊃}) is !x-free. If C is !x-free, then ¬C is

!x-free. If C is !x-free and x = y, then ∀y.C and ∃y.C are both !x-free. If C is !x-free,
then [!y]C and 〈!y〉C are both !x-free.

8. If eα is free for !x in C and both C[e/!x] and e are α-stateless, C[e/!x] ≡ C{|e/!x|}
(where e is free for !x is defined in Appendix B).

Through (1, 2, 3) Proposition 3 strengthens our observation that “!x-freedom of C” acts as
a substitute for “x not occurring in C” in standard quantification theory. Note that (3) is the
same thing as saying [!x] (C1 ⊃C2) ⊃C1 ⊃ [!x]C2 whenever C1 is !x-free, the analogue of
the standard axiom for universal quantifications.

Finally, as a simple application of content quantification, we calculate an example from
the Introduction.

C{|c/!x|}{|e/!x|} ≡ ∃m.(〈!x〉(〈!x〉(C ∧ !x = c) ∧ !x = m) ∧ m = e)
≡ ∃m.(〈!x〉(C ∧ !x = c) ∧ (〈!x〉 !x = m) ∧ m = e) (∗)
≡ 〈!x〉(C ∧ !x = c)
≡ C{|c/!x|}

where (∗) uses 〈!x〉(〈!x〉C∧C′) ≡ 〈!x〉C∧〈!x〉C′, which is direct from Proposition 3.

4.2 Axioms for evaluation formulae

The set of axioms for evaluation formulae are given in Figure 3. We write C-x to indicate
x /∈ fv(C). With the exception of (e8) all are unchanged from the corresponding axioms in
(Honda et al. 2005). We assume the following convention used throughout the paper.
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(e1) {C1}x• y=z{C} ∧ {C2}x• y=z{C} ≡ {C1 ∨C2} x• y = z {C}
(e2) {C}x• y=z{C1} ∧ {C}x• y=z{C2} ≡ {C} x• y = z {C1 ∧C2}
(e3) {∃wα.C} x• y = z {C′-w} ≡ ∀wα.{C} x• y = z {C′}
(e4) {C-w} x• y = z {∀wα.C′} ≡ ∀wα.{C} x• y = z {C′}
(e5) {A∧C} x• y = z {C′} ≡ A ⊃ {C} x• y = z {C′}
(e6) {C} x• y = z {A-z ⊃ C′} ⊃ A ⊃ {C} x• y = z {C′}
(e7) {C}x• y=z{C′} ⊃ {C∧A}x• y=z{C′ ∧A}
(e8) [!w̃] (C ⊃C0) ∧ {C0}x• y=z{C′

0} ∧ [!w̃] (C′
0 ⊃C′) ⊃ {C} x• y = z {C′}

Fig. 3. Axioms for evaluation formulae.

Convention 2 From now on A,A′,B,B′, . . . (possibly subscripts) range over stateless for-
mulae, i.e. those formulae without any active dereferences (cf. Example 3 (3)), while C,C′, . . .
still range over general formulae.

4.3 Axioms for arrays

One of the central features of the present logic is its general treatment of data types:
we allow reference types to appear anywhere in types so that data structures can now
be destructively updated in their parts. We incorporate the standard data types, such as
unions, vectors and arrays. Below we consider how arrays can be treated. At the level of
the programming language, we add:

(types) α ::= ... | α[]
(programmes) M ::= ... | M[N]

together with the typing rules:

−
Γ � a : α[]

Γ � M : α[] Γ � N : Nat

Γ � M[N] : Ref(α)

The construction above assumes that the identifier of each array to be used is given as a
constant (ranged over by a,b, . . . ). We further regard expressions a[0],a[1], . . . ,a[n−1] for
some n as values of reference types. These values form part of the domain of a concrete
store: it is also convenient, though not necessary, to include them as part of a reference
typing environment so that the size of an array is determined from a typing environment.
For statically sized arrays, this offers clean typing, though there are other approaches.
Individual arrays having reference type follows the ML and C tradition, where arrays
are essentially providing address arithmetic on references. There are various alternative
approaches to defining the dynamics of arrays differ mostly in how out-of-bounds errors are
handled. Here we assume that an out-of-bound access generates nil of the corresponding
reference type; the dereference of nil leads to err, and err, when evaluated, leads to err of
the whole expression, which follows a standard treatment of type error (Milner 1978).

Terms are augmented accordingly:

e ::= ... | a | e[e′] | size(e) | nilRef(α) | errα
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where, in e[e′] has type Ref(α), provided we can type e with an array type (say α[]) and e′

as Nat. The type of size(e), denoting the size of an array e, is Nat, whenever we can type
e with an array type. nilRef(α), which denotes the null pointer and whose type we usually
omit, is typed by Ref(α). errα denotes a (dereference) error of type α, for each α.

We list some of the main axioms for arrays. First, for each constant a of type α[], we
stipulate its size:

size(a) = n

for a specific n ∈ Nat (which should conform to the reference typing environment if stipu-
lated). Next we have the following axiom for all arrays to ensure that an array of size n is
made up of n distinct references.

∀i, j. ( 0 � i, j � size(x) ∧ i = j ⊃ x[i] = x[ j] ) (37)

Another basic axiom for arrays is for their equality (for two arrays of the same type):

(size(x) = size(y) ∧ ∀i. ( 0 � i < size(x)−1 ⊃ x[i] = y[i] ) ⊃ x = y (38)

In some languages (such as Pascal), we may also stipulate the inequality axiom:

x = y ⊃ ∀i, j. ( 0 � i < size(x)−1 ∧ 0 � j < size(y)−1 ⊃ x[i] = y[ j] ) (39)

which says two distinct arrays never overlap (note that this axiom is not applicable to, for
example, languages like C/C++ which employ a richer, and less safe, notion of array). Note
that (39) is equivalent to:

∃i, j. ( 0 � i < size(x)−1 ∧ 0 � j < size(y)−1 ∧ x[i] = y[ j] ) ⊃ x = y. (40)

For those axioms which involve nil and err, out-of-bound errors are treated as

i � size(x) ⊃ x[i] = nil (41)

Furthermore, we stipulate:

!nil = err and E(err) = err (42)

where E[ · ] is an arbitrary term context. The latter means err used as part of an expression
always leads to err.

In models, we may treat an array as simply a function from natural numbers to references
such that it maps all numbers within its range to distinct references and others to nil (cf. Apt
1981). Other constraints can be considered following the axioms as given above.

As we shall see later (Section 7.3), to obtain a compositional proof system for arrays, we
add precisely one introduction rule (for a constant) and one elimination rule (for indexing).
This modularity in introducing new data structures is one of the key features of the present
reasoning framework.

5 Logic (3): Judgements and proof rules

This section presents and discusses judgements and proof rules for total correctness.
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5.1 Judgements and their semantics

Following Hoare (1969), a judgement in the present programme logic for total correctness
consists of two formulae and a programme, augmented with a fresh name called anchor:

{C} MΓ;∆;α :u {C′}

(We often drop typing annotations for readability.) This sequence is used for both validity
and provability. If we wish to be specific, we prefix it with either � (for provability) or |=
(for validity). In {C} M :u {C′}, M is the subject of the judgement; u its anchor, which
should not be in dom(Γ,∆)∪ fv(C); C its pre-condition; and C′ its post-condition.2 We say
{C} MΓ;∆;α :u {C′} is well-typed iff

• Γ;∆ � M : α.
• For some Γ′ ⊇ Γ and ∆′ ⊇ ∆ such that u /∈ dom(Γ′ ∪∆′) we have

— Γ′;∆′ �C,
— Γ′ ·u :α;∆′ �C′, if α is not a reference,
— Γ′;∆′ ·u :α �C′, if α is a reference.

Henceforth we treat only well-typed judgements. Following Convention 1 (5), {C}M {C′}
stands for {C}M :u {u = () ∧ C′} where u is a fresh name, typed as Unit.

As in Hoare logic, the distinction between primary names and auxiliary names plays an
important role in both proof rules and semantics of the logic.

Definition 9 (primary/auxiliary names) Let |={C}MΓ;∆;α :u {C′} be well-typed. Then the
primary names in this judgement are dom(Γ,∆)∪{u}. The auxiliary names in the judge-
ment are those free names in C and C′ that are not primary.

Example 4 In a judgement “{x = i}2× xx:Nat ;Nat :u {u = 2× i}”, x and u are primary
while i is auxiliary and u is, in addition, its anchor.

Intuitively, {C} MΓ;∆;α :u {C′} says:

If Γ;∆ � M : α is closed by values satisfying C (for dom(Γ)) and runs starting
from a store satisfying C (for dom(∆) and maybe more), then it terminates so
that the final state and the resulting value named u together satisfy C′.

Definition 10 (semantics of judgements) We say the judgement |={C}MΓ;∆;α :u {C′} is

valid, written |={C}MΓ;∆;α :u {C′}, iff: for each model MΓ′;∆′ def= (ξ,σ) where Γ′ ⊇ Γ,
∆′ ⊇ ∆, Γ′;∆′ � C and (Γ′;∆′)·u : α � C′, if (ξ,σ) |= C then (Mξ, σ) ⇓ (V,σ′) such that
(ξ ·u : V, σ′) |= C′. Here (Γ′;∆′)·u :α means Γ′·u :α;∆′ whenever α is not a reference type,
otherwise it stands for Γ′;(∆′ ·u :α).

Note that the standard practice of considering all possible models for validity means con-
sidering all possible forms of aliasing conforming to precondition C.

2 In spite of the designations “pre/post-conditions”, these assertions also describe complex (stateless) properties
about higher-order behaviour and data structures.
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5.2 Proof rules

We now present the proof rules for deriving valid judgements for imperative PCFv with
aliasing. There is one compositional proof rule for each programming language construct
which precisely follows syntactic structure. Their shape is unchanged from the proof rules
for the sublanguage without aliasing except for a minimal refinement of the rule for as-
signment, which now uses {|e′/!e|} instead of syntactic substitution [e′/!e] (cf. Section 3.3)
and an adaptation to our generalised syntax in dereference and assignment. The refinement
in the assertion language and the proof rules reflects that of the type structure of the pro-
gramming language, i.e. the extension to allow reference types to be carried by other types.
This incremental nature, especially the precise correspondence between type structure and
logical apparatus, is central to the family of programme logics under investigation by the
present authors.

Recall variables i, j, . . . , that occur freely in a formula range over auxiliary names in a
given judgement; C-x̃ is C in which no name from x̃ freely occurs (note that this is different
from C-!x̃); and A,A′,B,B′, . . . , range over stateless formulae as defined in Convention 2.

In each proof rule, we assume all occurring judgements to be well-typed and no primary
names in the premise(s) to occur as auxiliary names in the conclusion. This may be con-
sidered as a variant of the standard bound name convention. Whenever a syntactic substi-
tution is used in a proof rule, it should avoid capture of names, i.e. it should be safe in the
sense detailed in Appendix B.

The compositional proof rules of the programme logic are given in Figure 4. [Op] is a
general rule for first-order operators, and subsumes [Const] when arity is zero. We illustrate
the two new rules for imperative constructs, [Deref ] and [Assign] in the following.

[Deref]. The rule [Deref] says that

If, assuming a precondition C, we wish to derive the postcondition C′ for the
programme !M (whose result we name u), then we should be able to derive
from C the same thing about M (named m), except that we substitute !m for u
in C′.

To understand this rule, we may start from the following simpler version.

[Deref-Orig]
−

{C[!x/u]} !x :u {C} (43)

The rule says that, if we wish to have C for !x (as a programme) named u, then we should
assume the same thing about the content of x, substituting !x for u in C. For example, we
may infer:

−
{Even(!x)} !x :u {Even(u)} (44)

which is also sound in the present target language and logic. [Deref] generalises [Deref-
Orig] so that it can treat the case when the dereference is done for an arbitrary programme
of a reference type, which can even include invocation of imperative procedures. This
becomes possible by the change of type structure, where references can be used as return
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[Var] −
{C[x/u]} x :u {C} [Const] −

{C[c/u]} c :u {C}

[Op] C0
def= C {Ci}Mi :mi {Ci+1} (0 � i � n−1) Cn

def= C′[op(m0..mn−1)/u]
{C}op(M0..Mn−1) :u {C′}

[Abs]
{C∧A-x} M :m {C′}

{A} λx.M :u {∀x.{C}u• x = m{C′}}

[App] {C} M :m {C0} {C0} N :n { C1 ∧ {C1} m•n = u {C′}}
{C} MN :u {C′}

[If ] {C} M :b {C0} {C0[t/b]} M1 :u {C′} {C0[f/b]} M2 :u {C′}
{C} if M then M1 else M2 :u {C′}

[In1]
{C} M :v {C′[inj1(v)/u]}
{C} in1(M) :u {C′} [Case] {C-x̃} M :m {C-x̃

0 } {C0[inji(xi)/m]} Mi :u {C′ -x̃}
{C} case M of {ini(xi).Mi}i∈{1,2} :u {C′}

[Pair]
{C} M1 :m1 {C0} {C0} M2 :m2 {C′[〈m1,m2〉/u]}

{C} 〈M1,M2〉 :u {C′} [Proj1]
{C} M :m {C′[π1(m)/u]}

{C} π1(M) :u {C′}

[Deref ] {C}M :m {C′[!m/u]}
{C} !M :u {C′} [Assign] {C} M :m {C0} {C0} N :n {C′{|n/ !m|}}

{C} M := N {C′}

[Rec] {A-xi ∧∀ j � i.B( j)[x/u]} λy.M :u {B(i)-x}
{A} µx.λy.M :u {∀i.B(i)}

Fig. 4. Compositional proof rules.

values or as components of data types. An example follows (below and henceforth we
often do not expand simple applications of [Cons], the well-known consequence rule, cf.
Figure 7 below).

1. {T} x :z {z = x} (Var)

2. {T} λx.x :m {∀x.{T}m• x = z{z = x}} (Abs)

3. {∀x.{T}m• x = z{z = x}} y :n {n = y ∧ {T}m•n = z{z = y}} (Var, Cons)

4. {T} (λx.x)y :m {!m =!y} (App, Cons)

5. {T} !((λx.x)y) :u {u =!y} (Deref)

As another simple example, let C be given by

C
def= ∀x, i.{!x = i} f • x = z{z = x ∧ !x = i+1},

Then we infer

{C∧!x = 1} !( f x) :u {u = 2 ∧ !x = 2} (45)
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by the following derivation.

1. {C∧!x = 1} f :m {C[m/ f ] ∧ !x = 1} (Var)

2. {C[m/ f ]∧!x = 1} x :n {C[m/ f ] ∧ n = x ∧ !x = 1} (Var)

3. {C[m/ f ]∧!x = 1} x :n {!x = 1∧{!x = 1}m•n=z{z = x∧ !x = 2}} (2, Cons)

4. {C∧!x = 1} f x :l {l = x ∧ !x = 2} (Var)

5. {C∧!x = 1} f x :l {!l = 2 ∧ !x = 2} (4, Cons)

6. {C∧!x = 1} !( f x) :u {u = 2 ∧ !x = 2} (Deref)

Note that the application above not only returns a reference but also has a side effect. In
this way we can use [Deref] for dereferences of arbitrary programmes. It is worth observing
that [Deref-Orig] is more efficient when a single variable is dereferenced, which may be
frequent in practice.

[Assign]. The rule [Assign] says that

If, starting from C, we wish the result of executing M := N to satisfy C′, then
we demand, starting from C, M named m terminates (and becomes a reference
label) to reach C0, and, in turn, N named n evaluates from C0 to reach C′ with
its occurrences of n substituted for !m.

Remember from Section 5 that [Assign] omits mentioning the conclusion’s anchor (of Unit

type) and a substitution of (), the unique Unit-value: {C}M := N {C′} stands for {C}M :=
N :u {u = ()∧C′} with u fresh. This is justified because C[()/x] ≡ C always holds when
x has the unit type. Hence we can always ignore this substitution. A simple example of its
usage follows (the first line is already reasoned in the previous page).

1. {T} (λx.x)y :m {m = y} (Var, Abs, App)

2. {m = y ∧ 1 = 1} 1 :n {m = y∧n = 1} (Const)

3. (m = y∧n = 1) ⊃ (!y = 1){|n/!m|}
4. {m = y ∧ 1 = 1} 1 :n {(!y = 1){|n/!m|}} (Cons)

5. {T} (λx.x)y := 1{!y = 1} (1, 4, Assign)

Line 3 is derived as

(m=y ∧ n=1) ⊃ [!m] (m=y ∧ n=1)∧〈!m〉 !m=n
⊃ 〈!m〉(m=y ∧ n=1∧ !m=n)
⊃ (!y=1){|n/!m|}.

The rule may be understood by contrasting it with the corresponding rule for the sublan-
guage without aliasing. There the assignment rule reads:

[AssignOrig]
{C} M :m {C′[m/ !x]}
{C} x := M {C′}

There are two differences between this original rule and [Assign] in Figure 4. First,
[AssignOrig] only allows a variable as the left-value, while [Assign] allows an arbitrary
programme. Second, the original rule uses syntactic substitution, while the present system
uses the logical counterpart (cf. Section 3.3). The corresponding rule in the present context
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(only incorporating the second point) is

[AssignVar]
{C} M :m {C′{|m/ !x|}}

{C} x := M {C′}
Clearly [AssignVar] is derivable from [Assign] through [Var].

In many programmes, it is often the case that both sides of the assignment are expres-
sions which are simple in the sense that they do not contain calls to procedures or abstrac-
tions. One such example is a simple assignment to a variable. A little more complex case
may involve simple expressions on both sides of the assignment. One example follows.

{x = y ∧ Even(!!y)} !x := !!y+1 {Odd(!!x) ∧ Odd(!!y)} (46)

Note both “!x” and “!!y + 1” do not have side effects: one may also observe that they are
both terms of our assertion language. In such cases, we can use the following rule:

[AssignSimple]
−

{C{|e2/!e1|}} e1 := e2 {C}
[AssignSimple] is directly derivable from [Assign] and the following rule (which is deriv-
able from other rules: the derivability of this rule is easy by induction on e).

[Simple]
−

{C[e/u]}e :u {C}
Above the use of e as a programme indicates that it is a term in the logic and a programme
in our programming language at the same time. In various programming examples, we
often assign part of a complex data structure to a part of another complex data structure.
The rule [AssignSimple] gives a general rule for such cases.

5.2.1 Structural rules

As already mentioned, structural rules manipulate formulae only. A well-known example
of a structural rules is

C ⊃C0 {C0} M :u {C′
0} C′

0 ⊃C′

{C} M :u {C′} [Cons]

Section 7 presents located proof rules, which are a derivable generalisation from which the
original structural rules can easily be recovered.

6 Soundness and elimination of content quantification

In this section we present some of the basic technical results about the proposed logic,
including soundness of the proof rules and axioms, and showing that content quantification
can be eliminated.

6.1 Elimination of content quantification

Using the axioms for content quantification introduced in Section 4, we establish a major
technical result about our logic, eliminability of content quantification. In other words,
any assertion written using content quantification can be equivalently expressed without.
Before going into technical development, we discuss this fact.
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• The result clarifies the logical status of these operators; in particular, semantically,
we now know they add no more complexity than (in)equations on reference names.
Since (in)equations on reference names can be easily defined using content quan-
tifiers, we know these two notions – quantifying over content of references and
discussing equalities of reference names – are inter-definable.

• As a consequence, apart from the use of evaluation formulae, validity in the assertion
language is that of the standard predicate calculus with equality. The elimination
result also gives a basis for generalising content quantification, as we do in Section
7.4.

• The elimination procedure only uses the axioms for content quantifications discussed
in Section 4.1 combined with the well-known axioms for equality and (standard)
quantifiers. Thus, relative to the underlying axioms of the predicate calculus with
equality as well as those for evaluation formulae, the axioms give complete charac-
terisation of these operators.

The arguments towards the elimination theorem reveal the close connection between con-
tent quantification, logical (semantic) substitutions C{|e′/!e|} and equations on names.
Practically, this connection suggests the effectiveness of their combined use in logical
calculations.

Elimination is done by syntactically transforming a formula in the following three steps.
Assume given [!e]C or 〈!e〉C where C does not contain content quantification (as the
transformation is local, this suffices).

1. We transform content quantification into the corresponding logical substitution ap-
plied to C, using the equivalences [!e]C ≡ ∀m.C{|m/!e|} and 〈!e〉C ≡ ∃m.C{|m/!e|},
with m fresh in both cases.

2. We transform C into the form of ∃r̃.(C1 ∧C2), where C1 does not contain active
dereference while C2 extracts all active dereferences occurring in C. This step is
not necessary strictly speaking but contributes to the conciseness of the resulting
formulae.

3. By the self-dual nature of logical substitutions (C{|e′/!e|} ≡ C{|e′/!e|}, cf. Proposi-
tion 2.9), we can compositionally dissolve the outermost application of the logical
substitution, so that it now only affects each atomic equation in C2 from (2) above
(C1 is simply neglected). We then apply the axioms for content quantification to turn
each equation (!u = z){|m/!x|} into an assertion (x = u∧m = z)∨ (x = u∧!u = z)
without content quantification.

We start from the first step, which underpins the close connection between content quanti-
fication and logical substitution.

Proposition 4 With m fresh, we have [!e]C ≡ ∀m.C{|m/!e|}. Dually, again with m fresh,
we have 〈!e〉C ≡ ∃m.C{|m/!e|}.

Proof

It suffices to treat the case when e
def= x because each content quantification [!e]C can be

represented as ∃x.(x = e∧ [!x]C), and likewise for existential content quantification. Let m
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be fresh below.

∀m.C{|m/!x|} ≡ ∀m.C{|m/!x|}
≡ [!x]∀m.(!x = m ⊃C)
≡ [!x]C

While the second statement is dual, we record it anyway:

∃m.C{|m/!x|} ≡ ∃m.〈!x〉(C∧ !x = m)
≡ 〈!x〉∃m.(C∧ !x = m)
≡ 〈!x〉C

hence done. �

Below the condition z ∈ {x,y} is not substantial since z can be renamed by α-convertibility.

Lemma 1 The following equivalences hold with � ∈ {∧,∨,⊃} and Q ∈ {∀,∃}.

(C1 �C2){|y/!x|} ≡ C1{|y/x|}�C2{|y/!x|}
(¬C){|y/!x|} ≡ ¬(C{|y/!x|})

(Qz.C){|y/!x|} ≡ Qz.(C{|y/!x|})
{C}e• e′ = x{C′}{|y/!x|} ≡ ∃uv.({C}u• v = w{C′} ∧ (u = e ∧ v = e′){|y/!x|})

C-!x{|y/!x|} ≡ C-!x

In the third line we assume z ∈ {x,y}.

Proof

It suffices to prove the cases of � = ∧ and Q = ∀ as well as the negation. For ∧:

(C1 ∧ C2){|y/!x|} ≡ (C1 ∧ C2){|y/!x|}
≡ ∀m.(y = m ⊃ [!x] (!x = m ⊃ (C1 ∧C2)))
≡ ∀m.(y = m ⊃ [!x]∧i(!x = m ⊃Ci))
≡ ∀m.(y = m ⊃ ∧i[!x] (!x = m ⊃Ci))
≡ ∧i∀m.(y = m ⊃ [!x] (!x = m ⊃Ci))
≡ C1{|y/!x|} ∧ C2{|y/!x|}

For ∀:

(∀z.C){|y/!x|} ≡ ∀z.(C{|y/!x|})
≡ ∀m.(y = m ⊃ [!x] (!x = m ⊃ ∀z.C))
≡ ∀m.(y = m ⊃ [!x]∀z.(!x = m ⊃C))
≡ ∀m.(y = m ⊃ ∀z.[!x] (!x = m ⊃C))
≡ ∀m.∀z.(y = m ⊃ [!x] (!x = m ⊃C))
≡ ∀z.∀m.(y = m ⊃ [!x] (!x = m ⊃C))
≡ ∀z.(C{|y/!x|}).
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Finally negation:

¬(C{|y/!x|}) ≡ ¬(∃m.(〈!x〉(C ∧ !x = m) ∧ m = y))
≡ ∀m.([!x] (¬C ∨ !x = m) ∨ m = y))
≡ ∀m.(m = y ⊃ [!x] (!x = m ⊃ ¬C))
≡ (¬C){|y/!x|}
≡ (¬C){|y/!x|}

At the last step we again use self-duality of logical substitution. �

Now we move to the second step.

Lemma 2 Assume C does not contain content quantification and first-order quantification.
Then we can rewrite ∃x̃.C in the following form up to logical equivalence:

∃r̃c̃x̃.((
∧

i

ci =!ri) ∧ C′)

where (1) r̃c̃ are fresh and (2) C′ does not contain active dererefences.

Proof

We construct Cn inductively: first we set C0
def= C. Now assume that Cn is of the form

Cn[!en], where !en is active in Cn and en does not contain any dereferences. Then we set

Cn+1
def= Cn[cn]∧ rn = en

with cn,rn being fresh. Since C has only a finite number of active dereferences, the in-
ductive construction will come to a halt eventually, say at Cm, i.e. Cm is free from active

dereferences. Then we set C′ def= Cm. Logical equivalence is immediate. �

Now we are in the final stage: we can decompose a logical substitution (!u = z){|m/!x|}
with m fresh, in the following way:

〈!x〉(!u = z∧!x = m) ≡ 〈!x〉((x = u∧!u = z∧!x = m) ∨ (x = u∧!u = z∧!x = m))
≡ 〈!x〉(x = u∧!u = z∧!x = m) ∨ 〈!x〉(x = u∧!u = z∧!x = m)
≡ (x = u∧m = z) ∨ 〈!x〉(x = u∧!u = z∧!x = m)
≡ (x = u∧m = z) ∨ ((x = u∧!u = z) ∧ 〈!x〉 !x = m)
≡ (x = u∧m = z) ∨ (x = u∧!u = z).

Write [[(!u = z){|m/!x|}]] for the final formula above. Using notation from Lemma 2, and
assuming C does not contain content quantifications, we reason (with m etc. fresh), and
noting, when m is fresh, we have C{|m/!x|} ≡ 〈!x〉(C∧!x = m):

〈!x〉C ≡ ∃m.C{|m/!x|} (Lem.4)
≡ ∃m.(∃r̃c̃.( (∧i!ri = ci) ∧ C′)){|m/!x|} (Lem.2)
≡ ∃m.(∃r̃c̃.( (∧i!ri = ci){|m/!x|} ∧ C′)) (Lem.1)
≡ ∃m.(∃r̃c̃.( (∧i[[(!ri = ci){|m/!x|}]]) ∧ C′))

By performing this transformation from each maximal subformula that does not contain
content quantifications, we can completely eliminate all content quantifications from any
given formula. We have thus arrived at:
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Theorem 1 For each well-typed assertion C, there exists C′ which satisfies the following
properties: (1) C ≡C′ and (2) no content quantification occurs in C′.

The elimination procedure also tells us:

Proposition 5 For any C, [!x]C is equivalent to a formula of the shape:

∃r̃.(C′ ∧
∧

i

ri = x)

where r̃ exhaust all active dereferences in C′.

Proof
Just perform the elimination procedure until we reach the final step, at which point we use
[!x] !r = z ≡ x = r. �

We conclude this subsection with the following observation. Let x = y be an equation
on reference names. It is easy to check whether this equation is logically equivalent to
[!x] [!y] !x =!y, except when x and y are of the type Ref(Unit). Thus we can replace all
(in)equations on reference names with content quantifications as far as we exclude the
trivial store of type Ref(Unit) from our discussion. Together with Theorem 1, we know
that content quantifications and reference name (in)equations are mutually representable.

6.2 Soundness

In this subsection we present a key result about our logic, soundness of axioms and proof
rules. This result offers foundations for modular software engineering, where replacement
of one module by another with the same specification does not violate the observable
behaviour of the whole software, up to the latter’s global specification.

Theorem 2 (soundness) If � {C} M :u {C′} then |= {C} M :u {C′}.

A similar correctness result holds for all axioms.

Theorem 3 All axioms in Figures 2 and 3 are valid. Furthermore, (CGen) in Figure 2 is
sound in the sense that if C is valid then so is [!x]C.

The straightforward proofs for both theorems can be found in Appendix D.

7 Located assertions and reasoning

7.1 Motivation and syntax

This section formally introduces a located evaluation formula as a derived construct with
associated axioms and rules that together facilitate convenient delineation of computational
effects. Locations in our sense have been used before, in the context of object-oriented
languages, and are sometimes called “modifies clauses” (Wing 1987; Müller et al. 2003).
Our approach is novel in the following two points. Firstly, the set of locations that a
programme can modify is specified entirely within the logic, without appealing to external
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formalism, hence the entire logical apparatus is available for specification and reasoning
about effects. Secondly, and relatedly, this form of specification can be combined with
content quantification for a powerful generalisation of the standard Invariance Rule.

We motivate our approach with an example. For modular reasoning we would like to
infer a judgement for M;N from judgements {C1} M {C′

1} and {C2} N {C′
2}, where C1,C′

1
should not talk about things that are only relevant for inferring {C2} N {C′

2} and vice versa.
Ideally we would like a “rule” as easily applicable as

{C1} M {C′
1} {C2} N {C′

2}
{C1 ∧C2} M;N {C′

1 ∧C′
2}

(47)

But this is unsound. The execution of M might invalidate assumptions inscribed in C2.
Similarly, running N may destroy guarantees made by C′

1. However, if we knew that C2’s
truth-value was independent from M’s effects, and that C′

1 was likewise isolated from
N’s destructive updates, (47) would in fact be sound. With content quantification, this is
easily expressed: assume that all of M’s effects were in x̃, then [!x̃]C2 would be !x̃-free,
i.e. independent from M’s effects. Similarly, with N’s effects in ỹ, 〈!ỹ〉C′

1 is !ỹ-free. If we
use located assertions {C} L {C′}@ z̃ as syntactic sugar to express that {C} L {C′} holds
and that all of L’s effects are contained in z̃, then the following refinement of (47) is sound:

{C1} M {C′
1}@ x̃ {C2} N {C′

2}@ ỹ

{C1 ∧ [!x̃]C2} M;N {C′
2 ∧ 〈!ỹ〉C′

1}@ x̃ỹ
(48)

It is noteworthy that this rule does not require x̃ and ỹ to be disjoint, or that C2 does not
mention names in x̃ and vice versa. The rule directly infers a judgement for a sequenced
pair of programmes from independent judgements for the component programmes.

The syntax of located evaluation formulae, or located assertions, takes the following
form:

{C}e• e′ = x{C′}@{e1,e2, ...,en} (49)

where each ei should be of a reference type. {e1, ..,en} is called effect set. We usually write
an effect set as a sequence, i.e. we write the above formula as

{C}e• e′ = x{C′}@e1e2. . .en.

Expressions in effect sets are interpreted in the precondition: thus if ei above includes a
variable, it should already occur in the precondition C. Similarly we introduce the notation

{C} M :u {C′}@{e1,e2, . . .,en} (50)

where again if ei includes a free variable then it should occur in C. We again usually write

{C}e• e′ = x{C′}@e1e2. . .en.

In both located assertions and judgements, the following convention allows more flexible
manipulation of effect sets:

Convention 3 Whenever we use finite effect sets {e1, ...,en} in located assertions or loc-
ated judgements, we assume that no ei contains a dereference, except where we explicitly
demand otherwise.
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(le1) {C1}x• y=z{C}@w̃ ∧ {C2}x• y=z{C}@w̃ ≡ {C1 ∨C2}x• y = z {C}@w̃
(le2) {C}x• y=z{C1}@w̃ ∧ {C}x• y=z{C2}@w̃ ≡ {C}x• y = z{C1 ∧C2}@w̃
(le3) {∃uα.C}x• y = z {C′-u}@w̃ ≡ ∀uα.{C}x• y = z {C′}@w̃
(le4) {C-u}x• y = z {∀uα.C′}@w̃ ≡ ∀uα.{C}x• y = z {C′}@w̃
(le5) {A∧C}x• y = z {C′}@w̃ ≡ A ⊃ {C}x• y = z {C′}@w̃
(le6) {C}x• y = z {A-z ⊃ C′}@w̃ ⊃ A ⊃ {C}x• y = z {C′}@w̃
(le7) {C}x• y=z{C′}@w̃ ⊃ {C∧[!w̃]C0}x• y=z{C′∧ [!w̃]C0}@w̃
(le8) [!w̃] (C⊃C0)∧{C0}x• y=z{C′

0}@w̃∧[!w̃] (C′
0⊃C′) ⊃ {C}x• y = z {C′}@w̃

(weak) {C}x• y=z{C′}@ṽ ⊃ {C}x• y=z{C′}@ṽw̃
(thin) ∀u, i.{C∧!u = i}x• y=z{C′∧!u = i}@w̃ ⊃ {C}x• y=z{C′}@w̃\u

Fig. 5. Axioms for located evaluation formulae.

In Section 7.4, we shall show that this convention, and the restriction to finite effect sets do
not lose generality.

Example 5 (located judgement)

1. A judgement {!x = i} x :=!x+1 {!x = i+1}@x says that the programme increments
the content of x and does nothing else, in particular, x is sole reference whose content
changes.

2. Let M
def= if x = 0 then 1 else x× f (x−1). Then we have

{Fact( f )} MΓ;Nat :u {u = x!}@ /0

with Γ def= f : Nat⇒Nat · x : Nat and Fact( f ) def= ∀i � x.{T} f • i = i!{T}@ /0.

3. For the same M we have

{Fact′( f )} MΓ;Nat :u {u = x!} @w

where Fact′( f ) def= ∀i � x.{T} f • i = i!{T}@w. Note that w is auxiliary. The judge-
ment says: if f may have an effect at some reference, then M itself may have an
effect on that reference.

7.2 Rules and axioms for located assertions

Figure 5 lists axioms for located assertions, which refine the original axioms in Figure 3 and
introduce two new axioms for manipulating write effects. The axioms from (le1) to (le6)
simply add write effects to assertions. However (le7) allows us to add universally content-
quantified stateful formulae to the pre/post-conditions, strengthening (e7). The reader may
recall having already seen an instance of this rule in (28) and (29) on Page 487. (Li7) is
more general than (e7) in that weakened assertion can be stateful. At the same time (le7)
is justifiable using (e7). For concreteness, take the assertion (28):

{!x = i}u• x{!x = 2× i}@x

Using non-located reasoning, we can derive (29) from (28) as follows: we den-sugar this
assertion and apply the laws ∀x.C ⊃ C[e/x], ∀X.C ⊃ C[α/X] to obtain for a concrete
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yRef(Nat):

∀ jNat.{!x = i ∧ x = y ∧ !y = j}u• x{!x = 2× i ∧ !y = j}

Now we use (e7) to add Odd( j) and get

∀ j.{!x = i ∧ x = y ∧ !y = j ∧ Odd( j)}u• x{!x = 2× i ∧ x = y ∧ !y = j ∧ Odd( j)}

By the law of equality, the consequence rule and finally (e3) we infer

{∃ j.(!x = i ∧ x = y ∧ Odd(!y) ∧ !y = j)}u• x{!x = 2× i ∧ Odd(!y)}

Hence by (e8) we obtain

{!x = i ∧ [!x]Odd(!y)}u• x{!x = 2× i ∧ [!x]Odd(!y)}@x,

as required, noting that (x = y∧Odd(!y)) ⊃ [!x]Odd(!y) is a straightforward consequence
of Proposition. 1. As in this example, all these rules are easily justifiable using the axioms
in Figure 3.

Next we derive the same assertion using located reasoning. From (28) and (le7) obtain

{!x = i∧ [!x]Odd(!y)}u• x{!x = 2× i∧ [!x]Odd(!y)}@x

as required, in a much simpler derivation.
Finally (weak) and (thin) are reminiscent of the weakening rules and thinning rules in

various type disciplines, hence the names.
Regarding reasoning with effect sets, valid located judgements are derivable with the

proof rules for non-located judgements by translating located judgements to non-located
ones. However, doing so would invalidate one of the key points for introducing locations,
namely semi-automatic maintenance of effects. A more efficient method is to use com-
positional proof rules that are derivable in the original system, but are tailored for located
judgements. Figures 6 (for compositional rules) and 7 (for structural rules) introduce such
roof rules.

The compositional rules are entirely straightforward, closely following Figure 4, and
listed in Figure 6 to illustrate some subtleties in key rules.

In [Var] we declare the effect to be empty by fiat. The correctness of this is immediate
from the semantics of variables. [Abs] internalises the premise’s effect ẽ into the conclu-
sion’s evaluation formula. [App] does the inverse of this. The only place where new effects
are inevitable is [Assign], which demands that C0 says m (the target of writing) is in the
write effect (the set membership notation “∈” is understood to denote a disjunction of
equations).

Among the structural rules in Figure 7, [Weak], [Thinning] and [Invariance] deserve
illustration. All others are straightforwardly derived from their non-located counterparts.
[Cons-Aux] is easily derived by [Rename], [Cons], [Aux∃] and [Invariance]. Note also
that the original (non-located) structural rules discussed in Section 5.2 are immediately
obtained by simple removal of the effect set.
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[Var] −
{C[x/u]} x :u {C}@ /0 [Abs] {C∧A-x} M :m {C′}@ ẽ

{A} λx.M :u {∀x.{C}u• x= m{C′}@ ẽ}@ /0

[Op] {C} M1 :m1 {C1}@ ẽ1 ... {Cn−1} Mn :mn {C′[op(m1, ...,mn)/u]}@ ẽn

{C} op(M1, ...,Mn) :u {C′}@ ẽ1...ẽn

[App] {C} M :m {C0}@ ẽ {C0} N :n { C1 ∧ {C1}m•n = u{C′}@ ẽ′}@ ẽ′′

{C} MN :u {C′}@ ẽẽ′ẽ′′

[If ] {C} M :b {C0}@ ẽ {C0[t/b]} M1 :u {C′}@ ẽ′ {C0[f/b]} M2 :u {C′}@ ẽ′′

{C} if M then M1 else M2 :u {C′}@ ẽẽ′ẽ′′

[In1]
{C} M :v {C′[inj1(v)/u]}@ ẽ
{C} in1(M) :u {C′}@ ẽ

[Case] {C-x̃} M :m {C-x̃
0 }@ ẽ {C0[inji(xi)/m]} Mi :u {C′-x̃}@ ẽi

′

{C} case M of {ini(xi).Mi}i∈{1,2} :u {C′}@ ẽẽ′1ẽ′2

[Pair]
{C} M1 :m1 {C0}@ ẽ1 {C0} M2 :m2 {C′[〈m1,m2〉/u]}@ ẽ2

{C} 〈M1,M2〉 :u {C′}@ ẽ1ẽ2

[Proj1]
{C} M :m {C′[π1(m)/u]}@ ẽ

{C} π1(M) :u {C′}@ ẽ
[Deref ] {C} M :m {C′[!m/u]}@ ẽ

{C} !M :u {C′}@ ẽ

[Assign] {C} M :m {C0}@ ẽ {C0} N :n {C′{|n/ !m|}}@ ẽ′ C0 ⊃ m ∈ ẽ
{C} M := N {C′} @ ẽẽ′

[Rec] {A-xi ∧∀ j � i.B( j)[x/u]} λy.M :u {B(i)-x}@ ẽ
{A} µx.λy.M :u {∀i.B(i)}@ ẽ

Fig. 6. Proof rules with located judgements.

[Weak]. This rule adds a name to an effect, which is surely safe. As an example usage of
[Weak], we infer

1. {T}x :m {m = x}@ /0 (Var)

2. {T}x :m {m = x}@ x (Weak)

3. m = x ⊃ m ∈ {x}
4. {T}3 :n {(!x = 3){|n/!x|}}@ /0 (Contest)

5. {T}x := 3{!x = 3}@ x (3, 4, Assign)

In Line 4, we have (!x = 3){|n/!x|} ≡ n = 3 by Proposition 3 (8). Of course, we can assign
more complicated expressions. For example, we infer

1. {!x = 1}x :m {m = x ∧ !x = 1}@ x (m = x∧ !x = 1) ⊃ m ∈ {x}
2. {m = x ∧ !x = 1}!x+1 :n {(!x = 2){|n/!x|}}@ /0
3. {!x = 1}x :=!x+1 :n {n = 2}@ x (1, 2, Assign)

[Thinning]. The rule symmetric to [Weak] is [Thinning], which removes a reference name
from a write set. Hence the judgement becomes stronger, saying a given programme
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[Cons] C ⊃C0 {C0} M :u {C′
0}@ ẽ C′

0 ⊃C′

{C} M :u {C′}@ ẽ

[∧-⊃] {C∧A}V :u {C′}@ ẽ
{C}V :u {A ⊃C′}@ ẽ

[⊃-∧] {C} M :u {A ⊃C′}@ ẽ
{C∧A} M :u {C′}@ ẽ

[∨-Pre] {C1} M :u {C}@ ẽ {C2} M :u {C}@ ẽ
{C1 ∨C2} M :u {C}@ ẽ

[∧-Post] {C} M :u {C1}@ ẽ {C} M :u {C2}@ ẽ
{C} M :u {C1 ∧C2}@ ẽ

[Aux∃]
{C} M :u {C′ -i}@ ẽ
{∃i.C} M :u {C′}@ ẽ

[Aux∀]
{C-i} M :u {C′}@ ẽ
{C} M :u {∀i.C′}@ ẽ

[Invariance] {C} M :u {C′}@ ẽ C0 is !ẽ-free
{C ∧ C0} M :u {C′ ∧C0}@ ẽ

[Weak] {C} M :m {C′}@ ẽ
{C} M :m {C′}@ ẽe′

[Thinning] {C∧!e′ = i} M :m {C′∧!e′ = i}@ ẽe′ i fresh
{C} M :m {C′}@ ẽ

[Cons-Aux] {C0} M :u {C′
0}@ ẽ C ⊃ ∃ j̃.( C0[ j̃/ĩ] ∧ [!ẽ] (C′

0[ j̃/ĩ] ⊃C′) )
{C} M :u {C′}@ ẽ

Fig. 7. Derivable structural rules for located judgements.

modifies (if ever) the contents of fewer references. This becomes possible when the premise
guarantees that the programme does not change the content of the variable to be removed.
Note i is fresh, so that there is no constraint on i – the judgement thus says whichever value
is stored in e′, it does not alter its content. As an example usage of [Thinning], we infer,
noting C{|!x/!x|} ≡C (cf. Proposition 3):

1. (!x = i){|!x/!x|} ≡ !x = i ⊃ x ∈ {x}
2. {!x = i} x := !x {!x = i}@ x (Assign-Simple)

3. {T} x := !x {T}@ /0 (Thinning)

The inference suggests that through the use of [Thinning], the extensional nature of the
logic is maintained in the proof rules for located judgements.

[Invariance]. This rule says that, if we know that a programme touches only a certain set
of references, and if C0 asserts only on a state that does not concern (the content of) these
references, then C0 can be added to pre/post-conditions as invariant for that programme. In
practice, we may use the two derivable (and essentially equivalent) rules given in Figure 8,
the derivability of which is through Proposition 3.

The rules [InvUniv] and [InvEx] say that the truth value of C0 is independent from M’s
effects, in which case surely it is invariance. These two derivable rules are sometimes
useful since they allow adding any invariance C0 to a located judgement with a write set ẽ
by simply prefixing with content quantifiers.
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[InvUniv] {C} M :u {C′}@ ẽ
{C ∧ [!ẽ]C0} M :u {C′ ∧ [!ẽ]C0}@ ẽ

[InvEx] {C} M :u {C′}@ ẽ
{C ∧ 〈!ẽ〉C0} M :u {C′ ∧ 〈!ẽ〉C0}@ ẽ

Fig. 8. Derivable invariance rules for located judgements.

As one can easily observe, [Invariance] is a refinement of both the standard invariance
rule in Hoare logic, which has the shape

�Hoare {C} P {C′} P does not touch variables in C0

�Hoare {C∧C0} P {C′ ∧C0}
(51)

and the invariance rule for non-located judgements (Honda et al. 2005):

{C} M :u {C′}
{C∧A} M :u {C′ ∧A} (52)

This rule may also be compared to a similar rule studied by Reynolds, O’Hearn and others
in (Reynolds 2002; O’Hearn et al. 2004): see Section 9.2.2 for a detailed comparison.
Since a weakened stateless formula A in (52) is by definition !x-free for any x, [Invariance]
above subsumes (52) (except we are now using located judgements). On the other hand,
[Invariance] is justifiable using (52), cf. Section 4.2.

7.2.1 Evaluation order independence

The derived invariance rules can further be combined with compositional rules for located
judgements in Figure 6 to obtain proof rules that are independent from any particular
evaluation order, in the sense that the correctness of the inference does not depend on the
order of evaluation of expressions appearing in the rule (recall the proof rules for operators,
applications, pairs, etc. all assume a fixed evaluation order, i.e. from left to right). This
important for modular reasoning, cf. Example 8.3.

Evaluation-order independence (EOI for short) in the most general case holds when two
(or more) expressions involved only write to separate stores and, moreover, their resulting
properties only rely on invariants which hold regardless of the state change induced by
other expressions. Here we use a slightly stronger constraint, when the properties of each
expression does not at all depend on written sets of the remaining expressions. Figure 9
lists the EOI-refinement of (located) operator/application/assignment/pairing rules. These
rules are all inferred from the original rule together with two variants of the invariance rule,
[InvUniv] and [InvEx].

At the onset of this section we had already illustrated the situation for sequential com-
position. Here is a suitable generalisation of (48):

[Seq-I]
{C1} M {C′

1}@ ẽ1 {C2} N {C′
2}@ ẽ2

{C1 ∧ [!ẽ1]C2} M;N {C′
2 ∧ 〈!ẽ2〉C′

1}@ ẽ1ẽ2

We emphasise once again that this rule does not require ẽ1 and ẽ2 to be disjoint, or that C2

does not mention names in ẽ1 and vice versa. We continue with a simple example. Let M
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[Op-eoi]
{Ci} Mi :mi {C′

i}@ ẽi (1 � i � n)
∧

i
〈!ẽi+1..ẽn〉C′

i ⊃ C′[op(m1..mn)/u]

{
∧

i
[!ẽ1..ẽi−1]Ci} op(M1, ...,Mn) :u {C′}@ ẽ1...ẽn

[App-eoi]
{C1}M :m {C′

1}@ ẽ1 {C2} N :n { C′
2 ∧ {〈!ẽ2〉C′

1 ∧C′
2}m•n = u{C′}@ ẽ3}@ ẽ2

{C1 ∧ [!ẽ1]C2}MN :u {C′}@ẽ1ẽ2ẽ3

[Assign-eoi] {C1} M :m {C′
1}@ ẽ1 {C2} N :n {C′

2}@ ẽ2 (〈!ẽ2〉C′
1 ∧C2) ⊃ (C′{|n/ !m|}∧m∈ ẽ)

{C1 ∧ [!ẽ1]C2} M := N {C′} @ ẽẽ1ẽ2

[Pair-eoi]
{C1} M1 :m1 {C′

1}@ ẽ1 {C2} M2 :m2 {C′
2}@ ẽ2 〈!ẽ2〉C1 ∧C2 ⊃ C′[〈m1,m2〉/u]

{C1 ∧ [!e1]C2} 〈M1,M2〉 :u {C′}@ ẽ1ẽ2

Fig. 9. Evaluation-order-independent proof rules for located judgements.

be the programme y :=!y+1;z :=!z+2.

1 {!y = i+1{|!y+1/!y|}} y :=!y+1 {!y = i+1}@y (AssignS)

2 {!y = i} y :=!y+1 {!y = i+1}@y (Cons), 1

3 {!z = j +2{|!z+1/!z|}} z :=!z+2 {!z = j +2}@z (AssignS)

4 {!z = j} z :=!z+2 {!z = j +2}@z (Cons), 3

5 {!y = i ∧ [!y] !z = j} M {〈!z〉 !y = i+1∧ !z = j +2}@yz (Seq-I), 2, 4

6 ([!y] !z = j) ⊃ (y = z∧ !z = j)

7 (〈!z〉 !y = i+1) ⊃ (y = z ⊃ !y = i+1)

8 {y = z∧ !y = i∧ !z = j} M {(y = z ⊃ !y = i+1) ∧ !z = j +2}@yz (Cons), 5, 6, 7

9 {y = z∧ !y = i∧ !z = j} M {y = z∧(y = z ⊃ !y = i+1) ∧ !z = j +2}@yz (Invariance), 8

10 {y = z∧ !y = i∧ !z = j} M {!y = i+1 ∧ !z = j +2}@yz (Cons), 9

We used the following located version of [AssignS]:

[AssignS] {C{|e2/!e1|}} e1 := e2 {C}@ẽ (C ⊃ e1 ∈ ẽ)

Note that this simple derivation allowed to remove the content quantifiers introduced by
application of [Seq-I] and [Cons]. Interestingly, although [Seq-I] does not require separa-
tion between the two terms under composition, in the last derivation, a distinction between
y and z is a natural consequence. In some cases this may be too restrictive. But it is easy to
generalise [Seq-I]:

[Seq-I’]
{C1} M {C′

1∧C}@ ẽ {C2∧C} N {C′
2}@ g̃

{C1∧[!ẽ]C2} M;N {〈!g̃〉C′
1∧C′

2}@ ẽg̃

Now some of M’s post-conditions can be used in N’s pre-condition. Clearly, both [Seq]
and [I-Seq] are special cases up to some applications of [Cons]. As an example of using
[Seq-I’], assuming

{!x = i ∧ !y = j} M {!x = i+2 ∧ !y = j−3}@xy {!x = i+2 ∧ !z = k} N {C}@yz
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are derived. Then we proceed

1 {!x = i ∧ !y = j} M {!x = i+2 ∧ !y = j−3}@xy

2 {!x = i+2 ∧ !z = k} N {C}@xz

3 {!x = i ∧ !y = j ∧ [!xy] !z = k} M;N {〈!yz〉 !y = j−3 ∧ C}@xyz (Seq-I’), 1, 2

4 ([!xy] !z = k) ⊃ (x,y = z ∧ !z = k)

5 〈!xz〉(!y = j−3) ⊃ (x,z = y) ⊃!y = j−3

6 C0
def=!x = i ∧ !y = j ∧ !z = k

7 {x,y = z ∧ C0} M;N {(x,z = y ⊃!y = j−3) ∧ C}@xyz (Cons), 3, 4, 5

8 {x,y = z ∧ C0} M;N {(x = y ⊃!y = j−3) ∧ C}@xyz (Cons, Invariance), 7

Similarly, one obtains EOI-rules for operators, application, assignment, etc., as given
in Figure 9. All EOI-rules are proved from the corresponding original rule together with
Invariance rules [InvUniv] and [InvEx].

We close this section with a result relating derivability between located and unlocated
judgements. The proof is easy and omitted (to derive [Thinning] we need [Cons-Aux]).

Proposition 6 {C} M :m {C′}@ g̃ is derivable in the proof rules for located judgements
iff its translation is derivable in the proof rules for non-located judgements.

7.2.2 Soundness of located proof rules and axioms

Soundness of the located proof rules can be established in two straightforward ways:
we can show them to be derivable using the original non-located rules, or, alternatively,
we can reason directly. In either case, the only non-trivial case is [Thinning]. This is
reasoned using simple instances of [Cons-Aux] (renaming of auxiliary names) combined
with disjunction on pre/post-conditions (derived from [∨-pre] and [Cons]). To make the
proof more transparent, we assume all effects to have the same type.

|= {C∧ z = ẽe′∧ !z= i∧ !e′ = i′} M :u {C′ ∧ z = ẽe′∧ !z= i∧ !e′ = i′}
⇒ |= {C∧ z = ẽ∧ z =e′∧!z = i} M :u {C′ ∧ z = ẽ∧ z =e′∧!z = i} ∧

|= {C∧ z = ẽ∧ z=e′∧!z = i} M :u {C′ ∧ z = ẽ∧ z=e′∧!z = i}
⇒ |= {C∧ z = ẽ∧!z = i} M :u {C′ ∧ z = ẽ∧ !z = i}

Soundness of other located rules is as for the corresponding unlocated rules.

Theorem 4 (soundness of located judgements) If � {C} M :u {C′} @ g̃ then we have
|= {C} M :u {C′} @ g̃.

Theorem 5 All axioms in Figure 5 are sound.

Proof

The proofs are straightforward either by translation into formulae without effects or dir-
ectly semantically. �
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[AssignVar] C{|e/!x|} ⊃ x = g
{C{|e/!x|}} x := e {C}@g

[AssignSimple] C{|e′/!e|} ⊃ e = g
{C{|e′/!e|}} e := e′ {C}@g

[AssignVInit] C{|e/!x|} !x-free C ⊃ x = g
{C} x := e {C∧!x = e}@g

[AssignSInit] C{|e′/!e|} !e-free C{|e/!e|} ⊃ e = g
{C} e := e′ {C∧!e = e′}@g

[IfThenSimple] {C∧ e} M {C′}@ g̃
{C} if e then M {C′}@ g̃

[IfThen] {C} M :m {C0}@ g̃ {C0[t/m]} N {C′}@ g̃′ C0[f/m] ⊃C′

{C} if M then N {C′}@ g̃g̃′

[WhileSimple] (C∧ e) ⊃ e′ > 0 {C∧ e∧ e′ = i} M {C∧ e′ < i}@ g̃ i fresh
{C} while e do M {C∧¬e}@ g̃

[While]

{C∧ e′ = i} M :b {Ab ∧C∧ e′ � i} @ g̃
{C∧A[t/b]∧ e′ = i} N {C∧ e′ < i}@ g̃′

C∧A[t/b] ⊃ e′ > 0 i fresh
{C} while M do N {C∧¬e}@ g̃g̃′

[Seq] {C} M {C0}@ g̃ {C0} N {C′}@ g̃′

{C} M;N {C′}@ g̃g̃′

[Seq-I] {C1} M {C′
1}@ ẽ1 {C2} N {C′

2}@ ẽ2
{C1 ∧ [!ẽ1]C2} M;N {C′

2 ∧ 〈!ẽ2〉C′
1}@ ẽ1ẽ2

[AppSimple]C ⊃ {C}e• (e1...en) = u{C′}@g̃
{C} e(e1...en) :u {C′}@ g̃

[Let] {C} M :x {C0}@ g̃ {C0} N :u {C′}@ g̃′

{C} let x = M in N :u {C′}@ g̃g̃′

Fig. 10. Located proof rules for imperative idioms.

7.3 Proof rules for imperative idioms

For reasoning about programmes written in an imperative idiom, derived proof rules are
sometimes simpler to apply directly than the original rules. Figure 10 lists several located
proof rules for this purpose. The initial four assignment rules are directly derivable from
the general assignment rule in Figure 6. The next two rules for the one-branch conditional
are also easily derivable from the general conditional rule in Figure 6. In [IfThenSimple],
we assume that e is also a term of boolean type in the assertion language (in fact any term e
of a boolean type becomes a formula by e = t, though such translation is seldom necessary).

The two rules for while loops augment the standard total correctness rule by
Floyd (1967). In both rules, e′ (of Nat-type) functions as an index of the loop, which
should be decremented at each step. In [WhileSimple], the guard is a simple expression.
In [While], the guard is a general programme, possibly with a side effect (which however
should not increase an index). We write Ab to mean that if there is a primary name in A,
it must be b. Both rules are directly derivable from the original rules through the standard
encoding. Finally, the aforediscussed [Seq-I] (I is for independence) is the EOI-version of
the standard rule [Seq].

One of the notable aspects of the presented logic is uniform treatment of data types. As
a basic example, let us take a look at how to incorporate reasoning principle for arrays.
Section 4.3 already introduced the array data type with a corresponding axiomatisation.
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[Array] {C}M :m{C0}@g̃ {C0}N :n{C′[m[n]/u]}@g̃′ C′[m[n]/u] ⊃ 0�n<size(m)
{C} M[N] :u {C′} @ g̃g̃′

[ArraySimple] C[ e[e′]/u ] ⊃ 0 � e′< size(e)
{C[ e[e′]/u ]} e[e′] :u {C} @ /0

Fig. 11. Located proof rules for arrays.

Figure 11 presents the located version of the proof rules for arrays. [Array], together with
the axioms introduced in Section 4.3 is all we need to reason about arbitrary arrays and
operations on them in imperative PCFv. This simplicity partly comes from treating arrays
as a string of references (cf. Apt, 1981). The second rule in Figure 11 is a derivable
version of [Array] for simple expressions that is often useful. Below we give the reading of
[ArraySimple].

If the initial state, C[e[e′]/u], says that the index e′ (of Nat-type) is within the
range of the size of the array e (of α[]-type), then we can conclude the array
e[e′] named u (of type Ref(α)) has the property C, with no write effect.

In comparison, [Array] just adds state change by evaluating the array and its index.
It is instructive to see how the dynamics involving arrays, in particular assignments,

can be reasoned about using these rules. For example, if you wish to assign a value to an
array at a particular index, which is an operation often found in practice, we can simply
specialise e and e′ in [ArraySimple] to reach the following rule:

[AssignArray]
C{|e′ / !a[e] |} ⊃ 0�e<size(a) C{|e′ / !a[e] |} ⊃ a[e] = g

{C{|e′ / !a[e] |}} a[e] := e′ {C}@g

The rule is a direct combination of [AssignSimple] and [ArraySimple]. It is worth expanding
the precondition in the conclusion. Let m be fresh below.

C{|e′ / !a[e] |} def= ∃m.(〈!a[e]〉(C ∧ !a[e] = m) ∧ m = e′) (53)

In the right-hand side of (53), if C contains a term of the form !a[e′′], then if (C says)
e = e′′ then it is equated with m (hence e′); if not, it is unaffected by m. This case analysis
is precisely what underlies the standard proof rule for array assignment, as presented in
(Apt 1981), which is subsumed by the proof rule above. It is notable that [AssignArray]
can be used when array names themselves can be aliased which is a common situation in
systems programming.

7.4 Generalisation of effects in located assertions

Let S be an intensionally defined set of shape {y | C0}, with y a fresh variable of type
Ref(X). In the present paper, we always demand, given such a set, that either C0 ≡ F

(i.e. S is empty) or, if not, ∃y.C0 ≡ T. In this way, C0 only elaborates (constrains) y. The
generalisation of located assertions can then be written

{C}e• e′ = x{C′}@S
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where S, interpreted in the precondition, becomes a set of references that may be written
to. Note {C}e•e′ = x{C′}@e1. . .en can be rewritten as {C}e•e′ = x{C′}@{y|∨i y = ei}.

In turn, a generalised located assertion {C}e • e′ = x{C′}@{y|C0} can be translated to
the following non-located assertion:

{C} e• e′ = x {C′} ∧ ∀X.∀yRef(X).∀iX.{C∧¬C0∧!y = i} e• e′ = x {C′∧!y = i} (54)

Above we need the first conjunct when C0 ≡ T, in which case (54) becomes simply {C} e•
e′ = x {C′} itself (i.e. we do not delineate the range of the write effects). As the other
extreme case, if C0 ≡ F, then (54) becomes {C∧!y = i} e• e′ = x {C′∧!y = i} for fresh y
and i, saying, as can be checked, the evaluation has no write effects ever. In this way, we
can regard a generalised located assertion as a short hand for the corresponding non-located
assertion, and use the axioms for the latter for reasoning about the former.

Generalised located assertions allow compositional reasoning analogous to their finite
counterpart when combined with the content quantification generalised accordingly. We
define, with the same condition on C0 as above:

[!{x|C0}]C def= ∀x.(C0 ⊃ [!x]C)

The assertion [!{x|C0}]C reads:

Under any content of the references defined by C0, the assertion C holds.

The generalised content quantification [!{x|C0}]C has this intended meaning since, as
can be inferred from Theorem 1, ∀x.(C0 ⊃ [!x]C) says that each x satisfying C0 is distinct
from any dereferenced location in C, that is, all locations satisfying C0 should be distinct
from any dereferenced location in C, giving the intended meaning of [!{x|C0}]C.

Reasoning that uses generalised forms of located assertions/judgements and content
quantifications directly comes from their translations to the original finite located asser-
tions. When we need to combine two generalised write sets (such as in the case of sequen-
tial composition), we use the generalised content quantification given above to stipulate
that the description of the second set is not reliant on the modification recorded in the first
set.3

As another example, we have the following invariance rule for generalised located judge-
ments:

[Invariance-Gen]
{C} M :u {C′}@S

{C ∧ [!S]C0} M :u {C′ ∧C0}@S
Above we do not mention S in the post-condition since it is interpreted in the precondition
(to allow more freedom in their use, we can introduce variables that denote such sets,
allowing one to write x = S etc.).

As a concrete example, we show how we can use generalised locations for asserting and
reasoning about recursively defined data types, which introduce potentially unbounded
effects. The programme

addOne
def= µg.λx.case !x of {nil� () | a ::y� (a :=!a+1;g y)}

3 For example, given {C} M {C0}@{y |C′
0} and {C0} N {C′}@{y |C′′

0}, we can no longer conclude
{C} M;N {C′}@{y | C′

0 ∨C′′
0}, because C′′

0 is interpreted with C as the precondition but in the (wrong)
conclusion we now assume C0 as its precondition. So we demand the truth value of C′′

0 to be independent
from M’s effects, by stipulating [!{y |C′

0}]C′′
0 ≡C′′

0 .
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modifies the content of every cell reachable from its argument. Hence, naming this pro-
gramme as f , we can derive the following (rather weak) assertion:

{∃l′l′′.(!l = a :: l′∧!l′ = b :: l′′∧!l′′ = nil)} f • l{T}@ab (55)

if we know the list l is of length 2. However if we do not know the length of l, then we
need to use generalised located assertions.

addoneSpec
def= ∀lListα .{acyclic(l)} f • l{T}@{a | reach(l,a)} (56)

Above we use the predicates characterised by the following axioms:

path(l,n, l′) ≡ (n=0 ⊃ l = l′)∧ (n>0 ⊃ ∃l′′a.(!l =a :: l′′ ∧path(l′′,n−1, l′))).
acyclic(l) ≡ ∀i, j.(i = j ⊃ path(l, i, l′) ⊃ path(l, j, l′′) ⊃ l′ = l′′)

reach(l,a) ≡ ∃l′, i.(path(l, i, l′) ∧ a = π1(!l′))

Our target judgement is

{T} addOne {addoneSpec}, (57)

To derive (57), we use induction on the length of the acyclic list. We show only the

intermediate judgements for M
def= case !x of {nil � () | a :: y � (a :=!a + 1;g y)}. We use

the following assertion for brevity:

main( f ,x) def= {acyclic(x)} f • x{T}@{a |reach(x,a)}

Then the judgement for M is given as

{len(x, i) ∧ ∀y.(len(y, j)∧ i� j ⊃ main(g,y))} M {T}@{a | reach(x,a)} (58)

where len(x, i) asserts the length of an acyclic list x is i, which is easily definable. The
judgement (58) itself is proved using such facts as a tail of an acyclic list is again acyclic
and its length is strictly less than that of the original list. Once (58) is given, we apply the
proof rules for abstraction and recursion to obtain the required assertion (57).

Finally we show the use of [Invariance-Gen], using its counterpart at the assertion level.
If we know C0 asserts only on (say) a list disjoint from x, then we can derive, from
addoneSpec:

∀lRef(Listα).{acyclic(l)∧ [!{a |reach(l,a)}]C0} f • l{C0}@{a | reach(l,a)}

by adding the invariant assertion to the pre/post-conditions.
A comprehensive study of reasoning with generalised effects will be presented else-

where.

8 Reasoning examples

One of the key criteria in evaluating a programme logic’s abilities is ease of use in veri-
fication. This section illustrates how our logic can be used for reasoning about the cor-
rectness of programmes, starting with simple examples discussed in the Introduction and
Section 3.3. We conclude our exhibition of the logic’s reasoning abilities by proving the
correctness of higher-order, generic Quicksort.
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8.1 Questionable double (1): Direct reasoning

In Section 3.4, we introduced the ”Questionable Double”, a programme behaving differ-
ently under different distinctions. Let us reproduce the programme.

double?
def= λ(x,y).(x :=!x+!x;y :=!y+!y)

We establish the following judgement that says that, if we assume its two arguments to be
distinct, then the programme does indeed double the content of the argument references.

{T} double? :u { ∀x,y.{x = y ∧ !x = i ∧ !y = j}u• (x,y){!x = 2i ∧ !y = 2 j} } (59)

To infer the judgement (59), we use the following two implications.

x = y ∧ !x = i ∧ !y = j ⊃ (x = y ∧ !x = 2i ∧ !y = j){|!x+!x/!x|} (60)

x = y ∧ !x = 2i ∧ !y = j ⊃ (!x=2i ∧ !y=2 j){|!y+!y/!y|} (61)

We first establish (60) and (61). For the former:

(x = y ∧ !x = 2i ∧ !y = j){|!x+!x/!x|}
≡ x = y ∧ !x = 2i{|!x+!x/!x|} ∧ !y = j{|!x+!x/!x|}
≡ x = y ∧ !x+!x = 2i ∧ (x = y ⊃!y = j)
⊂ x = y ∧ !x = i ∧ !y = j

The reasoning for (61) is identical and hence omitted. We can now present the inference.
We use [AssignVar] discussed already, as well as the obvious extension of [Abs] to cater
for a vector of names, also called [Abs].

1. x = y ∧ !x = i ∧ !y = j ⊃ (x = y ∧ !x = 2i ∧ !y = j){|!x+!x/!x|} (60)

2. {(x = y∧ !x = 2i∧ !y = j){|!x+!x/!x|}} x := !x+!x {x = y∧ !x = 2i∧ !y = j} (AssignVar)

3. {x = y∧ !x = i∧ !y = j} x := !x+!x {x = y∧ !x = 2i∧ !y = j} (1, 2, Cons)

4. x = y ∧ !x = 2i ∧ !y = j ⊃ (!x=2i∧!y=2 j){|!y+!y/!y|} (61)

5. {(!x=2i∧!y=2 j){|!y+!y/!y|}} y := !y+!y {!x=2i∧!y=2 j} (AssignVar)

6. {x = y∧ !x = 2i∧ !y = j} y := !y+!y {!x=2i∧!y=2 j} (4, 5, Cons)

7. {x = y∧ !x = i∧ !y = j} x := !x+!x ; y := !y+!y {!x=2i∧!y=2 j} (3, 6, Seq)

8. {T} double? :u { ∀x,y.{x = y ∧ !x = i ∧ !y = j}u• (x,y){!x = 2i ∧ !y = 2 j} } (Abs)

Save for unavoidable uses of [Cons], the structure of this derivation follows the syntax
of the programme under investigation. The derivation also suggests how to refine this
programme to make it alias-robust. This is done by “internalising” the condition x = y
as follows.

double!
def= λ(x,y).(if x = y then x :=!x+!x ; y :=!y+!y else x :=!x+!x) (62)

We now infer

{T} double! :u { ∀x,y.{!x = i ∧ !x = j}u• (x,y){!x = 2i ∧ !x = 2 j} } (63)

This judgement indicates that double! is robust with respect to aliasing – it satisfies the
required functional property without stipulating anything about possible aliasing of argu-
ments. The inference follows, using the first few lines of the previous inference. Below in
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Line 11 we set M1
def= x :=!x+!x ; y :=!y+!y and M2

def= x :=!x+!x.

1−7. (As above).

8. x = y ∧ !x = i ∧ !y = j ⊃ (!x = 2i ∧ !y = 2 j){|!x+!x/!x|}

9. (!x = 2i ∧ !y = 2 j){|!x+!x/!x|} x := !x+!x {!x = 2i∧ !y = 2 j} (AssignVar)

10. {x = y ∧ !x = i ∧ !y = j} x := !x+!x {!x = 2i∧ !y = 2 j} (1, 2, Cons)

11. {!x = i ∧ !y = j} if x = y then M1 else M2 {!x = 2i∧ !y = 2 j} (7, 10, If)

12. {T} double! :u { ∀x,y.{!x = i ∧ !y = j}u• (x,y){!x = 2i ∧ !y = 2 j} }

We omit detailing the calculation for Line 8.

8.2 Questionable double (2): Located reasoning

We have seen, in Section 3.4, that we can use a located assertion to obtain a more “precise”
specification for the Questionable Double. In this case we wish to say that no references
apart from those passed as arguments are potentially modified. Hence we derive

{T}double? :u {∀x,y. ({x =y ∧ !x= i ∧ !y= j}u• (x,y){!x=2i ∧ !y=2 j}@xy}@ /0

In the following proof, we derive this assertion using a fully extensional judgement for each
subpart of the programme. For combining two assignments, we use [Seq-I] in Figure 10.

1. {!x= i} x := !x+!x {!x=2i}@x (AssignVar)

2. {!y= j} y := !y+!y {!y=2 j}@y (AssignVar)

3. {!x= i ∧ [!x] !y= j} x := !x+!x ; y := !y+!y {〈!y〉 !x=2i ∧ !y=2 j}@xy (Seq-I)

4. {x =y ∧ !x= i ∧ !y= j} x := !x+!x ; y := !y+!y {(x =y ⊃!x=2i)∧ !y=2 j}@xy (Cons)

5. {x =y ∧ !x= i ∧ !y= j} x := !x+!x ; y := !y+!y {!x=2i∧ !y=2 j}@xy (Invariance)

6. {T}double? :u { ∀x,y. ({x =y∧!x= i∧!y= j}u• (x,y){!x=2i∧!y=2 j}@xy) }@ /0 (Abs)

Line 5 adds x = y to pre/post-conditions. Using the EOI rule [Seq-I] may be considered a
semantic strengthening of the “local reasoning”, as advocated in Separation Logic (Reyn-
olds 2002; O’Hearn et al. 2004). The conclusion discusses this phenomenon in detail.

8.3 Swap

8.3.1 Judgements

Next we verify swap, a programme mentioned in the Introduction, that exchanges the
content of two reference cells. We reproduce its code below.

swap
def= λ(x,y).let z = !x in ( x :=!y ; y := z )

Let us also set (taking the located version of its specification):

Swap(u) def= ∀x.∀y.{!x = i∧!y = j}u• (x,y){!x = j∧!y = i}@xy
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Using this predicate, we wish to establish

{T} swap :u {Swap(u)} @ /0. (64)

8.3.2 Located reasoning

The semantic independence of swap is fully exploited using [Seq-I]. Let A
def= x = y⊃ i = j

below. Note A is stateless

1. {!y = j} x :=!y {!x = j}@x (AssignS)

2. {z = i} y := z {!y = i}@y (AssignS)

3. {!y = j ∧ [!x]z = i} x :=!y ; y := z {〈!y〉 !x = j ∧ !y = i}@xy (1, 2, Seq-I)

4. {!x = i∧!y = j∧ z = i} x :=!y ; y := z {(x = y ⊃!x = j) ∧ !y = i}@xy (3, Cons)

5. {A∧ !x = i∧!y = j∧ z = i} x :=!y;y := z {A∧ (x = y ⊃!x = j) ∧ !y = i}@xy (4, Invar.)

6. {!x = i∧ !y = j∧ z = i} x :=!y ; y := z {!x = j ∧ !y = i}@xy (5, Cons)

7. {!x = i∧!y = j} !x :z {!x = i∧!y = j∧ z = i}@ /0 (Deref)

8. {!x = i∧!y = j} let z = !x in (x :=!y ; y := z) {!x = j∧!y = i}@xy (6, 7, Let)

9. {T} swap :u {Swap(u)}@ /0 (8, Abs)

In Line 6, we used that !x = i∧ !y = i entails A. The rest is immediate.

8.3.3 Reasoning based on traditional methods

For contrast, we now present a derivation of the same specification using the traditional
method a la Morris/Cartwright–Oppen (expressed in the present framework).

1. {(!x = j∧!y = i){|z/!y|}{|!y/!x|}} x :=!y {(!x = j∧!y = i){|z/!y|}}@x (AssignS)

2. {(!x = j∧!y = i){|z/!y|}} y := z {!x = j∧!y = i}@y (AssignS)

3. {(!x = j∧!y = i){|z/!y|}{|!y/!x|}} x :=!y ; y := z {!x = j∧!y = i}@xy (1, 2, Seq)

4. (!x = i∧!y = j∧ z = i) ⊃ (!x = j∧!y = i){|z/!y|}{|!y/!x|} (�)

5. {!x = i∧!y = j∧ z = i} x :=!y ; y := z {!x = j∧!y = i}@xy (3, 4, Cons)

6. {!x = i∧!y = j} !x :z {!x = i∧!y = j∧ z = i}@ /0 (Deref)

7. {!x = i∧!y = j} let z = !x in (x :=!y ; y := z) {!x = j∧!y = i}@xy (5, 6, Let)

8. {T} swap :u {Swap(u)}@ /0 (7, Abs)

Except in Line 4, all inferences are direct from the proof rules. Below we derive (�), starting
from the consequence and reaching the antecedent.

(!x = j∧!y = i){|z/!y|}{|!y/!x|}
≡ (!x = j){|z/!y|}{|!y/!x|}∧ (!y = i){|z/!y|}{|!y/!x|} (Pro. 4 (2))

≡ ((x = y ⊃ z = j) ∧ (x = y ⊃!x = j)){|!y/!x|} ∧ (z = i){|!y/!x|} (S1)
≡ (x = y ⊃ z = j){|!y/!x|} ∧ (x = y ⊃!x = j){|!y/!x|} ∧ (z = i){|!y/!x|} (Pro. 4 (2))

≡ (x = y ⊃ z = j) ∧ (x = y ⊃!x = j{|!y/!x|}) ∧ z = i (Pro. 3)

≡ (x = y ⊃ z = j) ∧ (x = y ⊃!y = j) ∧ z = i (S1)

⊂ !x = i ∧ !y = j ∧ z = i
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This derivation uses Property (S1):

e′ =!e{|e′′/!e2|} ≡ ((e = e2 ∧ e′ = e′′)∨ (e = e2 ∧ e′ =!e))

or, as its special instance e′ =!e{|e′′/!e|} ≡ e′ = e′′, in both cases assuming e and e′ do not
contain dereferences. The proof is immediate from the axioms.

While the traditional reasoning gives a slightly shorter derivation at the level of proof
rules, it involves non-trivial inferences at the assertion level. This is because the traditional
method (or separation-based methods a la Burstall) cannot exploit semantic independence
between two assignments, unlike ours, via [Seq-I].

8.4 Circular references

We next show the reasoning for x :=!!x, the example, appearing in Section 3, that uses
circular data structures. Reproducing the assertion in Section 3, we wish to prove the
following judgement:

{!x = y∧!y = x} x :=!!x {!x = x}.

For the proof we start by converting the pre-condition into a form usable by [AssignVar].
We begin the derivation by noting that

!x = y∧!y = x ⇒ !!x = x

⇒ ∃m.(!!x = m ∧ m = x)

⇒ ∃m.(!!x = m ∧ 〈!x〉m = x)

⇒ ∃m.(m =!!x∧〈!x〉(!x = x∧!x = m))

⇒ !x = x{|!!x/!x|}

From here it is easy to get

1. (!x = y∧!y = x) ⊃ ((!x = x){|!!x/!x|})
2. {(!x = x){|!!x/!x|}} x :=!!x {!x = x}@x (AssignVar)

3. {!x = y∧!y = x} x :=!!x {!x = x}@x (1, 2, Cons)

The next assertion, also already discussed in Section 3, can similarly easily be derived.

{!y = x} x := 〈1,inr(!y)〉{!x = 〈1,inr(x)〉}

8.5 A polymorphic, higher-order procedure: Quicksort

Hoare’s Quicksort is an efficient algorithm for sorting arrays. Apart from recursive calls
to itself, Quicksort calls Partition, a procedure that permutes elements of an array so that
they are divided into two contiguous parts, the left containing elements less than a “pivot
value” pv and the right those greater than pv. The pivot value pv is one of the array
elements that may ideally be their mean value. In the following we specify and derive a full
specification of one instance of the algorithm, directly taken from its well-known C version
(Kernighan & Ritchie 1988). Using indentation for scoping, Figures 12 and 13 present the
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1 µq. λ(a,c,l,r).
2 if l < r then
3 let p’ = partition(a, c, l, r) in
4 q(a, c, l, p’-1);
5 q(a, c, p’+1, r)

Fig. 12. Quicksort with a comparison procedure as a parameter.

1 λ(a,c,l,r).
2 let pv = !a[r] in
3 p := l;
4 i := l;
5 while !i < r
6 if c(!a[!i], pv) then
7 swap( a[!p], a[!i] )
8 p := !p + 1
9 i := !i + 1

10 swap(a[r], a[!p]);
11 !p

Fig. 13. Partitioning algorithm.

code, assuming a generic swapping procedure like that from Section 8.3 being globally
available (we could have passed the swapping routine as a parameter, like we do with the
comparison function c, without significant effect on specification or proof complexity, but
we wanted to show how our logic can deal with either). In these programmes we omit type
annotations for variables, the main ones of which (for both programmes) are

a : X[ ] c : (X×X)⇒Bool l,r : Nat swap : (Ref(X)×Ref(X))⇒Unit

X[ ] is the type of a generic array (details of polymorphic arrays omitted). Quicksort itself
has the function type from the product of these types to Unit. Partition is the same except
that its return type is Nat.

This programme exhibits several features that are interesting from the viewpoint of
capturing and verifying behavioural properties using the present logic.

• Correctness crucially relies on the extensional behaviour of each part: when recurs-
ively calling itself twice in Lines 4 and 5 of Figure 12, it is essential that each call
modifies only the local subarray it is working with, without any overlap. We shall
show how this aspect is transparently reflected in the structures of assertions and
reasoning, realising what O’Hearn and Reynolds called “local reasoning” (Raynolds,
2002; O’Hearn et al. 2004) through the use of logical primitives of general nature
rather than those introduced for that specific purpose.

• The programme is higher-order, receiving as its argument a comparison procedure.
• The programme is fully polymorphic, in the sense that it can sort an array of any

type (as far as a proper comparison procedure is provided).

In the following we shall discuss how these aspects can be treated in the present logic.
Even including a recent formal verification of Quicksort in Coq (Filliâtre & Magaud 1999),
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we believe a rigorous verification of Quicksort’s extensional behaviour with higher-order
procedures and polymorphism is given here for the first time.

8.5.1 Specification

We now present a full specification of Quicksort (For simplicity, partition and swap are
assumed inlined: treating them as external procedures is straightforward).

{T} qsort :u {∀X.Qsort(u)}@ /0. (65)

where we set, omitting types:

Qsort(u) def= ∀abclr.

⎛
⎝
{Eq(ablr)∧Order(c)}

u• (a,c, l,r)
{Perm(ablr)∧Sorted(aclr)}@a[l...r]ip

⎞
⎠ (66)

Here a[l...r]ip is short for a[l], ...,a[r], i, p, all of reference type. The variable b is auxiliary
and is of the same array type as a, denoting an initial copy of a, so we can specify the
change of a in the post-condition is only in the ordering of its elements. Each predicate
used in (66) has the following meaning. For the precondition:

• First, the predicates Eq(ablr) and Perm(ablr) use a distinctness condition on ele-
ments of a as well as b, p and i, which we write Dist. Formally, define

Distinct(e1..en)
def= ∧1�i = j�nei = e j,

then we set

Dist(abpi) def= Distinct( a[0]...a[size(a)−1]b[0]...b[size(b)−1]pi ).

We often write Distab or even just Dist for Distabpi. The reason for including p,i

is that our implementation of partitioning (Figure 13) uses two global variables p,i
for storing indices. That these are distinct from each other and all other relevant
references is vital. In a language with local references (like Yoshida et al., 2007)
these indices would have been made local to the Partitioning algorithm. Then these
distinctness assumption could have been dropped from the specification of Quick-
sort, and inferred from the semantics of local reference generation where needed.

• Eq(ablr) says: distinct arrays a and b coincide in their content in the range from l
to r (with l and r being in the array bound). In addition, it also stipulates freshness
and distinctness of variables p and i. The formal definition of Eq(ablr) is

0 � l,r � size(a) = size(b) ∧ ∀ j.(l � j �r ⊃ !a[ j] =!b[ j]) ∧ Dist.

Note that we never have Eq(aa), so this equality predicate asserts only equality
of array content, while at the same time stipulating distinctness of the underlying
references.

• Order(c) says: c calculates a total order without side effects. Formally, it is the
conjunction of

— ∀xy.(c• (x,y) ↘ T ∨ c• (x,y) ↘ F), and in this assertion “c• (x,y)↘e” stands
for “{T}c • (x,y) = z{z = e}@ /0” (“the comparison terminates and has no side
effects”);
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— ∀xy.(x = y ⊃ (c•(x,y)↘ T∨c•(y,x)↘ T)) (“two distinct elements are always
ordered”); and

— (c• (x,y) ↘ T∧ c• (y,z) ↘ T) ⊃ c• (x,z) ↘ T (“the ordering is transitive”).

The use of this predicate instead of (say) a boolean condition embodies the higher-
order nature of Quicksort.

For the post-condition:

• Perm(ablr) says: entries of a and b in the range from l to r are permutations of
each other in content. It also stipulates the same distinctness condition as Eq(ablr).
Formally:

SPerm(ablr) def= ∃i, j.(l � i, j � r ∧ !a[i] =!b[ j] ∧ !a[ j] =!b[i] ∧
∀h.( (l � h � r ∧ h ∈ {i, j}) ⊃ !a[h] =!b[h]) ) ∧
size(a) = size(b) ∧ Dist(ab)

The result of permuting n times is then given by

Perm(0)(ablr) def= Eq(ablr)

Perm(n+1)(ablr) def= ∃a′.(Perm(n)(aa′lr) ∧ SPerm(a′blr))

Then we define

Perm(ablr) def= ∃n.Perm(n)(ablr).

Note that, as in Eq(ablr), our permutation predicates asserts the full distinction of
all relevant references.

• Sorted(alrc) says: the content of a in the range from l to r are sorted w.r.t. the

total order implemented by c. Formally: Sorted(aclr) def= ∀i, j.(l � i < j � r ⊃ c•
(!a[i], !a[ j]) ↘ T).

Note that this definition uses positive inductive predicates. They can be added to our logic
without problems, and are very convenient for practical reasoning.

So Qsort(u) in (66) as a whole says:

Initially we assume two distinct arrays, a and b, of the same content from
l to r (Eq(ablr)), together with a procedure which realises a total order
(Order(c)). After the programme runs, one array remains unchanged (because
the assertion says it touches only a), and this changed array is such that it is the
permutation of the original one (Perm(ablr)) and that it is well-sorted w.r.t. c
(Sorted(aclr)).

Located assertions play a fundamental role in this specification: for example, it is crucial
to be able to assert that c has no unwanted side effects. In the rest of this section, we present
highlights and key steps of the full derivation of the judgement (65). Straightforward steps
are mostly omitted, as they can be filled in easily, since reasoning follows the syntactic
structure of the algorithm precisely.
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8.5.2 Reasoning (1): Sorting disjoint subarrays

First we focus on Lines 4 and 5 in Figure 12), which sort subarrays by recursive calls. The
reasoning demonstrates how the use of our refined invariance rule offers a quick inference
by combining two local, extensional specifications. Concretely, our aim is to establish

{C1} q(a,c, l, p′ −1) ; q(a,c, p′ +1,r) {C′
1}@a[l...r]ip (67)

where

C1
def= Perm(ablr) ∧ Parted(aclrp′) ∧ Order(c) ∧ ∀ j<k.QsortBounded(q j) ∧ r− l �k

C′
1

def= Perm(ablr)∧Sorted(aclr).

Two newly introduced predicates are illustrated below.
QsortBounded(u j) with j of Nat type is used as an inductive hypothesis for recursion.

It is the same as Qsort(u), given in (66), Page 523, except that it only works for a range no
more than j and that it replaces “Eq(ablr)” in the precondition of (66) with “Perm(ablr)”,
which is necessary for the induction to go through. Formally: QsortBounded(u j) is

∀abclr.0 � r− l � j ⊃

⎛
⎝
{Perm(ablr)∧Order(c)}

u• (a,c, l,r)
{Perm(ablr)∧Sorted(aclr)}@a[l...r]ip

⎞
⎠

Parted(aclrk) says the subarray of a from l to r is partitioned at an intermediate index k
w.r.t. the order defined by c. Formally Parted(aclrk) is given as

⎛
⎝

l �k �r ∧ ∀ j.(l � j �k ⊃ (!a[ j] =!a[k]∨ c• (!a[ j], !a[k])↘T))
∧

∀ j.(k � j �r ⊃ (!a[ j] =!a[k]∨ c• (!a[k], !a[ j])↘T))

⎞
⎠

A key feature of these two recursive calls is that neither modifies/depends on subarrays
written by the other. As mentioned already, this feature allows us to localise reasoning:
the specification and deduction of each part has only to mention local information it is
concerned with. Joining the resulting two specifications is then transparent through the

invariance rule and basic laws of content quantification. Let ẽ2
def= a[l. . .p′ −1]pi and ẽ3

def=
a[p′ +1..r]pi (which are the parts touched by the first/second calls, respectively). We now
derive:

R.1. {C2} q(a,c,l,p′ −1) {C′
2} @ ẽ2

R.2. {C3} q(a,c,p′ +1,r) {C′
3} @ ẽ3

R.3. {C2 ∧ [!ẽ2]C3} q(a,c,l,p′ −1) ; q(a,c,p′ +1,r) {〈!ẽ3〉C′
2 ∧ C′

3}@ ẽ2ẽ3

R.4. C1 ⊃ ∃b′.(([!ẽ3]C2 ∧ C2 ∧ [!ẽ2ẽ3] (C′
2 ∧〈!ẽ2〉C′

3 ⊃ C′
1)))

R.5. {C1} q(a,c,l,p′ −1) ; q(a,c,p′ +1,r) {C′
1}@ ẽ2ẽ3 (Cons-Aux)

https://doi.org/10.1017/S0956796807006417 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006417


526 M. Berger et al.

Line (R.3) uses (R.1-2, Seq-I), the first two (AppS). The derivation uses the following
abbreviations.

C2
def= Eq(ab′l(p′ −1)) ∧ Order(c) ∧ ∀ j<k.QsortBounded(q j)

∧ p′ −1− l <k

C′
2

def= Perm(ab′l(p′ −1)) ∧ Sorted(acl(p′ −1))

C3
def= Eq(ab′(p′+1)r) ∧ Order(c) ∧ ∀ j<k.QsortBounded(q j) ∧

r−(p′+1)<k

C′
3

def= Perm(ab′(p′ +1)r) ∧ Sorted(ac(p′ +1)r)

Note each of C2/C′
2 and C3/C′

3 mentions only the local subarray each call works with. The
auxiliary variable b′ serves as a fresh copy of a immediately before these calls (we cannot
use b since, e.g. Perm(abl(p′ − 1)) does not hold). (R.1–3) are asserted and reasoned
using b′, which (R.4) mediates into the judgement on b, so that (R.5) only mentions b. The
inference uses [Cons-Aux] (Kleyman’s Rule) from Figure 7. In addition, we need another
straightforwardly derived rule:

[AppS] C ⊃ {C}e• (e1..en)=u{C′}@ẽ
{C} e(e1...en) :u {C′}@ ẽ

Using these rules and [Seq-I], (R.1/2/3/5) are immediate. The remaining step is the deriva-
tion of (R.4), the condition for [Cons-Aux].

First-order logic allows the following entailment

C1 ⇔ C1 ∧∃b′.(Eq(ab′lr) ∧ Dist(abpi)) ⇒ ∃b′.D

where the definition of D is next.

D
def=

⎛
⎝

r− l � k ∧ Eq(ab′lr) ∧ Parted(b′clrp′) ∧ Perm(ab′lr) ∧ Perm(ablr)
∧

Order(c) ∧ l � p′ � r ∧ Dist(abpi) ∧ ∀ j < k.QsortBounded(q j)

⎞
⎠

Now clearly

D ⇒ C2 ∧ C3 ⇒ C2 ∧ [!ẽ2]C3,

The former implication is by first-order logic while the latter holds since C-!ẽ2
3 . It is also

the case that

D ⇒ Parted(b′clrp′) ∧ !a[p′] =!b[p′] ∧ Dist(abpi)
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1. C′
2 ∧ C′

3

2. Perm(ab′l(p′ −1)) ∧ Perm(ab′(p′ +1)r) (1)

3. !a[p′] =!b′[p′]

4. Perm(ab′lr) (2, 3)

5. Perm(bb′lr)

6. Perm(ablr) (4, 5)

7. Sorted(acl(p′ −1)) ∧ Sorted(ac(p′ +1)r) (1)

8. Parted(bclrp′)

9. Sorted(aclr) (4, 7, 8)

Hence in fact

(!a[p′] =!b′[p′] ∧ Perm(bb′lr) ∧ Parted(bclrp′)) ⊃ ((C′
2 ∧ C′

3) ⊃C′
1)

which in turn implies

(Dist(abpi) ∧ !a[p′] =!b′[p′] ∧ Perm(bb′lr) ∧ Parted(bclrp′)) ⊃ ((C′
2 ∧ C′

3) ⊃C′
1).

To this tautology we add universal content quantification with respect to ẽ
def= ẽ2ẽ3 to obtain

[!ẽ] (Dist(abpi) ∧ !a[p′]= !b′[p′] ∧ Perm(bb′lr) ∧ Parted(bclrp′)) ⊃ ((C′
2 ∧ C′

3) ⊃C′
1).

But in view of Dist(abpi), all terms in the premise of that last term, are !ẽ-free, hence we
apply Proposition 3.

(Dist(abpi) ∧ !a[p′] =!b′[p′] ∧ Perm(bb′lr) ∧ Parted(bclrp′)) ⊃ [!ẽ] ((C′
2 ∧ C′

3) ⊃C′
1).

Now, with Dist(abpi), C′
2 is !ẽ3-free, so C′

2 and 〈!ẽ3〉C′
2 are in fact equivalent, using (e4,

ea). That means we can refine that last big implication.

(Dist(abpi) ∧ !a[p′] =!b′[p′] ∧ Perm(bb′lr) ∧ Parted(bclrp′)) ⊃ [!ẽ] ((〈!ẽ3〉C′
2 ∧ C′

3) ⊃C′
1).

Combining all this, yields the assertion

C1 ⊃ C2∧[!ẽ2]C3∧[!ẽ] ((〈!ẽ3〉C′
2∧C′

3) ⊃C′
1)

which is (R.4) used above.
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8.5.3 Reasoning (2): Using comparison

Next we focus on the use of a comparison procedure in the while loop in partition,
which is originally passed to partition as an argument. We start with the loop invariant.

Invar
def=

⎛
⎝

Perm(ablr) ∧ Order(c) ∧ l �!p, !i � r ∧ Leq(acl(!p−1)pv)
∧

Geq(ac(!p)(!i−1)pv) ∧ (!p <!i ⊃ c• (!a[!p], pv) ↘ T)

⎞
⎠

Leq(aclrv) (resp. Geq(aclrv)) says the entries from l to r in a are smaller (resp. bigger)
than v. When inside the loop, the values of p and i differ from the invariant slightly, so that

we also make use of Cinloop
def= Invar∧!i < r∧ r−!i = j. The following assertions specify

two cases of the conditional branch.

Cthen
def= Cinloop ∧ c• (!a[!i], pv) ↘ T C¬then

def= Cinloop ∧ c• (!a[!i], pv) ↘ F.

We now present the derivation for the if-branch of the loop, where the comparison pro-
cedure (received as an argument) is used at the conditional branch. Below we assume the
conditional body (“ifbody”) has been verified already and let j to be a freshly chosen
variable of Nat-type.

(Invar∧ r−!i > 0∧ r−!i = j) ⊃

⎛
⎜⎝
{Invar∧ r−!i>0∧ r−!i = j}

c• (!a[!i], pv) = z
{c• (!a[!i], pv) ↘ z∧ Invar∧ r−!i>0∧ r−!i = j}@ /0

⎞
⎟⎠

{Invar∧ r−!i > 0∧ r−!i = j}
c(!a[!i], pv) :z

{c• (!a[!i], pv) ↘ z∧ Invar∧ r−!i > 0∧ r−!i = j}@ /0
(AppSimple)

{Cthen} ifbody {Invar{|!i+1/!i|}∧ r−!i � j)}@a[l...r−1]ip (omitted)

C¬then ⊃ (Invar{|!i+1/!i|}∧ r−!i � j)

{Cinloop}if c(!a[!i], pv) then ifbody
{Invar{|!i+1/!i|}∧ r−!i � j}@a[l...r−1]pi

(IfThen)

Thus reasoning about a conditional branch which involves a call to a received procedure
is no more difficult than treating first-order expressions. The rest of the verification for
partition is mechanical so that we reach the following natural judgement:

{Perm(ablr)∧Order(c)}
partition(a,c, l,r) :p′

{Parted(aclrp′)∧Perm(ablr)∧Order(c)}@a[l..r]pi
.

8.5.4 Reasoning (3): Polymorphism

We are now ready to derive the whole specification of Quicksort (65). As noted, the
algorithm is generic in the type of data being sorted, so we conclude with deriving its
polymorphic specification. We need one additional rule for type abstraction (for further
details of treatment of polymorphism, see Honda & Yoshida (2004). We also list the rule
for “let” which is easily derivable from [Abs] and [App] through the standard encoding.
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Below, ftv(Θ) indicates the type variables in Θ, similarly for ftv(C).

[TAbs] {C}V Γ;∆;α :m {C′} X ∈ ftv(Γ,∆)∪ ftv(C)
{C}V Γ,∆;∀X.α :u {∀X.C′}

[Let] {C} M :x {C0}@ ẽ {C0} N :u {C′}@ ẽ′

{C} let x = M in N :u {C′}@ ẽẽ′

We now present the derivation. For brevity we use the following abbreviations: C�
def=

Perm(ablr)∧Sorted(aclr), B′ def= Perm(ablr)∧Order(c)∧∀ j<k.QsortBounded(q j) ∧
r− l � k, and B

def= B′ ∧ l < r. We also write qsort′ for qsort in page 521 without the
first line (i.e. without µ/λ-abstractions), M for q(a,c, l, p′ −1) ; q(a,c, p′ +1,r).

{B} partition(a,c, l,r) :p′ {Parted(aclrp′)∧B}@a[l..r]pi (Invariance)

{Parted(aclrp′)∧B} M {C�}@a[l...r]ip (R.5)

{B} let p′ = partition(a, l,r,c) in N {C�}@a[l...r]ip (Let)

{B′} qsort′ {C�}@a[l...r]ip (IfThen)

{∀ j < k.QsortBounded(q j)} λ(a,c, l,r).qsort′ :m {QsortBounded(mk)}@ /0 (Abs)

{T} qsort :u {Qsort(u)}@ /0 (Rec, Cons)

{T} qsort :u {∀X.Qsort(u)}@ /0 (TAbs)

This concludes the derivation of a full specification for polymorphic Quicksort.

9 Conclusion

This paper introduced a programme logic for imperative higher-order functions with gen-
eral forms of aliasing, presented its basic theory, and explored its use for specification
and verification through simple but non-trivial examples. Distinguishing features of the
proposed programme logic include a general treatment of imperative higher-order func-
tions and aliasing; provision of structured assertion and reasoning methods for higher-
order behaviour with shared data in the presence of aliasing; and clean extensibility to data
structures. We expect that compositional programme logics, capturing fully the behaviour
of higher-order programmes, will have applications not only in specification and verific-
ation of individual programmes but also in combination with other engineering activities
for safety guarantees of programmes.

The logic is built on our earlier work (Honda et al. 2005), where we introduced a logic
for imperative higher-order functions without aliasing. In Honda et al. (2005), a reference
type in both the programming and assertion languages is never carried by another type,
which leads to the lack of aliasing: operationally, in that work, a procedure never received
or returned (and a reference never stored) references, while logically, equating two distinct
reference names was contradictory. In the present work, we have taken off this restriction.
This leads to substantially richer and more complex programme behaviour, which is met
by a minimal but powerful enrichment in the logic, both in semantics (through introduction
of distinctions) and in syntax (by content quantification). The added machinery allows us
to reason about a general form of assignment, M := N, to treat a large class of mutable
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data structures and to reason about many programmes of practical significance such as
Quicksort, all of which have not been possible in Honda et al. (2005). We conclude the
paper with discussions on remaining topics and related work.

9.1 Dynamic allocation and local references

Apart from aliasing and higher-order behaviours, one of the focal points in reasoning
about (imperative) higher-order functions is new name generation or local references,
as studied by Pitts and Stark (1998). Its clean logical treatment is possible through a
rigorous stratification on top of the present logic. At the level of programming language,
the grammar is extended by new x := M in N with x ∈ fv(M). For its logical treatment, there
are two layers. In one, local references are never allowed to go out of the original scope
(hence they are freshly created and used at each run of a programme or a procedure body,
to be thrown away after termination or return: this is so-called stack-allocated variables). In
this case, we do not have to change the assertion language but only add what corresponds
to the standard proof rule for locally declared variables. Below we present a simpler case
when name comparison is not allowed in the target programming language.

{C-x}N :n {C0} {∃n.(!x = n ∧ [!x]C0)}MΓ;∆·x:Ref(α);β :m {C′-x}
{C} new x := N in MΓ;∆;β :u {C′}

(68)

This rule says that, when inferring for M, we can safely assume that the newly generated x
is distinct from existing reference names, and that the description of the resulting state
and value, C′, should not mention this new reference. Note that the universal content
quantification is naturally introduced at the time of variable declaration: this makes it
possible to reason about the body M assuming x is disjoint from all other references (in
fact, we could have used this rule in Quicksort in Section 8.5, by localising the variable i).

It is notable that the rule above also allows us to treat the standard parameter passing
mechanism in procedural languages such as C and Java through the following simple
translation: a procedure definition “f(x,y) {...}” is transformed into

λ(x′,y′).new x := x′ in new y := y′ in ....

Since x and y are freshly generated, they are never aliased with each other nor with existing
reference names. This aspect is logically captured by (68).

In the fully general form of local references, a newly generated reference can be expor-
ted to the outside of its original scope, reminiscent of scope extrusion in the π-calculus
(Milner et al. 1992), and may outlive the generating procedure, e.g. λn.new x := n in x. A
procedure can now have local state, possibly changing behaviour at each run, reflecting
not only a given argument and global state but also its local state, the latter invisible
to the environment. This leads to greater complexity in behaviour, demanding a further
enrichment in logics. How this can be handled will be explored in Yoshida et al. (2007).

9.2 Related work

A detailed historical survey of the last three decades’ work on programme logics and reas-
oning methods that treat aliasing is beyond the scope of the present paper. Instead we focus
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on some pioneering and directly related Hoare-like programme logics for aliasing. Janssen
and van Emde Boas (1977) first introduce distinctions between reference names and their
content in the assertion method. The assignment rule based on semantic substitution is
discussed by Cartwright and Oppen (1981), Morris (1982b) and Trakhtenbrot et al. (1984).
The work by Cartwright and Oppen (1981) presented a (relative) completeness result
for a language with aliasing and procedures. Morris (1982b) gives extensive reasoning
examples. The work by Cartwright, Oppen and Morris is discussed in more detail below.
Bornat (2000) further explored Morris’ reasoning method. Trakhtenbrot et al. (1984) also
propose an invariance rule reminiscent of ours, as well as using the dereference notation
in the assertion language for the first time. As arrays and other mutable data structures
introduce aliasing between elements, studies of their proof rules such as Gries and Levin
(1980), Luckham and Suzuki (1979) and Apt (1981) contain logical analyses of aliasing
(which goes back to McCarthy, 1962). More recently, Kulczycki et al. (2003) study pos-
sible ways to reason about aliasing induced by call-by-reference procedure calls.

9.2.1 Cartwright and Oppen

Cartwright and Oppen (1978, 1981) show how to use distinctions on reference names
and semantic update as part of Hoare Logic’s standard assertion language. They present
a formal result that decomposes semantic update into reference name (in)equations. They
treat a programming language with multiple assignment, (recursive) first-order procedures
and pointers. Their assertion language uses a specific predicate that says reference names
per se are distinct, rather than having an explicit dereference operator. The underlying
model is inspired by McCarthy’s articulation of imperative computation (McCarthy 1962)
and (Cartwright & Oppen, 1978, 1981) present two related logics.

• First, a logic where the above “distinct” predicate and semantic update are present,
but the programming language has no pointers (hence no aliasing except that coming
from arrays). After observing this semantic update to coincide with syntactic update
in the absence of aliasing, they establish soundness and relative completeness of
their proof rules.

• The second logic extends the first with pointers, at the level of both programmes and
assertions. For assignment !x := e (in our notation), it is observed that the assignment
rule {C{|e/!!x|}}!x := e{C} (again our notation) suffices, but semantic update is
no longer replaceable by a syntactic counterpart. Then a compositional translation
of the semantic update is presented which uses the “distinct” predicate. They also
propose a rule for procedures that allow pointer passing and discuss its soundness
and completeness.

Despite complexity in presentation, their work is a milestone in the treatment of aliasing in
Hoare’s logic, by (1) distinguishing reference names and content, (2) introducing semantic
update in the assertion language, and (3) showing how semantic update can be eliminated
through decomposition into (in)equations of reference names. Note that (3) is fundamental
for keeping compositional proof rules syntactic in principle.

In the Introduction, we already discussed a basic issue of the logic(s) in Cartwright and
Oppen (1978, 1981): while semantic update becomes “syntactic” by decomposition, in
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practice it is hard to carry out real logical calculation. This problem is acknowledged in
Cartwright & Oppen (1978, 1981). Another problem was the lack of structured reasoning
principles about extensional behaviour of aliased programmes Cartwright & Oppen (1978,
1981). Treatment of a higher-order procedures and various data structures (which was
beyond the state of the art at the time) is also left as a future issue. The present work
addresses these issues by clarifying the logical status of semantic update through operators
and integrating them with a standard assertion language.

9.2.2 Morris

Independently, Morris, in a sequence of works (Morris, 1982a, 1982d, 1982c), presented
essentially the same ideas as Cartwright and Oppen, but in a syntactically more tractable
and uniform framework with treatment of general data structures including pointers. His
approach is an elegant extension of Hoare logic based on conditional update. Morris also
distinguishes a reference name and its content, using x ↓ to denote the address of x (which
is symmetric to the pointer notation x ↑ in Pascal). His technical treatment centres on the
conditional expression rather than semantic update. He starts from a notion of conditional
substitution given as follows, assuming x and y are reference names of the same type in a
given programme.

y{|e/x|} def= if x ↓= y ↓ then e else y

Here a term of type Ref(α) denotes its content in the assertion language, hence (in)equality
of names proceeds by taking their addresses. Morris showed, through examples, that his
conditional update is extensible to complex expressions (the corresponding precise ax-
iomatic treatment is first given by Bornat (2000). Morris’s conditional update and its
calculation correspond to the calculation for logical substitution in the present logic.

Morris’ approach is equivalent to Cartwright and Oppen’s in the sense that formulae with
conditional expressions are easily decomposed into those without, using (in)equations on
reference names. Morris’ approach is more syntactic and is presented purely in the setting
of the first-order logic with equality. Morris (1982a, 1982d, 1982c) further extends his
method with axioms for linked lists, and used the resulting framework for verification of a
Schorr-Waite algorithm.

Separation Logic. A different approach to the logical treatment of aliasing, based on
Burstall’s early work, is Separation Logic by Reynolds, O’Hearn and others (Reynolds
2002; O’Hearn et al. 2004). They introduce a novel conjunction ∗ that also stipulates dis-
jointness of memory regions. Separation Logic uses the semantics and rules of Hoare logic
for alias-free stack-allocated variables while introducing alias-sensitive rules for variables
on heaps. We discuss their work in some detail since it contrasts interestingly with ours,
both philosophically and technically. Their logic starts from a resource-aware assignment
rule (Reynolds 2002): {e �→ −} [e] := e′ {e �→ e′}, where e and e′ do not include derefer-
ence of heap variables and “x �→−” stands for ∃i.(x �→ i)”. The rule demands that a memory
cell be available at address e, demonstrating the resource-oriented nature of the logic
(motivated by reasoning for low-level code). Consequently, {T} [e] := [e] {T} is unsound
in their logic. This command corresponds to x := !x in our notation. {T} x :=!x {T} is
trivially sound in original Hoare logic (Hoare 1969) and ours.
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On the basis of these resource-oriented proof rules, Reynolds (2002) and O’Hearn et al.
(2004) propose a variant of the invariance rule.

{C} P {C′} fv(C0)∩modify(P) = /0
{C ∗C0} P {C′ ∗C0}

(69)

The second premise is standard side condition in Hoare logic (modify(P) is the set of all
stack-allocated variables that P may write to). Apart from this side condition, soundness of
this rule hinges on the resource-oriented assignment/dereference rules described above, by
which all the variables (addresses) in the heap that P may write to are explicitly mentioned
in C. Like the standard invariance rule, this rule is intended to serve as an aid for modular
verification of programme correctness.

Separation Logic’s ability to reason about aliased references crucially depends on its
resource-oriented nature, the separating conjunction ∗ and a special predicate �→ to rep-
resent content of memory cells. In contrast, the present work aims at a precise logical
articulation of observational meaning of programmes in the traditions of both Hennessy-
Milner logic (Hennessy & Milner 1985) and Hoare logic (Honda et al. 2006). Another
difference is that our logic aims to make the best of first-order logic with equality to
represent general aliasing situations. These differences come to life, for example, in the
[Invariance] rule of Section 5, which plays a role similar to (69). Our rule relies on purely
compositional reasoning about observable behaviour, which, as examples in the previous
section may suggest, contributes to tractability in reasoning. A concrete derivation may
elucidate the difference, for example the inference below for x := 2; y :=!z through a direct
application of (69) and [Assign, Inv, Seq, Cons].

{x �→ −} x := 2 {x �→ 2}
{y �→ − ∧ z �→ i} y :=!z {y �→ i ∧ z �→ i}
{x �→ − ∗ (y �→ − ∧ z �→ −)} x := 2;y :=!z {x �→ 2 ∗ ∃i.(y �→ i ∧ z �→ i)}

For the same programme, a direct application of our invariance rule [Seq-I] gives

{T} x := 2 {!x = 2}@x (Assign)

{T} y :=!z {!y = !z}@y (Assign)

{T} x := 2;y :=!z {〈!y〉 !x = 2 ∧ !y =!z}@xy (Seq-I)

Reflecting observational nature, the pre-condition simply stays empty. Our inference does
not require x and y to be distinct: 〈!y〉 !x = 2 ∧ !y =!z is equivalent to (x = y ⊃ !x =
2) ∧ !y =!z, which is more general than x �→ 2 ∗ ∃i.(y �→ i ∧ z �→ i). Intuitively this
is because content quantification, here 〈!y〉, offers a more refined form of protection from
sharing/aliasing.

These examples suggest a gain in generality by using the proposed logical framework
for representation of sharing and disjointness of data structures. While C1 ∗C2 is practically
embeddable as ∀x̃.([!ẽ2]C′

1 ∧ [!ẽ1]C′
2), where ẽi exhausts active dereferences of C′

i and
∀x̃.(C′

1 ∗C′
2) is obtained from C1 ∗C2 by moving all quantifiers outside, the examples argue

that the use of write sets in located judgements/assertions offers a more precise descrip-
tion and smooth reasoning. On its observational basis, the present logic may incorporate
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resource-sensitive aspects through separate predicates (e.g. a predicate allocated(e) may
say e of a reference type is allocated).

One example of such interplay, applying the analytical power of the present logic, is
a simplification and generalisation of a refined invariance rule involving procedures by
O’Hearn et al. (2004). Their rule has several side conditions about the behaviour of pro-
grammes, including an operational condition on write effects, and restrictions on the use
of formulae: below we present the corresponding rule in our logic.

C1 !x̃-free {C0} N {C′
0 ∗C1}@ x̃ỹ {C- f ∧ {C0} f • (){C′

0}@ x̃} M :u {C′}@ x̃

{C∧C1} let f = λ().N in M :u {C′ ∧C1}@ x̃ỹ
(70)

Here f should occur in M only in the shape of f () and never under λ-abstraction. This
is easily checkable by typing. The rule says if a programme M uses a procedure f as-
suming that it only alters x̃, and under that condition M only alters the content of x̃, then
if we instantiate f to a real programme and it touches reference names distinct from x̃
but maintains the invariance at those reference names, then instantiating that procedure
maintains the invariance. The condition on f above is needed, for if we store f or place
it under abstraction, the invariance in stored/abstracted behaviour cannot be maintained:
in contrast, in the above case, we can adjust the invariance at the time of instantiation
once and for all. In comparison with the rule in O’Hearn et al. (2004), (70) differs in
that it is purely compositional, i.e. does not demand conditions on behaviours of M and N
outside of judgements. Furthermore our rule does not restrict the use of stored higher-order
procedures etc. in procedure labels not adhering to the above condition.

9.2.3 Further related work.

There are other reasoning methods for programmes with aliasing that are not directly
about compositional programme logics. In this category we find, for example, operational
reasoning methods studied by Mason and Talcott (1991) and Pitts and Stark (1998) (both
also deal with local references). These approaches are complementary and their integration
with logical methods such as ours is an interesting subject for further study.

Aliasing is an essential feature in low-level code and system-level software. Apart from
Separation Logic, there are several recent approaches that address formal safety guarantee
of low-level code addressing higher-order procedures and aliasing in an organised way. An
example of work in this direction is Hamid and Shao (2004), where integration of typed
assembly code (Morrisett et al. 1999) and Floyd-Hoare logic is studied to offer a formal
framework to guarantee expressive safety properties for assembly code with references to
higher-order code. How the present approach may be usable with lower level languages is
currently being investigated.

One issue not discussed here is data hiding: for example, a call putchar(buff,c)
might, from the client’s point of view, affect only the abstract buffer buff. But from the
system’s perspective the buffer implementation and the precise effect description would be
complicated. The problem is that the system’s perspective on putchar is hidden from
the user. With this constraint, is it possible to obtain precise specifications at the user
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level without revealing implementation detail? To achieve a smooth interplay between
specification and hiding, Leino and Nelson (2002) propose abstraction dependencies, a
new construct that allows to specify how the user-level view of effects relates to the
implementation view, but without sacrificing the modularity afforded by hiding. Since the
aliasing problem becomes more complicated with the diverging perspectives on software
introduced by hiding, studying content quantification in this setting is sure to be inter-
esting.

Ahmed et al. (2005) present a framework ensuring type-safety for a higher-order call-
by-value imperative language in the presence of strong update, i.e. the update of a variable
which can change its type. This may be considered an extreme form of aliasing: not only
can we have multiple pointers to a reference, but those pointers can be of different types.
We believe that content quantification can be generalised to allow compositional logical
reasoning even with strong update.

Nanevski et al. (2006) study Hoare Type Theory (HTT), which combines dependent
types and Hoare triples with anchors based on a monadic understanding of computation.
The aim of HTT is to provide an effective general validation framework that unifies stand-
ard static checking techniques (in particular type inference and type checking) with logical
verifications. Their system emphasises clean separation between programme parts that
allow effective validation and parts that involve assertions (represented as types). The
assertion language uses an untyped store, and, through the use of polymorphism, can
represent key idioms of Separation Logic. This allows validation of programmes with
strong updates, but local store is not treated. The interplay of the present assertion-based
approach with HTT is an interesting topic for further study, especially regarding the in-
tegration of static analysis approaches to programme verification and with their assertional
counterparts.

Finally, we have recently shown (Honda et al. 2006) that the logics for pure higher-
order functions and imperative ones without aliasing enjoy strong completeness properties,
including standard relative completeness, and inductive derivability of a characteristic
formula for each programme. The method used in Honda et al. (2006) however does not
directly generalise to aliasing. We leave the question of how to do this open in the present
paper.
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Appendix A

Language Details

A.1 Typing

The typing rules are standard (Pierce 2002) and listed in Figure A1, using sequents Γ � M :
α, which say that M has type α under typing environment Γ.
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[Var] −
Γ,x : α � x : α [Unit] −

Γ � () : Unit
[Bool] −

Γ � b : Bool
[Num] −

Γ � n : Nat
[Loc] −

Γ � l : Γ(l)

[Eq]
Γ � M1,2 : α α comparable

Γ � M1 =M2 : Bool
[Abs] Γ,x :α � M : β

Γ � λxα.M : α⇒β [Rec]Γ,x :α⇒β � λyα.M : α⇒β
Γ � µxα⇒β.λyα.M : α⇒β

[Iso] Γ � M : α α ≈ β
Γ � M : β [App]Γ � M : α⇒β Γ � N : α

Γ � MN : β [If]Γ � M : Bool Γ � Ni : α (i = 1,2)
Γ � if M then N1 else N2 : α

[Inj] Γ � M : αi
Γ � ini(M) : α1+α2

[Case] Γ � M : α1+α2 Γ,xi :αi � Ni : β
Γ � case M of {ini(x

αi
i ).Ni}i∈{1,2} : β

[Pair] Γ � Mi : αi (i = 1,2)
Γ � 〈M1,M2〉 : α1×α2

[Proj] Γ � M : α1 ×α2
Γ � πi(M) : αi (i = 1,2)

[Deref ]Γ � M : Ref(α)
Γ �!M : α [Assign]Γ � M : Ref(α) Γ � N : α

Γ � M := N : Unit

Fig. A1. Typing rules.
A type α is comparable if it is in {Unit,Bool,Nat,Ref(β)}.

A.2 Dynamics

We list the rules that generate the reduction relation. We start with reductions over pro-
grammmes (not configurations) based on the usual reduction rules for call-by-value PCF,
omitting obvious symmetric rules and the rules for first-order operators.

(λx.M)V → M[V/x]

π1(〈V1,V2〉) → V1

case in1(W ) of {ini(xi).Mi}i∈{1,2} → M1[W/x1]

if t then M1 else M2 → M1

(µ f .λg.N)W → N[W/g][µ f .λg.N/ f ]

The rules for assignment and dereference are given next. Below σ[l �→V ] denotes the store
which maps l to V and otherwise agrees with σ. In both rules, we let l ∈ dom(σ).

(!l, σ) → (σ(l), σ)

(l := V, σ) → ((), σ[l �→V ])

Finally the contextual rules are given as follows:

M → M′

(M,σ) → (M′,σ)
(M,σ) → (M′,σ′)

(E[M],σ) → (E[M′],σ′)

where E[ · ] is the left-to-right evaluation context with eager evaluation for first-order operat-
ors, pairs, projection and injection. Evaluation contexts are given by the grammar presented
next.

E[ · ] ::= (E[ · ]M) | (VE[ · ]) | πi(E[ · ]) | ini(E[ · ]) | !E[ · ]
| E[ · ] := M | V := E[ · ] | if E[ · ] then M else N
| case E[ · ] of {ini(xi).Mi}i∈{1,2} | op(Ṽ ,E[ · ],M̃)
| 〈E[ · ],M〉 | 〈V,E[ · ]〉
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We write (M,σ) ⇓ (V,σ′) iff (M,σ) −→∗ (V,σ′), (M,σ) ⇓ iff (M,σ) ⇓ (V,σ′) for some V
and σ′, and (M,σ) ⇑ iff for all n there is a reduction sequence (M,σ) −→n (M′,σ′). Here
−→n is the n-fold relational composition of −→.

To have subject reduction, we need to type stores in addition to programmes. Write
∆ � σ when dom(∆) = dom(σ) = fl(σ) and, moreover, the types of σ match ∆, i.e. for
each x ∈ dom(σ) we have ∆ � σ(l) : α iff ∆(l) = Ref(α). Note dom(σ) = fl(σ) means
locations which occur in the codomain of σ also occur in its domain. We set

∆ � (M,σ) def= ( ∆ � M : α ∧ ∆ � σ )

For example, given M
def=!l := 3 and σ def= {l �→ l′, l′ �→ 2}, we have

l :Ref(Ref(Nat)), l′ :Ref(Nat) � (M,σ)

Note that l :Ref(Ref(Nat)) � M : Unit.

Proposition 7 (subject reduction) Suppose ∆ � M : α and ∆ � (M,σ). Then (M,σ) −→
(M′,σ′) implies ∆ � M′ : α and ∆ � (M′,σ′).

Henceforth we restrict the reduction relation to well-typed configurations, that is whenever
we write (M,σ) −→ (M′,σ′), we assume ∆ � (M,σ) for some ∆.

Appendix B

Syntactic Substitution and Name Capture

In the standard predicate calculus with quantification and/or equality, direct syntactic sub-
stitutions on formulae play a fundamental role in reasoning. Using syntactic substitution
needs care in the present assertion language due to implicit capture of names introduced
by content quantification and evaluation formulae. The following definition extends the
standard notion “e is free for x in C” as found in Mendelson (1987).

Definition 11 We say a term eα is free for xα in C if one of the following clauses holds.

1. e is free for x in e1 = e2.
2. e is free for x in ¬C if it is free for x in C.
3. e is free for x in C1 �C2 with � ∈ {∧,∨,⊃} if it is free for x in C1 and C2.
4. e is free for x in Qy.C with Q ∈ {∀,∃} if e is free for x in C, and, moreover, y ∈ fv(e)

implies x ∈ fv(C).
5. e is free for x in {C1} e1 • e2 = y {C2} if

• e is free for x in C1 and C2,
• e = E[!e′] implies x ∈ fv(C1)∪ fv(C2), and
• if y ∈ fv(e) then x /∈ fv(C1,C2,e1,e2).

6. e is free for x in [!e0]C if

• e is free for x in C; and
• e = E[!e′] such that e′ and e0 having the same type, implies x ∈ fv(C).

7. The case 〈!e0〉C is similar to the last.

In (5, 6) E[·] is a one-holed expression context, we omit the straightforward definition.
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The last two conditions, 5 and 6, concern name capture by content quantification. As we
formalise later, the semantics of evaluation formulae says that dereferences in pre/post-
conditions of evaluation formulae are implicitly universally quantified. Avoiding inappro-
priate name-capture with content quantifiers is similar to the same problem for conven-
tional quantifiers. Consider the following assertion:

C
def= z = 3 ⊃ [!y]z = 3 (B 1)

The assertion is a tautology (i.e. true in any model), saying: if z is 3, then whatever value a
cell named y stores, z is still 3. However the following assertion, resulting from (B 1) when
we apply the substitution [!y/z] naively, is not a tautology (in fact, it is unsatisfiable).

C[!y/z] def= !y = 3 ⊃ [!y] !y = 3. (B 2)

Note !y is not free for z in C due to content quantification on !y. (B 2) says that, if the value
currently stored in y is 3, then any value storable in y coincides with 3, a sheer absurdity.
Thus we should prohibit such substitution being applied to C.

In the standard quantification theory, we can always rename bound variables to avoid
capture of names. In the present case, what we do is to use (standard) existential quantific-
ation to “flush out” all names in dangerous positions. As an example, take C in (B 1). To
safely apply [!y/z] to C, we transform C to the following formula, up to logical equivalence:

C′ def= ∃z′.( (z = 3 ⊃ [!y] z′ = 3) ∧ z = z′ ) (B 3)

Note !y is now free for z in C′. We can now safely perform the substitution:

C′[!y/z] def= ∃z′.( (!y = 3 ⊃ [!y] z′ = 3) ∧ !y = z′ ) (B 4)

which is again a tautology (as it should be). By carrying out such transformations, we can
always assume e to be free for x in a formula whenever we wish to apply [e/x] to C. Thus
we stipulate:

Convention 4 Whenever we write C[e/x] in statements and judgements, we assume e is
free for x in C, unless otherwise specified.

In practical examples, the transformation as given above is rarely necessary.
Assignment requires an alternative form of substitution, written C[e/!x], in which e is

substituted for each “free” dereference !x occurring in C. Clearly, this substitution should
not affect the occurrences of !x in the pre/post-conditions of evaluation formulae. For
example, let C be given by

C
def= !x = 3 ∧ ∀i.{!x = i} f • (){!x = i+1} (B 5)

which can be, for example, a post-condition of the assignment command x := 3, in which
case the corresponding pre-condition is given as C[3/!x] (in the proof rule for assignment
we present later). But if we perform the substitution literally, the result of substitution
becomes 3 = 3 ∧ ∀i.{3 = i} f • (){3 = i + 1}, which is a sheer nonsense. Intuitively, the
evaluation formula in C:

∀i.{!x = i} f • (){!x = i+1} (B 6)
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says that whenever we invoke the function f , the reference x is incremented, whatever
the stored value would be at the time of invocation. This is because the intention of a
substitution for a dereference is always to have the current content of x be equated with e,
not hypothetical ones in pre/post-conditions of evaluation formulae. Therefore, we expect
the substitution to work in the following way:

C[3/!x] def= 3 = 3 ∧ ∀i.{!x = i} f • (){!x = i+1}, (B 7)

which now makes sense. For clarity, we give the definition of the substitution as:

({C} e1 • e2 = z {C′})[e/!x] def= {C} (e1[e/!x])• (e2[e/!x]) = z {C′}

and others are defined homomorphically. Since [e/!x] as defined above never affects pre/post-
conditions of evaluation formulae, the capture of names we need to consider is that induced
by (content) quantifiers. Based on this observation, we can extend the idea of Definition 11
above to dereferences as follows.

Definition 12 We say a term eα is free for (!x)α in C if one of the following clauses is
inductively satisfied:

1. e is free for !x in e1 = e2.
2. e is free for !x in ¬C if it is free for !x in C.
3. e is free for !x in C1 �C2 with � ∈ {∧,∨,⊃} if it is free for !x in both C1 and C2.
4. e is free for !x in Qyβ.C with Q ∈ {∀,∃} if β = Ref(α), e is free for !x in C and

moreover, y ∈ fv(e) implies x ∈ fv(C).
5. e is free for !x in {C1} e1 • e2 = y {C2} if e is free for !x in C1 and C2.
6. e is free for !x in 〈!(yβ)〉C if β = Ref(α), e is free for !x in C and moreover, y ∈ fv(e)

implies x ∈ fv(C). Likewise for universal content quantification.

Thus we only need the standard alpha-conversion to avoid the capture of names for this
type of substitutions. We stipulate:

Convention 5 Whenever we write C[e/!x], we assume e is free for !x in C.

Appendix C

Some Proofs for Propositions 1, 2 and 3

Proving Propositions 1 and 2 is straightforward. As an illustration we derive Proposi-
tion 1.2 as follows:

1. [!x]C ⊃ (([!x]C ⊃C′) ⊃C′) (Tautology)

2. [!x] ([!x]C ⊃ (([!x]C ⊃C′) ⊃C′)) (CGen, 1)

3. [!x]C ⊃ [!x] (([!x]C ⊃C′) ⊃C′) (CA1, 2)

4. [!x]C ⊃C (CA2)

5. [!x]C ⊃ [!x] ((C ⊃C′) ⊃C′) (3, 4)
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As second example derivation is that for Proposition 2.2:

1. [!y] [!x]C ⊃C (CA2)

2. [!y] ([!y] [!x]C ⊃C) (CGen, 1)

3. [!y] [!x]C ⊃ [!y]C (CA1, 2)

4. [!x] ([!y] [!x]C ⊃ [!y]C) (CGen, 3)

5. [!y] [!x]C ⊃ [!x] [!y]C (CA1, 4)

For Proposition 2.11 we reason as follows.

[!x]C ≡ [!x]C∧〈!x〉 !x = m
⊃ 〈!x〉(C∧!x = m) dual of Proposition. 1.6
≡ ∀m.〈!x〉(C∧!x = m)∧∃m.m = e
⊃ ∃m.(〈!x〉(C∧!x = m)∧m = e)
≡ C{|!e/!x|}

The second statement is the dual of the first statement. For Proposition 2.10 one direction
of the third statement, with m fresh:

C ≡ ∃m.(C ∧ !x = m ∧ !x = m)
⊃ ∃m.(〈!x〉(C ∧ !x = m) ∧ !x = m)
def= C{|!x/!x|}.

For the other direction, again with m fresh:

C{|!x/!x|} ≡ C{|!x/!x|} Prop. 2.9
def= ∀m.(m =!x ⊃ [!x] (!x = m ⊃C))
⊃ ∀m.(m =!x ⊃ !x = m ⊃C)
⊃ C

Next we derive Prop. 3.1: recall that C1 is !x-free, i.e. C1 ≡ [!x]C1 ≡ 〈!x〉C1.

[!x] (C1 ∨C2) ≡ [!x] ([!x]C1 ∨C2)

⊃ 〈!x〉 [!x]C1 ∨ [!x]C2 Prop. 1.6

≡ 〈!x〉C1 ∨ [!x]C2 Prop. 2.3

≡ C1 ∨ [!x]C2

For the reverse direction:

C1 ∨ [!x]C2 ≡ [!x]C1 ∨ [!x]C2 ⊃ [!x] (C1 ∨ C2)

Here the implication on the right follows by Prop. 1.5. In both cases we use the fact that
[!x]C1 and 〈!x〉C1 are !x-free. Both universal and existential characterisations of !x-freedom
are needed to obtain the desired logical equivalence. Prop. 3.2 and Prop. 3.3 follow easily
from Prop. 3.1.
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We continue with derivations for Prop. 3. For Prop. 3.4:

[!x] (C∧ (C ⊃C′)) ≡ [!x]C ∧ [!x] (¬C∨C′) Prop. 1.3
⊃ [!x]C ∧ (〈!x〉¬C∨ [!x]C′) Prop. 1.6
≡ ([!x]C∧〈!x〉¬C)∨ ([!x]C∧ [!x]C′)
≡ F∨ ([!x]C∧ [!x]C′)
⊃ [!x]C′

For Prop. 3.5, observing any tautology is !x-free:

[!x]C ≡ [!x]C ∧ (C ⊃C′)
≡ [!x]C ∧ [!x] (C ⊃C′)
≡ [!x] (C ∧ (C ⊃C′)) Prop. 1.3
⊃ [!x]C′

Prop. 3.6 and Prop. 3.7 are easy and omitted. For Prop. 3.8:

C{|e/!x|} def= ∃m.(〈!x〉(C∧!x = m)∧m = e)
≡ 〈!x〉(C∧!x = e)
≡ 〈!x〉(C[e/!x]∧!x = e)
≡ C[e/!x] ∧ 〈!x〉 !x = e by α-statelessness
≡ C[e/!x]

Appendix D

Soundness

The appendix presents proofs for Theorems 2 and 3. The proofs follow those in Honda et
al. (2005). Section 5.

Convention 6 We write (ξ ·m : M, σ) ⇓ (ξ ·m :V, σ′) |= C when (Mξ, σ) ⇓ (V, σ′) and
(ξ ·m :V, σ′) |= C for some V and σ′.

We begin with [Var].

(ξ, σ) |= C[x/u] ⇒ (ξ ·u :ξ(x), σ) |= C∧u = x
⇒ (ξ ·u :x, σ) ⇓ (ξ ·u :ξ(x), σ) |= C

The proof for [Const] is the essentially the same as above and omitted. For [Op] we show
the case n = 2 for readability.

(ξ, σ) |= C[x/u] ∧ |= {C}M1 :m1 {C1} ∧ |= {C1}M2 :m2 {C2[op(m1m2)/u]}
⇒ (ξ ·m1 : M1, σ) ⇓ (ξ ·m1 :V1, σ1) ∧

(ξ ·m1 :V1 ·m2 :M2, σ1) ⇓ (ξ ·m1 :V1 ·m2 :V2, σ′) |= C2 ∧ u = op(m1m2)
⇒ (ξ ·u :op(M1M2), σ) ⇓ (ξ ·u :op(V1V2), σ′) |= C2

The general n-ary case is similar.
The proof for [Deref] is next.

(ξ,σ) |= C ⇒ (ξ ·m : M,σ) ⇓ (ξ ·m : l,σ′) |= C′[!m/u]
⇒ (ξ ·u : !M,σ) ⇓ (ξ ·u : σ′(l)) |= C′
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The first inference is by the (IH). The second inference is valid because dereferencing does
not change the store, noting the freshness of m.

The proof for [Assign] proceeds as follows, writing ξ0 for ξ ·m : l.

(ξ, σ) |= C ⇒ (ξ ·m : M,σ) ⇓ (ξ0 ·m : l,σ0) |= C0

⇒ (ξ ·u : M := N,σ) ⇓ (ξ0 ·u : (),σ′[l �→V ]) |= C′

where the first two inferences are by (IH) and the last line is by the logical equivalence
between two judgements, M |= C′{|n/!m|} and M[[[m]]M �→ [[n]]M |= C′ (cf. Sections 3.3).

For [Abs] let ξ′ def= ξ · x : V below.

(ξ,σ) |= A
⇒ ∀V.( (ξ · x : V, σ) |= A∧C ⊃ (Mξ′, σ) ⇓ (ξ′ ·m : W, σ′) |= C′ )
⇒ ∀V.((ξ · x : V, σ) |= A∧C ⊃ ((λx.M)ξV, σ) ⇓ (ξ′ ·m : W, σ′) |= C′)
⇒ (ξ ·u : (λx.M)ξ, σ) |= ∀x.{C}u• x = m{C′}

For [App] we infer, with ξ0 = ξ ·m : V :

(ξ, σ) |= C
⇒ (Mξ, σ) ⇓ (ξ ·m : V, σ0) |= C0

⇒ (Nξ0, σ0) ⇓ (ξ0 ·n : W, σ1) |= C1 ∧{C1}m•n = u{C′}
⇒ (VW, σ1) ⇓u (ξ ·u : U, σ′) |= C′

⇒ ((MN)ξ, σ) ⇓u (ξ ·u : U, σ′) |= C′

[Pair] and [Proj] are similar.

For the conditional [If ] we set b1
def= t and b2

def= f .

(ξ, σ) |= C ∧ |= {C}M :m {C0} ∧ |= {C0[bi/m]}Ni :u {C′} (i ∈ {1,2})
⇒ (ξ·m :M, σ) ⇓ (ξ ·m :bi, σi) |= C0 ∧ (ξ·u :Ni, σi) ⇓ (ξ ·u :vi, σ′) |= C′

⇒ (ξ·u :ifM thenN1 elseN2, σ) ⇓ (ξ ·u :W, σ′) |= C′

Here, in the target of the first implication, i is either 1 or 2. Above we used the fact that
closed boolean values are exhausted by t and f .

The proof for [Case] is equally straightforward.

(ξ, σ) |= C ∧ |= {C}M :m {C0} ∧ |= {C0[ini(x)/m]}Ni :u {C} (i ∈ {1,2})
⇒ (ξ·m :M, σ) ⇓ (ξ ·m :ini(vi), σi) |= C0 ∧

(ξ · x :vi ·u :Ni, σi) ⇓ (ξ · x :vi ·u :vi, σ′) |= C′ (i∈{1,2})
⇒ (ξ·u :caseM of {ini(x).Ni}i∈{1,2}, σ) ⇓ (ξ ·u :W, σ′) |= C′

Above we used the fact that closed values of sum types are of the form ini(V ) with
i ∈ {1,2}. Again, in the target of the first implication, i is either 1 or 2. Next we turn
to the structural rules, given in their located variant in Figure 7. Most of these rules, in the
variant without effects, are proved as the corresponding rules in Honda et al. (2005). The
proofs of rules that make essential use of effects, [Invariance], [Weak] and [Thinning], are
straightforward, and hence omitted. [Cons-Aux] is derived by [Rename], [Cons], [Aux∃]
and [Invariance]. Finally [Rename] holds easily as all relevant operations on models
and the reduction relation is closed under injective renaming. Hence we have established
Theorem 2.
Next we establish Theorem 3. We begin with the axiomatisation of content quantification
in Figure 2. We need some preliminary facts.
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Lemma 3 M[x �→V ] �x:α M′ if and only if ∃M′′.(M � M′′ ∧M′′[x �→V ] = M′).

Proof
Straightforward from the definitions. �

Proposition 8 1. Assume ad(e) ⊆ {ẽ}: if M |= x = ei for all i, then [[e]]M[x �→V ] =
[[e]]M[x �→W ].

2. Assume ad(C) ⊆ {ẽ}: no occurrence of a free name in ei is bound in C, and M |=
x = ei for all i. Then for all V,W, M[x �→V ] |= C iff M[x �→W ] |= C.

3. If C is syntactically !x-free, then for all V,W, M[x �→V ] |= C iff M[x �→W ] |= C.

Proof
We show (1) by induction on e. The only interesting case in e =!e′. By the induction

hypothesis (IH) [[e′]]M[x �→V ] = [[e′]]M[x �→W ]
def= l. But M |= x = ei, hence [[x]]M = l, hence

with M = (ξ,σ):

σ[x �→V ](l) = σ(l) = σ[x �→W ](l).

But then
[[e]]M[x �→V ] = σ[x �→V ](l) = σ[x �→W ](l). = [[e]]M[x �→W ].

For (2) we use induction on C. The case e = e′ is by (1) and C �C′ as well as ¬C are
immediate by the (IH). For [!e]C 〈!e〉C the result follows directly from the semantics
of content quantification. For the case ∀xα.C we assume x = y, the case x = y being
straightforward. Then

M[x �→V ] |= ∀yα.C ≡ ∀M′.(M[x �→V ] �y:α M′ ⊃ M′ |= C)

≡ ∀M′.((∃M′′.M �y:α M′′,M′′[x �→V ] = M′) ⊃ M′ |= C) (D 1)

≡ ∀M′′.(M �y:α M′′ ⊃ M′′[x �→V ] |= C)

≡ ∀M′′.(M �y:α M′′ ⊃ M′′[x �→W ] |= C) (D 2)

≡ ∀M′.((∃M′′.M �y:α M′′,M′′[x �→W ] = M′) ⊃ M′ |= C)

≡ ∀M′.(M[x �→W ] �y:α M′ ⊃ M′ |= C) (D 3)

≡ M[x �→W ] |= ∀yα.C

Here (D 2) is by (IH) and (D 1, D 3) are by Lemma 3.
Finally, the case of evaluation formulae is immediate because for those, the satisfaction

relation ‘throws away’ the store part of a model, hence annihilates the effect of update
operations [x �→V ] etc.

For (3) we proceed by induction on the generation of the assertion C-!x. The case of
outermost content quantification is immediate. For C∧ x = ẽ where ad(C) ⊆ {ẽ} and no
name is inappropriately bound we assume

M[x �→V ] |= C∧ x = ẽ.

Hence clearly also M |= x = ẽ. Thus we can apply (2) to obtain

M[x �→V ] |= C iff M[x �→W ] |= C

which immediately implies the required result. Closure under content quantification and
propositional connectives is immediate. Finally, the case of prefixing with quantifiers is
also by the (IH) and almost identical to the corresponding case in (2). �
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We now begin the proof of Theorem 3.

Lemma 4 The axioms and the rule in Figure 2 are sound.

Proof
For (CA1) we argue as follows

M |= [!x] (C-!x
1 ⊃C2) ≡ ∀V.M[x �→V ] |= (C1 ⊃C2)

≡ ∀V.(M[x �→V ] |= C1 ⊃ M[x �→V ] |= C2)

≡ M |= C1 ⊃ ∀V.M[x �→V ] |= C2 (Prop. 8.3)

≡ M |= C1 ⊃ M |= [!x]C2

≡ M |= (C1 ⊃ [!x]C2)

(CA2) has the following justification.

M |= [!x]C ≡ ∀V.M[x �→V ] |= C

⊃≡ M |= C

For (CA3) we derive

M |= [!x] (!x = m ⊃C) ≡ ∀V.(M[x �→V ] |=!x = m ⊃C)
≡ ∀V.(M[x �→V ] |=!x = m ⊃ M[x �→V ] |= C)
≡ M[x �→ [[m]]M] |= C
≡ M[x �→ [[m]]M] |= C∧!x = m
≡ M |= 〈!x〉C∧!x = m

Finally, for the inference rule (CGen), we proceed by induction on the length of the proof.
All the axioms are syntactically !x-free, and none of the proof rules of first-order logic
changes this fact, hence the result is again a consequence of Proposition 8.3. This concludes
the proof for the axioms and the rule in Figure 2. �

Next are the axioms for the evaluation formula in Figure 3.

Lemma 5 All axioms in Figure 3 are sound.

Proof
Proofs for Axioms (e1) to (e7) are like the corresponding derivations in Honda et al. (2005).
Axiom (e8) is immediately from the semantics of evaluation formulae. �

Lemmas 5 and 4 together verify Theorem 3.
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