TORSION POINTS OF DRINFELD MODULES

SUNGHAN BAE AND JAKYUNG KOO

ABSTRACT. The finiteness of K-rational torsion points of a Drinfeld module of rank 2 over a locally compact complete field K with a discrete valuation is proved.

0. Introduction. In this note we show the finiteness of the K-rational torsion points of a Drinfeld module of rank 2 over K where K is a locally compact complete field with a discrete valuation. Then as an easy consequence, we get the finiteness of torsion points when K is a global function field, which is the analogue of the finiteness of the K-rational torsion points of an elliptic curve defined over a number field K.

Throughout the paper we fix the following notations unless otherwise stated;

 $A = \mathbb{F}_q[T], \ q \text{ a power of a prime } p.$ K = complete field with respect to a discrete valuation v. R = the ring of integers of K m = the maximal ideal of R $\pi = \text{a uniformizer of } m.$ k = R/m, the residue field.

1. **Preliminary.** In this note we mean by a Drinfeld module over K a Drinfeld A-module of rank 2, unless otherwise stated. Thus a Drinfeld module ϕ is completely determined by

$$\phi_T = T + g\tau + \Delta \tau^2.$$

We call Δ the *discriminant* of ϕ and $j = g^{q+1}/\Delta$ the *j-invariant* of ϕ . We say that a Drinfeld module ϕ is *minimal* if $v(\Delta)$ is minimal among the Drinfeld modules which are *K*-isomorphic to ϕ with *g* and Δ integral. Then it can be easily verified that a Drinfeld module ϕ is minimal if and only if ϕ is defined over *R* and $v(\Delta) < q^2 - 1$ or v(g) < q - 1.

For a Drinfeld module ϕ over R, we denote by $\overline{\phi}$ the reduction of ϕ modulo \mathfrak{m} . We say that ϕ has *nondegenerate reduction* if $\overline{\phi}$ is a Drinfeld module of rank 2 over k. For a Drinfeld module ϕ over K, we say that ϕ has *stable* reduction if there exists a Drinfeld module ϕ' over R which is K-isomorphic to ϕ so that $\overline{\phi}'$ is a Drinfeld module of rank at least 1, ϕ has *good* reduction if, in addition, rank of $\overline{\phi}'$ is 2, and *bad* reduction otherwise.

The first author was partially supported by Non Directed Research Fund, Korea Research Foundation 1993. The second author was partially supported by KOSEF Research Grant 91-08-00-07.

Received by the editors October 18, 1993.

AMS subject classification: 11G09.

⁽c) Canadian Mathematical Society 1995.

We say that ϕ has *potential stable* (resp. *good*) reduction if there exists a finite extension L of K so that ϕ , as a Drinfeld module over L, has stable (resp. good) reduction. The followings are easy to verify.

PROPOSITION 1.1. Let ϕ be a Drinfeld module over K.

- a) Let *L* be an unramified extension of *K*. Then the reduction type of ϕ over *K* is the same as the reduction type of ϕ over *L*.
- b) ϕ always has potential stable reduction.

PROPOSITION 1.2. A Drinfeld module ϕ over K has potential good reduction if and only if its *j*-invariant is integral.

For a Drinfeld module ϕ we set

$$\operatorname{Tor}_{\phi}(K) = \{x \in K : \phi_a(x) = 0 \text{ for some } a \in A\}$$
$$\operatorname{Tor}_{\phi}(R) = \{x \in R : \phi_a(x) = 0 \text{ for some } a \in A\}$$
$$\operatorname{Tor}_{\phi}(\mathfrak{m}) = \{x \in \mathfrak{m} : \phi_a(x) = 0 \text{ for some } a \in A\}.$$

When ϕ is defined over R, then $\text{Tor}_{\phi}(R)$ and $\text{Tor}_{\phi}(\mathfrak{m})$ are also A-modules via ϕ . From now on we always assume that ϕ is defined over R unless otherwise stated. Put

$$\mathfrak{p} = \operatorname{Ker}(A \longrightarrow R \longrightarrow R/\mathfrak{m}).$$

We say that p is the *divisorial characteristic* of k. Let $\overline{\phi}$ denote the reduction of ϕ with respect to m.

PROPOSITION 1.3. Let ϕ be a Drinfeld module over *R* and $a \in A$ be relatively prime to \mathfrak{p} .

(a) $\operatorname{Tor}_{\phi}(\mathfrak{m})$ has no nontrivial points of order a.

(b) The reduction map

$$\operatorname{Tor}_{\phi}(R)[a] \longrightarrow \operatorname{Tor}_{\tilde{\phi}}(k)[a]$$

is an isomorphism, where $\operatorname{Tor}_{\phi}(R)[a] = \{x \in R : \phi_a(x) = 0\}.$

PROOF. Let $x \in \mathfrak{m}$ be nonzero. Then v(x) > 0. Since ϕ is defined over R,

$$v(\phi_a(x)) = v(ax) = v(x) > 0.$$

Therefore $\phi_a(x) \neq 0$ and this proves a), and b) follows from a) and Hensel's lemma.

REMARK 1.4. In view of Proposition 1.3 one might think $\text{Tor}_{\phi}(K)$, $\text{Tor}_{\phi}(R)$ and $\text{Tor}_{\phi}(\mathfrak{m})$ as the analogues of E(K), $E_0(K)$ and $E_1(K)$, respectively, of an elliptic curve E over K. For precise definitions of E(K), $E_0(K)$ and $E_1(K)$, we refer to [S], Chapter VII. However, unlike the classical case the reduction map

$$\operatorname{Tor}_{\phi}(R) \longrightarrow \operatorname{Tor}_{\phi}(k)$$

is not surjective. For example, let $R = \mathbb{F}_q[T]$ and ϕ is defined by

$$\phi_T = T - \tau + \tau^2.$$

Then all the elements of $k = \mathbb{F}_q$ are the roots of $\overline{\phi_T} = 0$, but there exist no nonzero torsion points of ϕ in R.

If ϕ has nondegenerate reduction, then it is easy to see that $\operatorname{Tor}_{\phi}(K) = \operatorname{Tor}_{\phi}(R) \subset R$. Let Q be an irreducible polynomial in A. Define the Tate-module

$$T_Q(\phi) = \lim \left(\operatorname{Tor}_{\phi}(K)[Q^n] \right)$$

Let $G = \text{Gal}(K^{\text{sep}}/K)$ where K^{sep} is the separable closure of K, and let I be the inertia group. For a set Σ on which G acts, we say that Σ is *unramified* if the action of the inertia group I on Σ is trivial.

PROPOSITION 1.5. Suppose that ϕ has good reduction. a) Let $a \in A$ be relatively prime to \mathfrak{p} . Then $\operatorname{Tor}_{\phi}(K^{\operatorname{sep}})[a]$ is unramified.

b) Let $Q \notin \mathfrak{p}$ be an irreducible polynomial. Then $T_O(\phi)$ is unramified.

PROOF. Exactly the same method as in the classical case gives the result. (See [S] VII, §4).

REMARK 1.6. The converse of Proposition 1.5 is also true. For its proof we refer to [T].

2. Finiteness of Torsion points. In this section we will prove that $\text{Tor}_{\phi}(K)$ is finite if *K* is locally compact. Let p(T) be the monic generator of \mathfrak{p} with d = deg(p(T)).

LEMMA 2.1. For any A-algebra S, let ϕ be a Drinfeld module over S. Write

$$\phi_{p(T)} = p(T) + a_1\tau + \dots + a_{2d}\tau^{2d}.$$

Then p(T) divides a_i in S for $1 \le i \le d - 1$.

PROOF. Let $S = A[g, \Delta]$ with g and Δ two independent transcendental elements over A. Then we know from the general theory that p(T) divides a_i in $S = \mathbb{F}_q[g, \Delta, T]$ for $1 \le i < d$. Then by specializing g and Δ , we get the result.

LEMMA 2.2. Let ϕ be a Drinfeld module over R. If a nonzero element x in $\text{Tor}_{\phi}(\mathfrak{m})$ has the exact order $p(T)^n$, $n \ge 1$, then

$$v(x) \leq \frac{v(p(T))}{q^{dn} - q^{d(n-1)}}.$$

PROOF. We will use the induction on *n*. By Lemma 2.1

$$\phi_{p(T)}(X) = p(T)Xf(X) + X^{q^a}g(X),$$

with deg $f(X) \le q^{d-1} - 1$ and f(0) = 1. Suppose that $\phi_{p(T)}(x) = 0$ with $x \in \mathfrak{m} - \{0\}$. Then

$$0 = p(T)xf(x) + x^{q^a}g(x).$$

Thus

$$v(p(T)xf(x)) = v(x^{q^d}g(x)) \ge v(x^{q^d})$$

Since f(0) = 1 and v(x) > 0, v(p(T)xf(x)) = v(p(T)x). Therefore

$$v(x) \le \frac{v(p(T))}{q^d - 1}.$$

Now suppose that *x* has the exact order $p(T)^{n+1}$. Then

$$v(\phi_{p(T)}(x)) = v(p(T)xf(x) + x^{q^d}g(x))$$

$$\geq \min\{v(p(T)x), v(x^{q^d})\} > 0$$

Thus $\phi_{p(T)}(x)$ lies in m and has exact order $p(T)^n$. Hence by the induction hypothesis,

$$v\left(\phi_{p(T)}(x)\right) \leq \frac{v\left(p(T)\right)}{q^{dn} - q^{d(n-1)}}$$

Therefore

$$\frac{v(p(T))}{q^{dn}-q^{d(n-1)}} \geq \min\{v(p(T)x), v(x^{q^d})\}.$$

But we cannot have

$$\frac{v(p(T))}{q^{dn}-q^{d(n-1)}} \ge v(p(T)x).$$

,

Hence

$$\frac{v(p(T))}{q^{dn}-q^{d(n-1)}} \ge v(x^{q^d}) = q^d v(x).$$

So we get

$$v(x) \leq \frac{v(p(T))}{q^{d(n+1)} - q^{dn}}.$$

EXAMPLE. Let ϕ be a Drinfeld module defined over A. Let x be a nonzero element in A of order a. If a is not a prime power, then x is a unit in A_p for every prime ideal p of A by Proposition 1.3. If $a = p(T)^n$, then

$$\frac{v(p(T))}{q^{dn} - q^{d(n-1)}} < 1$$

unless deg p(T) = 1, q = 2 and n = 1. Thus, for $q \ge 3$,

$$\operatorname{Tor}_{\phi}(A) \subset (A^* = \mathbb{F}_q^*) \cup \{0\} = \mathbb{F}_q.$$

Let a(T) be a polynomial in A with degree d. Then we can write

$$\phi_{a(T)}(X) = \sum_{\ell=0}^{2d} a_{\ell} X^{q^{\ell}}.$$

Then a_{ℓ} is a polynomial in g and Δ with coefficients in A.

6

PROPOSITION 2.3. If ϕ has integral *j*-invariant, then for $x \in \text{Tor}_{\phi}(K)$

$$v(x) \ge -\frac{v(\Delta)}{q^2 - 1}.$$

In particular, if ϕ is minimal, then

$$\operatorname{Tor}_{\phi}(K) = \operatorname{Tor}_{\phi}(R).$$

PROOF. The case that j = 0 is easy, thus we assume that $j \neq 0$. Suppose that $x \neq 0$ is a root of $\phi_{a(T)}(x) = 0$ for some a(T) in A. Then it is easy to see that

$$v(a_{\ell}) \ge \frac{q^{\ell} - 1}{q^2 - 1} v(\Delta)$$
 if ℓ is even

and

$$v(a_{\ell}) \ge \frac{q^{\ell} - q}{q^2 - 1} v(\Delta) + v(g)$$
 if ℓ is odd

because $0 \le v(j) = v(\frac{g^{q+1}}{\Delta}) = (q+1)v(g) - v(\Delta)$. Also

$$v(a_{2d}) = \frac{q^{2d} - 1}{q^2 - 1} v(\Delta).$$

Because $\sum a_{\ell} x^{q^{\ell}} = 0$, we must have

$$v(a_{2d}x^{q^d}) \ge v(a_\ell x^{q^\ell})$$

for some ℓ . Hence from the above discussion, if ℓ is even,

$$\frac{q^{2d}-1}{q^2-1}v(\Delta) + q^{2d}v(x) \ge \frac{q^{\ell}-1}{q^2-1}v(\Delta) + q^{\ell}v(x)$$

and if ℓ is odd

$$\frac{q^{2d}-1}{q^2-1}v(\Delta) + q^{2d}v(x) \ge \frac{q^{\ell}-q}{q^2-1}v(\Delta) + v(g) + q^{\ell}v(x).$$

For ℓ even,

$$v(x) \ge -\frac{1}{q^2 - 1}v(\Delta).$$

For ℓ odd,

$$\begin{aligned} v(x) &\geq -\frac{1}{q^2 - 1} v(\Delta) + \frac{v(g)}{q^{2d} - q^{\ell}} - \frac{q - 1}{(q^{2d} - q^{\ell})(q^2 - 1)} v(\Delta) \\ &= -\frac{1}{q^2 - 1} v(\Delta) + \frac{1}{q^{2d} - q^{\ell}} \left(v(g) - \frac{v(\Delta)}{q + 1} \right) \\ &\geq -\frac{1}{q^2 - 1} v(\Delta). \end{aligned}$$

If ϕ is minimal, then $v(\Delta) < q^2 - 1$, and so $v(x) \ge 0$.

PROPOSITION 2.4. Suppose that ϕ has nonintegral *j*-invariant. If $x \in K$ is a torsion point of ϕ , then

$$v(x) \ge -\frac{1}{q^2-q}v(\Delta).$$

PROOF. Let $x \neq 0$ be a root of $\phi_{a(T)}(X) = 0$. As in the proof of Proposition 2.3, put

$$\phi_{a(T)}(X) = \sum_{\ell=0}^{2d} a_{\ell} X^{q^{\ell}}.$$

Since $v(\Delta) > (q+1)v(g) > 0$, we have

$$v(a_\ell) \ge \frac{q^\ell - 1}{q - 1} v(g) \ge 0 \quad \text{if } \ell \le d$$

and

$$v(a_{\ell}) \ge \frac{q^{2i} - 1}{q^2 - 1} v(\Delta) + q^{2i} \frac{q^{d-i} - 1}{q - 1} v(g) \ge \frac{q^{2i} - 1}{q^2 - 1} v(\Delta) \quad \text{if } \ell = d + i, \ i < d.$$

But $v(a_{2d}) = \frac{q^{2d}-1}{q^2-1}v(\Delta)$. Hence

$$\frac{q^{2d} - 1}{q^2 - 1} v(\Delta) + q^{2d} v(x) \ge v(a_\ell) + q^\ell v(x).$$

for some $0 \le \ell \le 2d$. Thus

$$v(x) \ge -\frac{q^{2d}-1}{(q^{2d}-q^{\ell})(q^2-1)}v(\Delta)$$
 if $\ell \le d$,

and

$$v(x) \ge -\frac{q^{2d} - q^{2i}}{(q^{2d} - q^{d+i})(q^2 - 1)}v(\Delta)$$
 if $\ell = d + i, i < d$.

However, it is not hard to see that

$$\frac{q^{2d}-1}{q^{2d}-q^{\ell}} \le \frac{q+1}{q}$$
 and $\frac{q^{2d}-q^{2i}}{q^{2d}-q^{d+i}} \le \frac{q+1}{q}$,

if $l \leq d$ and i < d. Therefore we get the result.

THEOREM 2.5. Suppose that a Drinfeld module ϕ has a nonintegral torsion point. Let x be a torsion element with minimal v(x). Then $q^2 - q$ divides $v(\Delta) - v(g)$ and

$$v(x) = \frac{1}{q^2 - q} \Big(v(g) - v(\Delta) \Big).$$

PROOF. Assume first that ϕ is minimal. Note that $(q + 1)v(g) < v(\Delta)$ by Proposition 2.3, and v(g) < q - 1 since ϕ is minimal. Choose *x* in Tor_{ϕ}(*K*) with minimal v(x) so that

$$v(x) \le v(\phi_T(x)) = v(x) + v(T + gx^{q-1} + \Delta x^{q^2-1}).$$

Assume first that $v(x) \ge \frac{-v(\Delta)}{q^2-1}$, then $v(\Delta x^{q^2-1}) \ge 0$. Thus

ı

$$v(g) + (q-1)v(x) = v(gx^{q-1}) \ge 0,$$

since v(x) is minimal. Then $v(x) \ge \frac{-v(g)}{q-1} > -1$. Hence $v(x) \ge 0$, which is a contradiction. Therefore we must have $v(\Delta x^{q^2-1}) < 0$. Since v(x) is minimal, we must have

$$v(\Delta x^{q^2-1}) = v(gx^{q-1}).$$

Hence

$$v(x) = \frac{1}{q^2 - q} \Big(v(g) - v(\Delta) \Big),$$

as desired. Now suppose that ϕ is not necessarily minimal. Pick $c \in K$ such that $\phi' = c\phi c^{-1}$ is minimal. Let g', Δ' correspond to ϕ' . Then

$$v(g') = v(g) + (1 - q)v(c)$$

and

$$v(\Delta') = v(\Delta) + (1 - q^2)v(c).$$

For a torsion element x of ϕ with minimal valuation cx is a torsion element of ϕ' with minimal valuation. Thus

$$\begin{aligned} v(cx) &= \frac{1}{q^2 - q} \Big(v(g') - v(\Delta') \Big) \\ &= \frac{1}{q^2 - q} \Big(v(g) + (1 - q)v(c) - v(\Delta) - (1 - q^2)v(c) \Big). \end{aligned}$$

Hence

$$v(x) = \frac{1}{q^2 - q} \Big(v(g) - v(\Delta) \Big).$$

THEOREM 2.6. Suppose that K is locally compact. Then for a Drinfeld module ϕ over K, $\text{Tor}_{\phi}(K)$ is finite.

PROOF. We may assume that ϕ is minimal. By Proposition 2.4 $\operatorname{Tor}_{\phi}(K)$ is a bounded set. Hence $\overline{\operatorname{Tor}_{\phi}(K)}$, the closure of $\operatorname{Tor}_{\phi}(K)$, is compact in K. Since m is both open and closed in K, $\overline{\operatorname{Tor}_{\phi}(\mathfrak{m})} = \overline{\operatorname{Tor}_{\phi}(K)} \cap \mathfrak{m}$ is open in $\overline{\operatorname{Tor}_{\phi}(K)}$. But Proposition 1.3 and Lemma 2.2 imply that $\operatorname{Tor}_{\phi}(\mathfrak{m})$ is a finite set. Hence

$$\operatorname{Tor}_{\phi}(\mathfrak{m}) = \operatorname{Tor}_{\phi}(\mathfrak{m}).$$

Thus $\overline{\operatorname{Tor}_{\phi}(K)}/\operatorname{Tor}_{\phi}(\mathfrak{m}) = \overline{\operatorname{Tor}_{\phi}(K)}/\overline{\operatorname{Tor}_{\phi}(\mathfrak{m})}$ is a finite set. Hence $\operatorname{Tor}_{\phi}(K)$ is a finite set.

COROLLARY. Let ϕ be a Drinfeld module defined over a global function field K. Then $\text{Tor}_{\phi}(K)$ is finite.

REMARK 2.7. In the proof of Theorem 2.6, we showed that $\operatorname{Tor}_{\phi}(K)/\operatorname{Tor}_{\phi}(\mathfrak{m})$ is finite, thus $\operatorname{Tor}_{\phi}(K)/\operatorname{Tor}_{\phi}(R)$ is finite. One can ask

'Is $\operatorname{Tor}_{\phi}(K)/\operatorname{Tor}_{\phi}(R)$ finite without the assumption that K is locally compact?' This might be thought as an analogous statement of the theorem of Kodaira and Neron ([S], Chapter VII, Theorem 6.1) in view of Remark 1.4.

REFERENCES

[H] D. Hayes, Explicit Class Field Theory in Global Functions Fields, Studies in Algebra and Number Theory, (ed. G. C. Rota), Academic Press, New York, 1979.

[S] J. Silvermann, *The Arithmetic of Elliptic Curves*, Graduate Texts in Math. 106, Springer-Verlag, New York, Berlin, Heidelberg, 1986.

[T] T. Takahashi, Good Reduction of Elliptic Modules, J. Math. Soc. Japan 34(1982), 475-487.

Department of Mathematics KAIST Taejon, 305-701 Korea