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Correspondence

Thermal convection in ice sheets

In recent correspondence to the Journal, Hughes (2012)
asked whether ice-stream tributaries are the surface expres-
sion of thermal convection rolls in the Antarctic ice sheet.
The short answer to this is ‘no’. Ice sheets exhibit a slow
viscous shallow flow which is driven by the shear stresses
induced by the surface slope of the flow. Convection is a
motion whose stresses are generated by horizontal thermal
gradients through the action of buoyancy. On the face of it,

they have nothing to do with each other.

This is the instinctive reaction of the dynamicist, and
Hughes’s proposal, preceded by his earlier enquiries
(Hughes, 1976, 2009), has not attracted much attention.
The texts of Cuffey and Paterson (2010) and Hooke (2005)
provide no index reference to convection. The web of
science lists fourteen citations of the article by Hughes
(1976), of which four are by Hughes himself, eight deal with
ice on the satellite moons of the outer planets,* one by John
Shaw concerns drumlins and megaflutes, and one is a
review by Bob Thomas. It seems fair to say that Hughes’s
hypothesis concerning the Antarctic ice sheet has not

received much interest from theoreticians.

Hughes suggests two field experiments to test his
hypothesis that thermal convection occurs in the Antarctic.
The purpose of my correspondence is to propose a third test:
nature can only do what the laws of physics allow it to do,
and so Hughes’s hypothesis should first be judged on
whether it is theoretically possible. | will provide a theoret-
ical framework within which one may examine his proposal,
though | stop short of providing a full numerical investi-

gation of the resulting mathematical model.

The first port of call is an estimate of the Rayleigh

number, defined by

aATpgd?
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where « is the (volumetric) coefficient of thermal expansion,
AT is the temperature difference between base and surface,
p is the ice density reference value, g is the acceleration due
to gravity, d is the ice depth, n is the ice viscosity, and & is

the thermal diffusivity. If we suppose Glen’s law

1

"= TAT

with n=3, A=24x10"2Pa=3s~! at 0°C (Cuffey and
Paterson, 2010) and a typical basal shear stress of 0.5 x 10°
Pa for Antarctic inland ice, then 7 ~ 0.83 x 10'* Pas. We use
values a ~ 1.5 x 1074 K=" (Butkovich, 1959, p.12; Cuffey
and Paterson, 2010; note these authors quote the linear
coefficient, which must be multiplied by 3 to obtain the usual
volumetric coefficient), p ~ 0.9 x 10°kgm=3, g ~ 9.8 ms
k~10"°m*s™!, d =3000m and AT ~50K. Our first

*Convection is thought to occur on some of the Galilean satellites of Jupiter
(Reynolds and Cassen, 1979), and possibly the Saturnian moons (Ellsworth
and Schubert, 1983), with most recent attention being on the Jovian moon
Europa (Pappalardo and others, 1998; Ruiz, 2010), but this is essentially
mantle convection, and the setting is quite different to that considered here.
TFor information on the formulation and solution of problems in the theory of
thermal convection, reference may be made to Fowler (2011, ch.8) or

Bercovici (2009).
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surprise is that the resultant estimate for the Rayleigh number
is Ra~ 2.2 x 10, which is enough to support convection
(which typically sets in for Raz 103). Conditions elsewhere
are less favourable. In a Siple Coast (Antarctica) ice stream, if
we take 7 =10*Pa, d = 1000m, AT ~ 20K, the resultant
estimate is only Ra ~ 13. We therefore focus on these ‘inland
ice’ parameter values.

However, the situation in an ice sheet is a little different.
The basic flow is a sloping flow (i.e. one whose basic motion
is due to a downslope gravitational component), and, as
Hughes points out, in this case convection sets in as rolls
whose axes are aligned with the direction of the basic flow
(Hart, 1971). However, Hart’s case is fundamentally differ-
ent, since the sloping flow itself is driven by the temperature
difference; in an ice sheet, this is not the case.

We can thus ask, is the buoyancy term large enough to
cause convection in an ice sheet? We can initially frame this
question within the context of a two-dimensional ice-sheet
flow in the coordinates (x, z), in which the reduced pressure
(i.e. with cryostatic component subtracted) is p, and the
deviatoric components of the shear stress are 711 and 743. As
normal in fluid mechanics, the pressure is minus one-third of
the trace of the stress tensor. We assume the density is

p=pol[l —a(T = To)], (3)
and we write
T—To=ATSH, (4)

where AT is the prescribed temperature difference. The
momentum equations are scaled as in Fowler (2011, p. 631),
and this leads to the dimensionless equations

T13,z = Sx +€2(px - TH,X)/

pz:7—13,x_7-11,z+R9/ (5)

in which the lettered subscripts denote partial derivatives
(with respect to x or z), and where the ‘Rayleigh’ number is

ozAT. (6)

22
Typical values of the aspect ratio are e ~ 1.9 x 1073, if
d =3000m, [ = 1600m, while the buoyancy number

R =

B=aAT ~0.75x 1072, (7)
so R ~ 2100. The approximate solution of Eqn (5) is just
S
p =~ —R/ 0dz, (8)
z

where z = s is the top surface, but although this is large, it
has little effect because the corresponding approximate form
of Eqn (5)1 is

A sy — Ba%/z 0dz, (9)

and the buoyancy-induced stresses are small because
B <« 1. So from a continental scale perspective, convection
is absent.

SMALL-SCALE CONVECTION

To be fair, Hughes (2012) is not advocating convection on
the continental scale indicated above, but rather is
advocating small-scale convective rolls aligned with
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kilometres-wide fine-scale tributaries that are revealed in the
astonishing figure 1 of his paper (but which, incidentally, are
not visible in the presumably lower-resolution image at the
web page he cites,* and which latter has also been
published (Rignot and others, 2011)). This is analogous to
the proposition by Parsons and McKenzie (1978) that
small-scale convection in the form of rolls aligned with
lithospheric plate motion might occur, and account for
anomalous heat transport in tectonic plates.

In order to consider this possibility, we repeat our scaling
argument. We are now in three dimensions, with the x axis
pointing downstream, y across stream and z upwards.
Corresponding deviatoric stresses are 711, 712, etc., and the
velocity components are u downstream and v = (v, w)
transverse. With a constant viscosity 7, we scale the
equations, written in terms of the reduced pressure

P=p—pog(s—2z), (10)
by choosing
X~ // y/Z ~ d/ T12,T13 ~ pOng/
K d*e K (11)
P,T11,722,733,7'23N%, uNPogn PV

where d is the depth scale, [ is the downstream length scale
and

e=- (12)

The choice of scale for the downstream stresses 712, 743 is
motivated by the appropriate balance of the downstream
shear stress gradient with the gravity-induced cryostatic
pressure gradient; the scales for the transverse stresses are
just the usual choice when studying thermal convection. The
resulting equations take the form

V-v+Peu, =0,
V-V0+P€'U9x:v29+€29xm

T =2Vy, T3 =Vt W, T3 =2w,
2 2
T12=Uy+P—er, T13=UZ+P—eWx, (13)

2

€
T13,z = Sx — T12,y + %(P—F T +T33),s

Py =T,y + 723, + Petiz,
P, =73,y + 733, +Ral + Pers y,

where V = (9, 9,), and the Peclet number is defined by

- €2pogd3 )
==
¢ and Ra are as defined in Eqns (12) and (1). The
equations are written out in full to highlight the role of the
Peclet number, which is not usually present in studies of
convection.

Using the values d =3000m, /= 1600km (consistent
with a choice 7 ~ ppgde =5 x 10*Pa), n = 0.83 x 10'* Pa
s, we find

Pe (14)

e~19x1072, Ra~22x10* Pe~97.  (15)

*While the data on which the Hughes figure is based have a resolution of
300 m, the spacing between the flowlines in the figure is artificial, and the
data contain no critical spatial scale of 5 km, as suggested by Hughes
(personal communication from E. Rignot, 2012).

"Note incidentally that at higher Rayleigh numbers, the magnitude of v
increases, rendering the assumption of relatively small Pe more accurate.
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If we ignore the small £? terms, then the equations may be
simplified to

Viu=s,,

P, =V,

P, = V?w + Rab, (16)
V.v=—-Peu,

v -V = V?0 — Pe ub,

and the free surface is given by the mass conservation law,

ds 9 [° [
E‘Fal UdZ—*%\/O vdz, (17)

where we assume a flat base, z = 0. It is simplest to analyse
Eqn (16) if we suppose Pe is small. This is apparently not the
case, although we may note that, allowing for the depend-
ence of n on 7 o d?> and €  d, we have Pe « d°, and even
a change to d = 2000 m changes Pe to 0.25. We will discuss
the model on the basis that Pe is small, and hope that the
discussion can extend to the case Pex O(1). If Pe is small,
the transverse flow problem reduces to a standard Rayleigh-
Bénard convection problem, for which the onset of
convection occurs at Rax 1100. This suggests that, in fact,
transverse convective rolls are quite possible, and that
Hughes's suggestion has merit."

REALITY CHECKS

However, the behaviour of ice is more complicated than
this. Most importantly, the viscosity of ice depends on
temperature, such that a 50° change in temperature causes
a three order of magnitude change in viscosity. This has the
effect of hindering convection. If we adopt as viscosity the
value at the (warm) base (as we have already done), then we
can assess the critical value of Ra from figure 4 of Solomatov
(1995). That figure provides a regime diagram for tempera-
ture-dependent viscous convection, with axes being the
Rayleigh number computed using the basal viscosity, Ra,
and the multiplicative viscosity contrast An from the base to
the top surface. The diagram is based on a series of
numerical computations, and provides an approximate
graph marking the onset of convection. It is this information
that we use. For a viscosity contrast of An ~ 103, the critical
(basal viscosity) Rayleigh number is ~4 x10%. This suggests
that in fact convection is unlikely, as our estimate of Ra is
about half this. (In fact, Solomatov’s result is for free-slip
boundary conditions, but this may be roughly appropriate
for wet-based ice. A no-slip condition would increase the
critical value further.)

A further complication is that ice viscosity also depends
on stress, with Glen’s law having exponent n = 3. The alert
reader will observe that Solomatov also gives results for this
case, and his figure 8 (whose comportment is similar to that
of his figure 4) suggests that for n = 3, the critical Ra drops to
200! Is Hughes vindicated? No. In the stress-dependent
viscosity case, there is no predefined stress, and thus no
predefined basal viscosity. Examination of Solomatov’s
definition of Ra in his eqn (51) shows that

Ra

_ aATpogd® (2] (%), (18)

e rd?
where 7 is the stress used in defining the stress-dependent
basal viscosity. Thus we regain the previous definition if we
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choose the stress

=1 (19)
Together with a basal viscosity given by Eqn (2), this allows
us to find 7, which turns out to be 2.6 x 10'® Pas, whence in
fact Ra ~ 14, still well short of the onset of convection (at
Ra = 200).

Actually, this stress-dependent calculation is inappro-
priate, because in our case there is a known background
(downslope) stress, which indeed determines the viscosity.
The transverse stress scale in Eqn (11), assuming
n=0.83 x 10" Pas, is ~9Pa, which is much less than the
downslope stress. Consequently, the effect of this back-
ground stress, which varies linearly from the base to the
surface, is to provide a further vertical variation of viscosity
which enhances that due to temperature. The nonlinear
calculation in Egn (18), and the data in Solomatov’s figure 8,
are only relevant where the stresses are those due entirely to
convection, which is not the present situation. Therefore we
revert to his figure 4, with the added variation that the stress
variation from base to surface causes a further enhancement
of the viscosity variation.

Halfway to the surface the shear stress is half its basal
value, and the viscosity has increased by a factor of four due
to this. With a similar change to the surface (an under-
estimate), the viscosity increase due to stress is a factor of 16,
suggesting an effective value of Ay~ 1.6 x 10*. Consulting
Solomatov’s figure 4 again, we find that this places the
critical basal Rayleigh number at ~10°. Even with a basal
stress of 5 x 10% Pa, Ra is still less than this value.

Hughes’s (2012) proposition of small-scale convection in
ice sheets does not appear as unlikely as might at first be
thought. However, my conclusion is that it is unlikely; at
least, based on the simplest physical considerations. And if it
does occur, the temperature and stress dependence of ice
viscosity are likely to limit transverse circulation to the more
fluid ice near the base, because, as realized by Hughes
(1976) himself, the convection will be of the ‘stagnant lid’
type (Solomatov and Moresi, 1997), because the upper cold
thermal boundary layer is very viscous and prone to stagnate.

But the real killer for this idea is that, if transverse
convection does occur, it is at best marginal. That is to say,
our estimates of Ra are such that, even if the critical value for
convection is exceeded, the resulting dimensionless con-
vective velocities (in Eqn (16)) will be of O(1), corresponding
(see Eqn (11)) to dimensional transverse velocities of the
order of 5 ~ 1072 ma~". The corresponding transverse shear
stresses will be of the order of 7 ~ 77 ~ 9 Pa. The elevation
difference which such stresses support across a convective
roll follows from a balance between the excess cryostatic
pressure due to the uplift and the deviatoric transverse shear
stresses generated, and is Ah ~ - ~ 1 mm. Convection will

have no significant effect on the ice motion or topography.
The ice would follow a gentle corkscrew motion as it flows off
the continent. Ata speed of 100 ma~", it takes 10 000 years to
travel 1000 km downslope. In that time, a transverse velocity
of 1072 ma~" causes a transverse displacement of 100 m.
Hughes'’s image of the convective tendrils of the Antarctic
ice sheet is very persuasive of the phenomenon he
hypothesizes. But | do not believe this image is an accurate
representation of reality, at least as presently understood, nor
am | adequately persuaded that the convective rolls which
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he hypothesizes, even if they occur, will have any significant
imprint on the ice-sheet dynamics.
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