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Summary

We study a class of genetic models in which a quantitative trait determined by several additive loci

is subject to temporally fluctuating selection. Selection on the trait is assumed to be stabilizing but

with an optimum that varies periodically and might be perturbed stochastically. The population

mates at random, is infinitely large and has discrete generations. We pursue a statistical and

numerical approach, covering a wide range of ecological and genetic parameters, to determine the

potential of fluctuating environments to maintain quantitative genetic variation. Whereas, in

contrast to some recent claims, this potential seems to be rather limited in the absence of recurrent

mutation, fluctuating environments might, in combination with it, often generate high levels of

additive genetic variation. We investigate how the genetic variation maintained depends on the

ecological parameters and on the underlying genetics.

1. Introduction

Populations inhabit environments that are not uni-

form but that might be structured and variable in time

or space. Most individuals within a local sub-

population will experience similar environmental

conditions that change on time scales shorter than a

generation and within the range of movement of

individuals. However, there is also temporal variation

on time scales longer than one generation and

variation between different patches of habitat. Such

macro-environmental variation might have a pro-

found influence on the genetic composition of a

population by inflicting changing selective pressures

that will promote evolutionary response. In this article,

we investigate some of the evolutionary consequences

of environments that fluctuate between generations.

The causes of such fluctuations might range from

changes in the abiotic environment to variation in the

density of other, ecologically relevant, species, but

they enter the model only indirectly through the shape

and time dependence of the assumed fitness function.

It has long been known that ‘a mere series of

changes in the direction of selection may be enough to

* Corresponding author. e-mail : reinhard.buerger!univie.ac.at

secure polymorphism’ (Haldane & Jayakar, 1963) but

the extent to which temporarily varying selection can

maintain genetic variation in a population seems to be

largely unknown. Quantitatively, this problem seems

not to be settled even for a single diallelic locus. If

selection changes periodically then a simple sufficient

condition for the maintenance of a protected poly-

morphism (typically not an equilibrium but a periodic

solution) at a single diallelic locus is that the geometric

mean fitness of both homozygotes (averaged over a

full selection cycle) will be lower than the cor-

responding fitness of the heterozygote. Such condi-

tions have been found for complete dominance

(Haldane & Jayakar, 1963; Hoekstra, 1975; see

Appendix i for a brief summary). A complete

characterization of the limiting behaviour has been

obtained only for very simple models of cyclical

selection (e.g. Karlin & Liberman, 1974; Nagylaki,

1975). In general, diallelic one-locus systems under

cyclical selection can show multiple stable (periodic)

equilibria (see Appendix iii). Kirzhner et al. (1995)

showed that so-called supercycles can exist in one-

locus models with four alleles and cyclical selection of

period two (i.e. cycles with a period much (hundreds

of times) longer than the selection cycle). Hence, even

in one-locus systems, there is little hope for establishing
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general estimates of the genetic variance that can be

maintained under periodic selection.

Sufficient conditions for a protected polymorphism

have also been derived for an arbitrary deterministic

sequence of selection coefficients. They are related to

overdominance in terms of certain ‘gliding’ geometric

averages of fitnesses, but the situation is delicate

(Cornette, 1981 ; Nagylaki, 1992 (pp. 65–71)).

Roughly speaking, the single-locus results show that

some form of overdominance in the geometric

averages (over appropriate time spans) of fitnesses will

often ensure the maintenance of genetic variation, or

one or the other allele might be fixed, but this can be

a very slow process (Hoekstra, 1975).

In a series of papers, Kirzhner and colleagues

investigated the possibility of maintaining genetic

polymorphism in multilocus models under cyclical

selection. They derived general conditions for the

stability of polymorphisms in two-locus models of

cyclical selection (Kirzhner et al., 1996). For instance,

a globally stable polymorphism is only possible if the

geometric mean fitnesses (averaged over a full selection

cycle) of the double homozygotes are lower than the

geometric mean fitnesses of the respective single

heterozygotes and of the double heterozygotes. How-

ever, locally stable polymorphisms are possible even if

all double homozygotes have higher geometric mean

fitnesses than all other genotypes. Most interestingly,

they found that simple periodic changes can lead to

extremely complex dynamic behaviour of the gamete

frequencies, such as chaos-like attractors or super-

cycles. Such complex limiting behaviour was shown to

occur in two-locus models of strong cyclical selection

with very short periods, such as only two seasons (e.g.

Kirzhner et al., 1995), and in quantitative genetic

models in which the trait is determined by two (Korol

et al., 1996) to six (Kirzhner et al., 1996, 1998) loci and

is under stabilizing selection with a periodically

moving optimum. Kirzhner and colleagues promoted

the hypothesis that cyclic environmental change might

be an important factor in maintaining genetic poly-

morphism (Korol et al., 1996; Kirzhner et al., 1998).

They also showed that non-additive gene interaction

might relax the conditions needed for protected

polymorphisms (Kirzhner et al., 1998). For brief

summaries of empirical studies of cyclical and

fluctuating selection, refer to Korol et al. (1996) and

Kondrashov & Yampolsky (1996a). In this empirical

literature, there are indications (but little conclusive

evidence) of an association between the temporal

environmental heterogeneity and the amount of

genetic variation. One of the reasons for this lack of

evidence might be the difficulties encountered in

measuring (temporally varying) selection.

Because the selection cycles in the investigations of

Kirzhner and colleagues are typically very short (two

to four generations), their results seem to contradict

the results of Kondrashov & Yampolsky (1996a) and

Bu$ rger (1999) for a very similar model. These authors

found that, with a periodically moving optimum, high

levels of genetic variation can be maintained, but only

if the period is long (at least 20–50 generations) and

the amplitude is larger than the width of the fitness

function. For periods of 20 generations or fewer,

neither Kondrashov & Yampolsky (1996a) nor Bu$ rger

(1999) found a detectable increase in genetic variation.

This work differs from that of Kirzhner and colleagues

in as far as in the model population sizes are finite,

many loci contribute to the trait (between 16 and 100),

recurrent mutation occurs, stabilizing selection is not

as strong and amplitudes are generally smaller. The

extent to which the high levels of genetic variation

maintained in the models of Kondrashov and

Yampolski, and of Bu$ rger depend on the presence of

recurrent mutation has not been investigated.

Random temporal variation in fitness has also been

studied. For a single diallelic locus, Karlin & Liberman

(1974) derived conditions under which fixation of an

allele almost never occurs, or under which fixation is

a stochastically locally stable phenomenon (i.e. one

that occurs with high probability if the allele is rare).

These are related to the above mentioned conditions :

for instance, fixation of an allele almost never occurs

if the expected logarithmic fitnesses of its homozygotes

are lower than the corresponding fitnesses of the

heterozygotes. However, biologically, this condition is

not sufficient to ensure a protected polymorphism

because the allele can temporarily become so rare that

it will be lost in a finite population; for similar

phenomena in non-periodic deterministic sequences

of selection coefficients, see Cornette (1981) and

Nagylaki (1992). A comprehensive treatment of a

class of models with randomly fluctuating fitnesses

that can be analysed by means of diffusion ap-

proximation can be found in Gillespie (1991).

Although these models are designed to study mol-

ecular evolution, they share much with some standard

quantitative-genetic models. In summary, with stoch-

astically fluctuating fitnesses, genetic variation can be

maintained in situations in which this would be

impossible for constant fitnesses that coincide with the

respective expectations; in particular models, much

variation can be maintained.

For quantitative-genetic models in which the pos-

ition of the optimum fluctuates randomly across

generations without autocorrelation (e.g. so that the

position of the optimum in each generation is drawn

from a normal distribution), no or little increase of

variance occurs relative to mutation-stabilizing selec-

tion balance with a resting optimum. This has been

shown on the basis of various approximations (Lande,

1977; Turelli, 1988) and by computer simulations

(Bu$ rger, 1999). However, in such models, maintenance

of genetic variation is not impossible in the absence of
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mutation (Gillespie & Turelli, 1989; see also Zonta &

Jayakar, 1988, for a special two-locus model). If the

position of the optimum changes with positive serial

correlation then the mean fitness of a population can

be increased by an increasing genetic variance,

suggesting that this kind of temporal variation in

fitness has the potential to increase genetic variation,

provided that the genetic system is flexible enough

(Slatkin & Lande, 1976; Charlesworth, 1993; Lande

& Shannon, 1996). All these studies assume discrete,

nonoverlapping generations. For a model of an age-

structured population with discrete (overlapping)

generations, Ellner (1996) showed that fluctuating

selection per se can maintain genetic variation if the

variance of the fluctuations is sufficiently large. In his

model, individuals in different age classes might have

been exposed to different selective pressures because

selection acts only on newborns. Also, the number of

individuals in each stage is constant with density-

dependent recruitment, implying a kind of soft

selection.

In this article, we explore the potential of fluctuating

selection to maintain genetic variation in quantitative

traits in the absence and presence of recurrent

mutation. The diploid population has discrete non-

overlapping generations, is infinitely large and mates

randomly. The trait is under stabilizing selection with

an optimum that changes periodically, with or without

random distortions, and is determined by up to six

diallelic loci. For a given set of ‘ecological ’ parameters

(strength of stabilizing selection, period and amplitude

of the cycle, amount of stochasticity), a given number

of loci and a given mutation rate, the recursion

relations are iterated for many randomly chosen sets

of genetic parameters (allelic effects and recombi-

nation rates) until stationarity is reached. The

quantities of interest are then measured. In this way,

the average asymptotic geometric mean fitness, the

average asymptotic genetic variance and so on are

obtained for each set of parameters. In the absence of

mutation, we find that almost any such fluctuating

selection reduces the genetic variance of a trait relative

to that under a resting optimum. Recurrent mutation,

however, even if very weak, can radically alter this

and lead to several interesting phenomena.

2. General model

We consider a quantitative character that is controlled

additively by n diallelic loci in an infinite, randomly

mating diploid population. The contribution of one

allele at each locus l is 0, and the contribution of the

other allele (β
l
) is a random number between 0 and 1.

We assume that the minimum and maximum geno-

typic values are always 0 and 1, respectively. Therefore,

the actual contribution by the second allele at locus l

(α
l
) is scaled to be 0±5 β

l
}Σn

k="
β
k
. This implies that

the genotypic value of the total heterozygote is always

0±5 and that the average allelic effect among the n loci

controlling the trait is α- ¯1}2n. This normalization

has the advantage that the strength of selection on

genotypes can be compared for different numbers of

contributing loci. Environmental variance is ignored,

so that genotypic values and phenotypic values are

identical. In the absence of genotype–environment

interaction, this is no restriction because, in the

present model, the only effect of including environ-

mental variance was a reduction in the selection

intensity.

The trait is under Gaussian stabilizing selection,

with the optimum genotype θ
t

exhibiting temporal

change; that is, the viability of an individual with

genotype G is assumed to be

W
G,t

¯ exp[®s(G®θ
t
)#], (1)

where s measures the strength of stabilizing selection

and is independent of the generation number t.

Selection acts only through different viabilities. The

position of the optimum is assumed to fluctuate

periodically about the midpoint of the range of

genotypic values (0±5) ; in addition, its position can be

randomly perturbed. More precisely, we assume that

θ
t
is drawn from a normal distribution with mean

θ
t
¯ 0±5A sin(2πt}L), (2)

(where A is the amplitude and L the period of the

selection cycle) and standard deviation

σθ ¯ dA, (3)

where d is a measure of the magnitude of stochasticity.

If d¯ 0, there is purely periodic selection; if, in

addition, A¯ 0, there is pure Gaussian stabilizing

selection. The reason that the ‘noise term’ (Eqn 3) is

scaled with the amplitude is that we are mainly

interested in small deviations from periodic selection,

and a fixed standard deviation would perturb cycles

with small amplitudes more than cycles with large

amplitudes. Fig. 1 shows the effects of random

perturbations on the position of the optimum.

Gametes are designated by i, their frequencies

among zygotes in consecutive generations by p
i
and p!

i
,

and the fitness of a zygote consisting of gametes j and

k by W
jk

(omitting the time dependence). Let

R( j, k! i) denote the probability that a randomly

chosen gamete produced by a jk individual is i. The

function R is determined by the pattern of recom-

bination between loci. At each locus, recurrent

mutation occurs at rate u per gamete and generation;

that is, all genes have the same mutation rate u. It is

then straightforward to calculate the mutation rate u
ij

from gamete i to gamete j. With these ingredients, the

system of recursion relations describing the dynamics
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Fig. 1. The movement of a cyclically fluctuating optimum without and with random perturbations according to Eqns 2
and 3. The amplitude is A¯ 0±5 in both cases, the upper panel is for a period of L¯ 4, the lower for L¯100. The
results of different values of the parameter d (which measures the amount of stochasticity) are as in Fig. 6 ; if d¯ 0, the
optimum is purely periodic and, if d¯1, there are substantial random perturbations of its deterministic position.

of the distribution of gametes under viability selection

followed by recombination and mutation is given by

p!
i
¯ p*

i
Σ

j :j1 i
p*

j
u
ji
®p*

i
u
ij
, (4a)

where

p*

i
¯W{ −"Σ

j,k
W

jk
p
j
p
k
R( j, k! i ) (4b)

denotes the frequency of gamete i after selection and

recombination, and WG −"Σ
j,k

W
jk

p
j
p
k
is the mean fitness

(e.g. Bu$ rger, 2000).

With cyclical selection of period L, an equilibrium

is typically periodic with period L ; that is, it satisfies

p
i
(τL)¯ p

i
(τ) for τ¯1, … , L and every i.

3. Statistical approach

Usually, the parameters of genetic systems that control

quantitative traits are unknown or can be inferred

only indirectly. Because, in addition, the dimension-

ality of the parameter space and the space of gamete

frequencies increases rapidly as the number of loci

increases, an explicit and analytical characterization

of the equilibrium properties of multilocus models in

terms of all parameters and initial conditions would

be of limited value, even if it were feasible. Therefore,

we have used the different approach of evaluating the

quantities of interest for randomly chosen parameter

sets and initial conditions, consequently obtaining

statistical results.

We proceeded as follows. For a given set of

ecological parameters (strength s of stabilizing selec-

tion, selection-cycle amplitude A and period L, and

amount d of stochasticity in the position of the

optimum), a given number n of loci and a given per-

locus mutation rate u, we constructed 1000–4000

‘genetic parameter sets ’ (the allelic effects of loci and

recombination rates between adjacent loci). For each

genetic parameter set, allelic effects were obtained by

generating values β
l
(l¯1, 2, … , n) as independent

random variables, uniformly distributed between 0

and 1, and transforming them into the actual allelic

effects α
l
¯ 0±5β

l
}Σ

k
β
k
. The additivity assumption

yields the genotypic values and, from Eqns 1–3, the

genotypic fitnesses W
jk

are calculated in each gen-

eration. Recombination rates between adjacent loci,

r
l,l+"

(l¯1, … , n®1), were obtained as independent

random variables, uniformly distributed between 0

and 0±5. Because this yields a high average recom-

bination rate and because the influence of recom-

bination is of interest, we also performed iterations in

which the recombination rates between adjacent loci

were fixed (and small), so that only allelic effects were

chosen randomly. In all cases we assumed that there

was no interference.

For each of such constructed genetic parameter

sets, the recursion relations (Eqn 4) were numerically

iterated starting from a single random initial dis-

tribution of gametes. In the absence of stochasticity

(d¯ 0), an iteration was stopped after generation t

when either a (periodic) equilibrium was reached (in

the sense that the geometric distance between gametic

distributions at the end of two consecutive selection
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cycles [Σ
i
rp

i
(tL)®p

i
(t)r#]!±

&, with t a multiple of L, is

!10−"#) or t exceeded 300000 generations. In the

latter case, no equilibrium was reached. Usually, the

proportion of such runs was very small ; their statistical

treatment is described further below. There are two

reasons why convergence does not occur within

300000 generations: (1) slow convergence; or (2) no

periodic solution is approached. Inspection of the

output showed that, in most cases, slow convergence

was the likely reason why an iteration exceeded

300000 generations. However, in some cases, the

trajectories indeed showed complex dynamic behav-

iour, similar to what Kirzhner and colleagues observed

(see the Introduction).

From the raw data of each parameter set (i.e. the

gamete frequencies in every generation of the final

selection cycle), we calculated the following quantities

by averaging over this last selection cycle : arithmetic

average of the mean genotypic values, arithmetic

average VG of the genetic variances, arithmetic average

VG
r
of the ratios V}V

max
of the genetic variance and the

maximum possible variance in the given genetic system

under linkage equilibrium (V
max

), and the geometric

average WG
g of population mean fitness. The number

of polymorphic loci was also recorded. These values

were then averaged over all genetic parameter sets and

standard deviations were calculated. This yielded our

quantities of interest for each set of ecological

parameters, number of loci and mutation rates. We

refer to VG
r
as the relative genetic variance. Its use is

preferable when comparing systems with different

number of loci, because the variance itself is strongly

dependent on the average effect across loci, which

decreases according to 1}(2n). For a given number of

loci, the relative genetic variance VG
r

and the real

(average) genetic variance VG behave very similarly

(results not shown). Because V
max

¯ 0±5Σ
i
α#
l
, the

expectation (and, in principle, the whole distribution)

of V
max

can be calculated for each n. For instance, if

n¯ 4, we have E [V
max

]¯ 0±25(1®44 ln227 ln3)E
0±041. For n¯ 2 and n¯ 6, the numerical values are

0±077 and 0±028, respectively. Multiplying VG
r

by

E [V
max

] yields an estimate of VG
r

that is typically

smaller than, but almost always within about 20%

of, the ‘ true’ value (results not shown). The arith-

metic average of mean fitness was also recorded but

the results are not shown because, from the theory

reviewed in the Introduction and the Appendix,

it follows that the geometric average is more

informative.

Iterations that did not reach equilibrium within

300000 generations, subsequently called slow runs,

had no apparent trend in deviating from convergent

runs. Therefore, slow runs were included in these

statistics. Only for calculating (in the absence of

mutation) the proportion of runs converging to a

(periodic) equilibrium involving a given number of

polymorphic loci were the slow runs excluded, for

obvious reasons. For the computations with a

stochastically perturbed optimum (d" 0), we pursued

a slightly different procedure because no deterministic

equilibrium is approached (except when a population

ends up in a completely monomorphic state). To

obtain estimates of our quantities of interest, we

stopped the iterations after 50000 generations and

averaged all quantities of interest over the final ten

selection cycles. Comparison with additional compu-

tations for some selected parameter sets over 300000

or 500000 generations showed that the longer compu-

tations yielded statistically significant differences only

in the absence of mutation. This will be discussed

further below.

4. Periodic environments

We first consider a trait determined by four loci and

describe how the asymptotic properties of the evolving

population depend on the amplitude and period of the

selection cycle if there is no mutation. Then, we study

the role of mutation. For this ‘basic data set ’, obtained

from all combinations of chosen values of A, L and u,

the strength of stabilizing selection is fixed and

relatively high. Afterwards, we investigate the effects

of weaker stabilizing selection and of linkage for a

subset of this parameter set. Finally, we explore how

our findings depend on the number of loci by

presenting results for two and six loci. The influence of

random perturbations of the environment is studied in

the next section.

(i) Basic data set

For this basic data set, we consider a trait determined

by four loci and assume stabilizing selection of (fixed)

strength s¯ 5. This is relatively strong selection and

means that if the optimum is in the middle of the

range of possible genotypic values, the fitness of the

most extreme genotypes is exp(®1±25)E 0±287. For

every combination of the parameters L¯1, 4, 8, 24,

52, 100 and 200, A¯ 0±25, 0±5 and 1, and u¯ 0,

5¬10−', 5¬10−& and 5¬10−%, 4000 genetic parameter

sets were generated by the procedure described in the

previous section. In particular, recombination rates

between adjacent loci are uniformly distributed be-

tween 0 and 0±5. The recursion relations were iterated

and the quantities of interest measured as described

above. We note that L¯1 implies that there is pure

stabilizing selection because the optimum is constant,

and A¯ 0±5 means that the optimum cycles between

the most extreme genotypes ; thus, there is always a

genotype that is close to the optimum. It is only for

A¯1 that there are periods of pure directional

selection, namely when the optimum is outside the
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Table 1. Equilibrium structure under periodic selection in the absence of mutation. The percentages of (stable)

equilibria with the gi�en number of polymorphic loci in a four-locus system are listed without mutation and with

s¯ 5. Because four polymorphic loci were ne�er obser�ed, the corresponding column has been omitted. Each

entry is based on 4000 genetic parameter sets, but slow runs are excluded from these statistics. An entry of 0±00

indicates that the corresponding frequency is less than 0±005, and – indicates that this outcome was ne�er

obser�ed

Environmental variables Polymorphic loci

Amplitude Period 0 1 2 3 Slow runs

0 1 0±60 0±39 0±01 0±00 34
0±25 4 0±60 0±39 0±01 0±00 33
0±25 8 0±60 0±38 0±01 0±00 34
0±25 24 0±61 0±38 0±01 0±00 43
0±25 52 0±61 0±38 0±01 0±00 48
0±25 100 0±57 0±42 0±01 0±00 35
0±25 200 0±66 0±33 0±01 0±00 37
0±5 4 0±59 0±39 0±02 0±00 33
0±5 8 0±61 0±38 0±02 0±00 35
0±5 24 0±57 0±42 0±01 0±00 43
0±5 52 0±57 0±42 0±01 0±00 40
0±5 100 0±67 0±32 0±01 0±00 38
0±5 200 0±78 0±22 0±00 – 41

1±0 4 0±60 0±39 0±01 – 42
1±0 8 0±58 0±41 0±01 0±00 31

1±0 24 0±55 0±44 0±01 0±00 45
1±0 52 0±67 0±32 0±01 0±00 43
1±0 100 0±78 0±22 0±00 – 42
1±0 200 0±90 0±10 0±00 – 38

Table 2. Effect of mutation on the relati�e genetic �ariance V{
r
for four-locus systems with s¯ 5 and the

indicated amplitudes A and periods L. Column 3 displays the arithmetic a�erage, V{
r
of V}V

max
in the absence

of mutation, columns 4–6 display the ratio of the relati�e �ariance with mutation (as indicated ) to that without

mutation, and the last four columns gi�e the standard de�iations of V{
r
for the indicated mutation rates in

multiples of V{
r

Environment VG
r
(µ)}VG

r
(µ¯ 0) Standard deviation of V

r
(µ)

A L VG
r
(µ¯ 0) 5¬10−' 5¬10−& 5¬10−% µ¯ 0 5¬10−' 5¬10−& 5¬10−%

0 1 0±046 1±0 1±0 1±4 2±2 2±3 2±1 1±4
0±25 4 0±044 1±1 1±1 1±6 2±3 2±2 2±1 1±4
0±25 8 0±044 1±0 1±1 1±6 2±2 2±2 2±0 1±3
0±25 24 0±039 1±0 1±2 2±3 2±0 2±0 1±7 0±9
0±25 52 0±031 1±3 2±2 5±7 1±9 1±6 1±0 0±3
0±25 100 0±024 4±0 6±8 10±8 1±9 0±6 0±3 0±1
0±25 200 0±018 8±9 11±4 15±0 2±1 0±4 0±3 0±2
0±5 4 0±045 0±9 1±0 1±6 2±2 2±1 1±9 1±3
0±5 8 0±040 1±0 1±1 1±9 2±1 2±0 1±8 1±0
0±5 24 0±035 1±3 2±5 7±5 1±7 1±4 0±7 0±1
0±5 52 0±024 7±3 9±7 13±1 1±6 0±2 0±2 0±2
0±5 100 0±016 10±8 13±0 17±7 1±6 0±2 0±2 0±1
0±5 200 0±011 15±6 19±8 27±0 1±7 0±2 0±2 0±1
1±0 4 0±042 1±0 1±0 1±9 2±0 2±0 1±8 1±0
1±0 8 0±036 1±1 1±5 4±3 1±8 1±7 1±2 0±4
1±0 24 0±026 7±0 8±9 10±6 1±5 0±2 0±2 0±2
1±0 52 0±014 9±3 10±4 12±2 1±6 0±2 0±1 0±1
1±0 100 0±010 9±6 11±0 13±7 1±6 0±1 0±1 0±1
1±0 200 0±008 9±8 11±7 15±3 1±7 0±1 0±1 0±1
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Fig. 2. (a) Displays the relative genetic variance VG
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(i.e. the arithmetic average of V}V

max
) for all combinations of the

three indicated mutation rates and the three amplitudes as a function of the period of the selection cycle. (b) The
corresponding curves for the geometric average of mean fitness WG

g. The strength of stabilizing selection is s¯ 5 in all
cases, and the position of the optimum is purely periodic (d¯ 0).
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Fig. 3. As for Fig. 2 but the effect of mutation is shown for a much larger range of mutation rates. A¯ 0±5, s¯ 5 and
d¯ 0.

range of possible genotypic values. The main results

are summarized in Tables 1, 2 and in Figs. 2, 3.

(ii) No mutation

Table 1 shows that, in the absence of mutation and

nearly independently of the amplitude, fixation of all

loci occurs in C 60% of all (4000) genetic parameter

sets if the period is short or intermediate, or if the

environment is constant. In a few cases, selection with

intermediate period does lead to a slightly higher

frequency of polymorphisms, but the effect is hardly

significant. For sufficiently long periods, the pro-

portion of polymorphic loci decreases substantially.

The larger the amplitude, the more pronounced is the

loss of polymorphism and the lower the period at

which this decay begins. For every parameter com-

bination (L, A, u), the frequency of genetic parameter

sets maintaining two or more loci polymorphic is

! 2%, the frequency of parameter sets maintaining

three loci polymorphic is ! 0±3% and in no instance

was a four-locus polymorphism observed. Thus the
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most likely event is that all loci go to fixation;

otherwise, in almost all cases, a single locus remains

polymorphic.

As Table 2 and Fig. 2a show, in the absence of

mutation, the relative genetic variance decreases

monotonically with increasing length of the period.

For all parameter sets of Table 2 with u¯ 0, the

relative genetic variance under a periodic optimum is

lower than under a constant optimum, though for

short periods (L¯ 4 or 8) the difference is statistically

not significant. With long periods and intermediate or

large amplitudes, a substantial decrease in the average

variance is observed.

As mentioned in the previous section, there were

slow runs in which the iterations did not equilibrate

within 300000 generations. In the absence of mutation,

their fraction was about 1% (Table 1). In some of

these slow runs, apparently complex limiting be-

haviour was observed, mostly for intermediate

periods. Even though they maintain more poly-

morphism than the convergent runs (usually three or

four loci are polymorphic), the maintained genetic

variance is well within the range of variances observed

for convergent runs. In contrast to the conclusions of

Kirzhner et al. (1996, 1998), our results suggest that

complex limiting behaviour occurs at a non-negligible

frequency only in carefully selected regions of the

parameter space, at least if loci are additive and

selection is not extremely strong.

Interestingly, without mutation, the geometric

average of mean fitness is nearly independent of the

period, provided that there is cyclical selection (Fig.

2b). This has a simple explanation. Suppose that a

population is monomorphic and located at a distance

x from the midpoint of the selection cycle. Then, its

geometric mean fitness is calculated to be

W{
g ¯

E

F

0
L

t="

exp

A

B

®s

E

F

x®A sin
2πt

L

G

H

#
C

D

G

H

"/L

¯ exp

A

B

®
s

2
(A#2x#)

C

D

, (5)

which is independent of the period L. (For a resting

optimum, one has to set A¯ 0 in the final expression.)

Assuming that x¯ 0, we obtain from Eqn 5 the values

WG
g ¯ 0±855, 0±535 and 0±082 if A¯ 0±25, 0±5 and 1,

respectively. The numerically obtained values for the

periods L¯ 4, … , 200 are all between 0±840 and 0±844

if A¯ 0±25, between 0±526 and 0±529 if A¯ 0±5, and

between 0±081 and 0±082 if A¯1. This good cor-

respondence is not really surprising because, as our

data suggest, most populations become monomor-

phic under periodic selection and, if they do not, then

little variance is maintained on average. Also, the

average mean genotypic value is always very close to

the midpoint of the range of possible values (data not

shown). The variation in geometric mean fitness

among the genetic parameter sets pertaining to an

ecological parameter set is tiny and not reported.

These results clearly do not support the proposition

that periodic selection per se induces more genetic

variation than constant stabilizing selection. However,

as shown by the results of Kirzhner et al. (1996, 1998)

and by the large standard deviations observed in the

absence of mutation in the present study (Table 2), it

can maintain substantial genetic variance for par-

ticular parameter combinations; its amount depends

strongly on the underlying genetic system.

(iii) Role of mutation

The introduction of mutation leads to a radically

different conclusion. For a resting optimum (L¯1)

and for short environmental periods (L¯ 4 or 8),

mutation changes little. Of course, a high mutation

rate leads to a somewhat elevated variance. For

medium or long periods, even a low mutation rate

leads to a substantial increase in genetic variance. The

magnitude of this increase is strongly dependent on

the amplitude of the fluctuations. For a small

amplitude (A¯ 0±25), the (relative) genetic variance

increases with increasing period L, whereas, for a

large amplitude (A¯1), there is marked peak in the

genetic variance at intermediate periods (L¯ 24). If

A¯ 0±5, there is a strong increase in genetic variance

if 8%L% 52; for longer periods the variance declines

slightly (Fig. 2a). However, a glance at Table 2 reveals

that, for every amplitude, the ratio of the variance

with mutation to the variance without mutation is

increasing on the whole range of periods. Only for

A¯1 might a plateau be reached at periods of

L&100.

Interestingly, the magnitude of the mutation rate,

unless very large, has only relatively weak quantitative

effects, in the expected direction, of course. Fig. 3

displays the relative genetic variance as a function of

L for a wide range of mutation rates. For long

periods, even the very small mutation rate of u¯
5¬10−( leads to a strong increase in variance. As Figs.

2b and 3b show, for medium or long periods, the

geometric average of mean fitness increases sub-

stantially with L in the presence of mutation. The

reason is that, with mutation, the population dis-

tribution can respond to the selective pressure induced

by the moving optimum and follow, but lagging

behind, the optimum (cf. Bu$ rger & Lynch, 1995;

Kondrashov & Yampolsky, 1996a ; Bu$ rger, 1999).

For short periods, the direction of selection changes

too rapidly for the population distribution to follow

the optimum.

Among genetic parameter sets pertaining to a given

ecological parameter set, there can be large variation

in the (relative) genetic variance maintained. For the

parameter sets displayed in Fig. 2, standard deviations
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of the relative genetic variance range from C10% of

the mean to 2±3 times the mean (Table 2). The highest

values occur for a resting optimum and for low

periods in combination with no or little mutation.

Roughly, the standard deviation is decreasing as a

function of L and of u, but only weakly dependent on

A. These results show that, for long periods and a

positive mutation rate, the asymptotic dynamics is

primarily driven by the selection cycle, with little

variation between the genetic parameter sets. How-

ever, in the absence of mutation or for low mutation

rates and short periods, the asymptotic properties of

the evolving population, particularly the genetic

variance maintained, depend strongly on the genetic

details. The standard errors of the data displayed in

Figs. 2 and 3 are ! 4% of the mean in all cases and

can be calculated from Table 2 by multiplication by

100}o4000E1±6.

With mutation, the proportion of slow runs varies

greatly. There is a tendency for this proportion to

increase with lower mutation rates. For instance, for

u¯ 5¬10−', nearly 9% of the runs are slow if

L&100, whereas, for u¯ 5¬10−%, no slow runs are

observed for large or small periods. However, for u¯
5¬10−& and u¯ 5¬10−%, the proportion of slow runs

is maximized at intermediate periods, reaching nearly

5%, in the first case at L¯ 52, in the second at L¯
24. Several of these slow runs showed complex limiting

behaviour but, apparently, the variance (actually, this

fluctuates much less than the gene frequencies, which

might fluctuate wildly) does not deviate excessively

from the average variance observed for such an

ecological parameter set. For parameter combinations

with a larger proportion of slow runs (" 2%), the

relative variance of the slow runs does not differ

significantly from the total relative variance.

(iv) Strength of stabilizing selection and linkage

For a trait determined by four loci and for the

intermediate amplitude A¯ 0±5, we now briefly

investigate the role of the strength of stabilizing

selection and of linkage, using the mutation rates u¯
0 and u¯ 5¬10−&. First, let us consider weak

stabilizing selection (s¯1, so the fitness of the extreme

genotypes is 0±78 if the optimum is at its midpoint

(0±5)) and random recombination. For a resting

optimum and in the absence of mutation, this yields

nearly the same genetic variance as with strong

stabilizing selection (Fig. 4). For quadratic selection,

a similar observationwasmade byBu$ rger&Gimelfarb

(1999). For increasing periods and without mutation,

the (relative) genetic variance decreases, but much

more slowly than under strong selection. Mutation

(u¯ 5¬10−&) increases the variance; not by very much

for short and intermediate periods (L% 52), but by

about a factor of 3±6 for L¯100 and 10±5 for L¯

200. Still, these factors are much lower than in the case

s¯ 5 (Table 2). Interestingly, in the presence of

mutation and for the periods L¯ 24, 52 and 100, the

relative variance VG
r
maintained under weak stabilizing

selection is lower than under strong selection.

The role of linkage was investigated for strong

selection (s¯ 5) and by setting the recombination

rates between adjacent loci to 0±005 (no interference).

Thus, in a genetic parameter set, only the allelic effects

are randomly chosen. Fig. 4 shows that, in the absence

of mutation, the variance is slightly elevated relative

to the random recombination case. The reason might

be that, with tightly linked loci, there is a tendency to

maintain a higher proportion of loci polymorphic

(this is known to happen in two-locus models of

stabilizing selection; cf. Bu$ rger & Gimelfarb, 1999).

With mutation, the variance is substantially increased

for periods L& 24, but there is a marked peak near

L¯ 52, and increasing the period leads to a strong

decline in genetic variance.

In the absence of mutation and for randomly drawn

recombination rates, the average amount of linkage

disequilibrium must be extremely low because the

proportion of polymorphisms with two or more loci is

very low (Table 1). Although not investigated in detail

here, linkage disequilibrium is likely to be negative but

low in the presence of mutation because of the

relatively high average recombination rate (cf. Bu$ rger,

1999).

The phenomenon that an evolving population with

a high level of recombination might have a much

higher genetic variance than an analogous population

with little or no recombination was observed pre-

viously for traits determined by many mutable loci,

both for a directionally moving optimum and for a

periodic optimum (Kondrashov & Yampolsky,

1996a ; Bu$ rger, 1999; Bu$ rger, 2000, Chap. VII). The

likely reason is that, for such a moving optimum,

adaptation (following the optimum) is essential. Low

recombination reduces this ability because favourable

mutations have a high probability of occurring in bad

genomes, from which they can be effectively freed only

by high recombination.

The qualitative behaviour of the geometric mean

fitness is similar to that for strong stabilizing selection.

In contrast to the case of random recombination,

however, with tight linkage, WG
g increases slightly for

long periods in the absence of mutation.

(v) Number of loci

Our results show that the asymptotic properties of a

population subject to cyclical selection are strongly

dependent on the number of loci that affect the trait.

For a trait determined by two loci, the (relative)

genetic variance maintained shows a qualitatively
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Fig. 4. The relative genetic variance (a) and the geometric mean fitness (b) under strong stabilizing selection (s¯ 5)
and high (random) recombination are compared with the same quantities under weak stabilizing selection (s¯1) and
random recombination, and under strong stabilizing selection and low recombination (r¯ 0±005). The amplitude
A¯ 0±5, there are two mutation rates (u¯ 0 and u¯ 5¬10−&) and no stochasticity in the optimum (d¯ 0).
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mutation (u¯ 5¬10−&). (b) The corresponding geometric mean fitness WG
g. The strength of stabilizing selection is

s¯ 5 in all cases and the position of the optimum varies purely periodically (d¯ 0).

different dependence on the parameters from a trait

determined by four or six loci. The main results are

displayed in Fig. 5. For all these parameter sets, the

strength of stabilizing selection is s¯ 5, the amplitude

is A¯ 0±5 and recombination rates are random.

Most notably, for a resting optimum or for short

periods, a much higher (relative) genetic variance is

maintained in the two-locus model than with four or

six loci. For a resting optimum, this phenomenon has

already been reported and discussed in a detailed

study of quadratic stabilizing selection (Bu$ rger &

Gimelfarb, 1999). In the two-locus model, the (rela-

tive) variance decreases rapidly with increasing period

of the selection cycle, both with and without mutation.

With mutation, however, the variance nearly levels

out at large periods. In the absence of mutation, the

variance in four- and six-locus models also decreases

with increasing period, but much more slowly.

Actually, the more loci that are contributing to the

trait, the slower is the decay of genetic variance with

increasing period: with six loci, about half as much

variance is maintained at L¯ 200 as at L¯1 ; with

four loci, this proportion is less than 0±25, and with

two loci it is 0±10.

https://doi.org/10.1017/S0016672302005682 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672302005682


Fluctuating selection in multilocus systems 41

By contrast, in the presence of mutation (u¯
5¬10−&) the highest increase in (relative) genetic

variance at long periods occurs with six loci : for L¯
52, 100 and 200, the ratios of the relative genetic

variance with mutation to that without mutation are

about 18, 23 and 34, respectively ; for four loci, the

values are about 10, 13 and 20, respectively (Table 2) ;

for two loci, they are 3, 3±5 and C 6. Interestingly, at

long periods, the relative genetic variance maintained

ranks according to the number of loci. However, even

if the mutation rates in the two- and four-locus cases

are increased such that the total (gametic) mutation

rate affecting the trait is the same as with six loci, in no

cases is the relative variance for two or four loci

significantly higher than for six loci ; the three values

are closer together for every L& 52, the maximum

difference being !10% (results not shown).

For a trait determined by six loci, the standard

deviation of the relative genetic variance among

genetic parameter sets pertaining to a given ecological

parameter set is very similar to that in the cor-

responding four-locus systems (Table 2). In the

absence of mutation, it is C 2±5 times the mean if L¯
1, 4 or 8, and decreases to C1±7 times the mean if

L¯ 200. With mutation, the standard deviation de-

creases from C1±7 times the mean if L¯1 or 4 to

! 20% of the mean if L& 52. Standard errors of VG
r

are ! 4% of the mean for all data points displayed in

Fig. 5. (Because the six-locus runs were extremely

time consuming (more than a year of computer time

on a 350 MHz Pentium III), the number of genetic

parameter sets generated was adjusted to between

1000 and 4000, depending on the standard deviation

of the variance.)

With six loci, and in the absence of mutation, slow

convergence occurred in up to 4±6% of genetic

parameter sets. Nevertheless, inclusion or exclusion of

these runs led to nearly identical results. With

mutation, the proportion of slow runs was ! 2±5%

for L&100, otherwise it was ! 0±6%. Without

mutation, the proportion of genetic parameter sets

yielding asymptotic fixation of all loci was, as with

four loci, close to 60%, except for L¯ 200, when it

was 74%. The proportion of runs yielding poly-

morphisms involving two loci was below 1% in all

cases, and polymorphisms involving three or more

loci were never observed.

It has already been noted that the geometric average

of mean fitness is remarkably constant as a function of

L provided that there is no mutation. With six loci,

this constancy is even more pronounced (Fig. 5b).

Indeed, WG
g ¯ 0±533 for all periods L& 4. If x¯ 0

then Eqn 5 yields the value 0±535. Again, the behaviour

of the two-locus system is slightly aberrant. For

reasons already discussed, in the presence of mutation,

the geometric mean fitness increases with L for any

number of loci.

5. Randomly perturbed periodic environments

Random perturbations of a periodic optimum lead to

some further interesting effects ; in particular, mu-

tation becomes even more decisive. The results in this

section are based on a four-locus system with random

recombination, an amplitude of A¯ 0±5 and strong

stabilizing selection (s¯ 5). Two levels of random

perturbations were chosen: d¯ 0±5 and d¯1. Hence,

the standard deviations of the random perturbations

are 0±5A and A (Eqn 3). Every ecological parameter

set was combined with four different mutation rates

(u¯ 0, 5¬10−', 5¬10−& and 5¬10−%). For each of

these parameter combinations, 2000 genetic parameter

sets were generated and the corresponding systems

iterated for 50000 generations as described in the

section on the statistical approach. Fig. 6 displays the

main results and compares them with a determini-

stically moving periodic optimum (d¯ 0).

In the absence of mutation, the (relative) genetic

variance maintained decays with the period L and, for

any given L, it decays with increasing stochasticity d.

If d¯1, almost no genetic variance is maintained for

any period. For a larger amplitude, adding

stochasticity leads to an even higher loss of genetic

variance (results not shown). Therefore, in the present

model, there is always less variation maintained with

a stochastically perturbed optimum than with a

deterministic optimum (resting or cycling).

A completely different picture emerges with muta-

tion. For the high-mutation-rate scenario (u¯
5¬10−%), the relative variance increases with L if

1%L% 8, whereas, for the lower mutation rates, it is

approximately constant within this range. Between L

¯ 8 and L¯ 52, there is a marked increase in variance

in all cases, and a maximum is reached at L¯ 52. For

longer periods, the variance decreases slightly. Most

interestingly, for short periods, a high degree of

stochasticity (d¯1) induces substantial genetic vari-

ance in the presence of mutation, particularly for the

two largest mutation rates. For long periods (L& 24),

there is also a general tendency for more stochasticity

to lead to slightly elevated levels of genetic variation.

Thus, with a periodic optimum, additional

stochasticity depletes genetic variation in the absence

of mutation. However, in the presence of mutation,

even if of very low rate, it typically increases genetic

variance. Therefore, mutation might be an important

agent in promoting the maintenance of genetic

variation in environments that fluctuate periodically

with a random component. For mutable loci, it is also

notable that the geometric mean fitness increases

slower with L in the presence of stochasticity than

without stochasticity (Fig. 6b). The probable reason is

that, with much stochasticity, a population is often

displaced from the optimum, even if it could otherwise

track a deterministically cycling optimum.
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Fig. 6. The effects of random distortions of the position of the optimum on the relative genetic variance VG
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the geometric mean fitness WG
g (b). The three indicated values of d are combined with all four indicated values of the

per-locus mutation rate u.

To find out if our populations have reached

approximate stationarity after 50000 generations,

iterations were performed for a subset of the para-

meters over 300000 and 500000 generations. In the

presence of mutation, this yielded results that did not

differ statistically significantly from the shorter runs.

In the absence of mutation, however, the (relative)

genetic variance was reduced, and substantially so (to

1}3) for large fluctuations (d¯1). The reason is that

absorption of alleles might be a slow process with rare

large random excursions of the optimum. Addition-

ally, in the long runs and with d¯1, the geometric

mean fitness was higher by up to 5% than in the short

ones. Thus, in the absence of mutation, the variance

maintained is lower than the data points in Fig. 6a

indicate. Clearly, this strengthens our conclusions

about the importance of mutation in stochastically

fluctuating environments.

6. Discussion

Genetic models of temporally fluctuating selection

have been investigated for a variety of reasons. First,

to explore the potential of variable selection in

maintaining genetic variation and polymorphism.

Second, to examine the hypothesis that the evolution

of recombination is favoured in changing environ-

ments. Third, to estimate the extinction risk of small

populations through environmental change. In this

article, we are only interested in the first of these

topics and refer to Maynard Smith (1988),

Charlesworth (1993), Kondrashov & Yampolsky

(1996b), Korol et al. (1998), Bu$ rger (1999) for the

second, and to Bu$ rger & Lynch (1995), Lande &

Shannon (1996), Bu$ rger (1999), and Bu$ rger & Krall

(2002) for the third.

Previous analyses of single-locus models in diploid,

randomly mating, infinitely large populations have

shown that, with fluctuating selection, the conditions

for maintaining a protected polymorphism are relaxed

compared with time-invariant selection because,

roughly, overdominance of certain geometric averages

of genotypic fitnesses is sufficient rather than over-

dominance of arithmetic averages (see Introduction).

In general, even under deterministic cyclical selection,

the asymptotic behaviour of gene frequencies is

difficult to determine because several stable (periodic)

equilibria, monomorphic and polymorphic can co-

exist. Because the conditions necessary formaintaining

polymorphism are restrictive, fluctuating selection is

unlikely to be a general cause for genetic variability.

In finite populations, the situation is stillmore complex

(Karlin & Levikson, 1974), and one of the topics that

has received some attention is the comparison of

models of temporally varying selection that is nearly

neutral with models of neutral evolution (e.g.

Takahata, 1981 ; Gillespie, 1991).

Recently, Kirzhner et al. (1996, 1998) have revived

the hypothesis that temporally varying selection might

be an important mechanism in maintaining genetic

variation. They constructed several beautiful examples

of multilocus systems in which stabilizing selection on

a quantitative trait with a periodically changing

optimum leads to various types of complex (sometimes

chaotic) limiting behaviour of the gene and gamete

frequencies. They conjectured that this might con-

stitute a novel evolutionary mechanism increasing

genetic diversity over long time periods.

We pursued a statistical approach to shed more

light on cyclical selection as a possible source of

genetic variation in quantitative traits. Our aim was to

go beyond special results by investigating a fairly large
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region of ecological parameters and, for each set of

such parameters, to obtain numerical results of many

genetic systems. Our results show that, in the absence

of mutation and on average, stabilizing selection with

a periodic optimum never increases and, indeed,

almost always decreases the genetic variance of a

quantitative trait relative to that maintained under a

resting optimum. Here, ‘on average’ means the

average over genetic systems (typically, 2000 or 4000)

in which the effects of the loci and the recombination

rates between adjacent loci are drawn randomly, but

the ecological parameters (strength of stabilizing

selection, amplitude and period of the selection cycle,

amount of stochasticity), the number of loci and the

mutation rate are fixed.

Among the genetic systems pertaining to such a

parameter combination, there might be large variation

in the genetic variance maintained, and complex

limiting behaviour was observed in some cases.

Although we did cover a wide range of ecological

parameters (weak and strong stabilizing selection,

small to moderately large amplitudes, periods up to

200) and genetic systems with two, four and six

additive loci, only a few of the examples provided by

Korol et al. (1996) and Kirzhner et al. (1996, 1998) fall

into this range. For additive loci, these authors

reported complex limiting behaviour for very short

selection cycles, typically of period two, for much

stronger stabilizing selection than we investigated and

for much larger amplitudes of the optimum. Thus, in

their examples, many genotypes regularly have ex-

tremely low fitness, and the mean fitness of their

populations is generally very low, typically !10% of

the maximum possible and often much less. For

nonadditive loci, however, they observed complex

limiting behaviour under much weaker selection.

Interestingly, in our investigation, complex limiting

behaviour was mainly observed for periods longer

than 24. However, the proportion of parameter sets

showing such behaviour was very small and the

genetic variance maintained in such runs did not differ

substantially from the average over all genetic par-

ameter sets pertaining to the same combination of

(ecological) parameters. Therefore, complex limiting

behaviour, although it is an interesting phenomenon

by itself, does not appear to be an important

mechanism in maintaining quantitative genetic vari-

ation. It occurs for a relatively wide range of ecological

parameters but requires special genetic constitution.

If, in addition to the cyclical variation, the optimum

is stochastically perturbed then even more genetic

variation is lost than without stochasticity, and, with

large stochastic perturbations, almost none is left. We

therefore conclude that, unless the genetic system has

a particular structure, periodic and randomly per-

turbed periodic stabilizing selection on a quantitative

trait is a powerful agent in depleting genetic variation.

If, however, the loci are subject to recurrent mutation,

an almost opposite conclusion can be drawn because

of the following findings.

1. Most notably, mutation, even if of very low rate,

increases the genetic variance of a trait substan-

tially, often by an order of magnitude or more,

provided that the period of the selection cycle is

moderate or long (typically L& 24). For shorter

periods and in the absence of stochasticity, only

high per-locus mutation rates (u"10−%) have a

noticeable effect.

2. Whereas, in the absence of mutation, the genetic

variance maintained decreases with increasing

length of the selection cycle, the opposite is true in

the presence of mutation provided that the am-

plitude is not too large and the loci are not tightly

linked. In the latter two cases, the variance is

maximized at intermediate periods.

3. The more loci are contributing to the trait, the

more important becomes the effect of mutation.

Without mutation, a general feature, valid for all

considered parameter sets, is that the relative

genetic variance (the average of V}V
max

) decreases

with increasing number of loci. With mutation, this

is not the case. In fact, for long periods (L& 52),

the amount of relative genetic variance maintained

is nearly independent of the number of loci, at least

if between two and six loci contribute to the trait.

4. Stochastic perturbations of a periodic optimum

reduce genetic variation in the absence of mutation

but increase it otherwise. For short periods and

high mutation rates, this increase can be sub-

stantial.

Therefore, as argued previously for populations of

finite size and traits determined by many loci

(Kondrashov & Yampolsky, 1996a, b ; Bu$ rger, 1999),

long-term fluctuations of the environment of this or

similar kindmight indeed lead to substantially elevated

levels of quantitative-genetic variation. The essential

ingredients are a minimum amount of recurrent

mutation, some recombination and periods of selec-

tion in one direction in excess of C10 generations.

Short-term or purely random fluctuations do not have

this effect. The role of epistasis has not yet been

explored in this context but, for pure stabilizing

selection, some forms of epistasis can maintain much

heritable variation (e.g. Gimelfarb, 1989).

There is a relatively simple qualitative explanation

for the fact that substantial genetic variation is

maintained in the presence of recurrent mutation and

with moderate or long periods of the selection cycle.

This can be understood from the following reasoning

for a single diallelic locus under periodic selection. In

the absence of mutation, a sufficient condition for the

maintenance of a protected polymorphism is that the

geometric mean fitness of both homozygotes (averaged
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over a full selection cycle) be lower than the

corresponding value of the heterozygote (Haldane &

Jayakar, 1963; Hoekstra, 1975). If the fitness function

is as in Eqns 1 and 2, this condition is, in fact,

necessary and sufficient (Appendix A2) and can be

formulated as follows. Let the genotypic values at the

locus under consideration be 0±5h®a, 0±5h and

0±5ha (a" 0). Then, a protected polymorphism

exists if and only if a"2rhr ; that is, the heterozygote

must have its genotypic value closer to the midpoint

0±5 of the selection cycle than any of the two

homozygotes. Otherwise, the allele whose homo-

zygous genotype is closer to 0±5 goes to fixation.

If periodic selection alone maintains a poly-

morphism or if one homozygous genotype is always

inferior then, as for constant selection, low or

moderate mutation rates increase the genetic variance

only slightly. If, however, in the absence of mutation,

no polymorphism is maintained in a one-locus system

but each of the homozygotes has the highest fitness

during part of the selection cycle, so that this locus is

not exclusively under directional selection, then sub-

stantial genetic variance can be maintained with

mutation and sufficiently long periods of the selection

cycle, because recurrent mutation prevents allele

frequencies of either type from becoming extremely

low during periods in which the other allele is

selectively favoured. Therefore, when the direction of

selection changes, this allele can quickly rise in

frequency, thus inducing much genetic variance. In

such systems, allele frequencies typically vary sub-

stantially during the selection cycle, whereas in equi-

valent systems without mutation one of the alleles is

lost. This is supported by numerical iterations of the

recursion relations (results not shown). Because, with

multiple loci, the fitness optimum experienced by a

single locus depends on the genetic constitution of the

other loci, single-locus heterozygotes are typically

displaced from the midpoint 0±5, hence rhr" 0 in the

above model. Therefore, there is indeed the possibility

for mutation to induce substantial variation. Pre-

sumably, this single-locus explanation extends to our

multilocus systems as well, because the numerical

results show that, in the absence of mutation, fewer

than two loci are kept polymorphic in the vast

majority of genetic systems.

The above considerations are also helpful for a

qualitative understanding of some of the more detailed

findings. For instance, the observation that, for long

periods, mutation has the largest effect for traits

determined by six loci has the following simple

explanation. With an increasing number of loci,

selection on each locus becomes weaker because the

ratio of the average effect among polymorphic loci to

the average effect among all loci decreases with

increasing number of loci (Bu$ rger & Gimelfarb, 1999).

Therefore, with only few loci, long periods of

directional selection drive the inferior alleles to lower

frequency than with several loci, because the frequency

at mutation–selection balance is inversely pro-

portional to the selection intensity. However, under

reversed selection pressure, recovering from extremely

low frequency is a very slow process and the direction

of selection might already have changed before the

allele has made it to appreciable frequency. With

many loci, gene frequencies apparently always remain

in a range in which response to selection in any

direction is quick.

Appendix

For a trait determined by a single additive locus that

is subject to periodic stabilizing selection according to

Eqns 1 and 2, we derive a simple, necessary and

sufficient condition for the maintenance of a protected

polymorphism in the absence of mutation. We also

give an example that, under general cyclical selection

of period 2, three locally stable states can coexist :

absorption of either of the two alleles and an interior

limit cycle.

(i) One locus model

We begin by recapitulating the model and main

results of Hoekstra (1975), from which our results

follow straightforwardly. As in the text, the population

is infinitely large, mates at random and has discrete

nonoverlapping generations. The relative fitnesses of

the three genotypes A
"
A

"
, A

"
A

#
and A

#
A

#
in genera-

tions tkL (t¯1, 2, … , L, k¯1, 2, …) are denoted

by w
t
, 1 and �

t
, respectively, and the relative frequency

of allele A
"

is denoted by p. Then, p¯1 (fixation

of A
"
) is a linearly stable equilibrium if and only if

P
w
¯ 0

L

t="

w
t
"1, (A1)

and p¯ 0 is linearly stable if and only if

P
v
¯ 0

L

t="

w
t
"1. (A2)

Therefore, a sufficient condition for a protected

polymorphism is that both

0
L

t="

�
t
!1, (A3a)

and

0
L

t="

w
t
!1, (A3b)

are satisfied.

Let f
L
(p) denote the function that assigns to p the

frequency of A
"
after L generations if, without loss of

generality, the fitnesses in the initial generation are w
"
,
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1 and �
"
. (Notice that f

L
(p)¯ g

L
(g

L−"
(… g

"
(p))), where

g
i
(p)¯ p« if the fitnesses are w

i
, 1, �

i
.) If P

w
¯1 (i.e. A

"

is completely dominant) then the second derivative of

f
L
(p) determines the local stability of p¯1. Applying

the chain rule and using g
i
(1)¯1 for all i, one obtains,

after some rearrangement (Hoekstra, 1975)

d #f
L

dp#
)
p="

¯ 2P −#
w

A

B

2(1®P
w
)3

L

j="

(1®�
j
) 0

L

t= j

w
t

C

D

. (A4)

Thus, if P
w
¯1 then p¯1 is locally stable if and only

if this derivative is positive, which is the case if and

only if

3
L

j="

(1®�
j
)0

L

t= j

w
t
" 0. (A5)

An analogous condition, with � and w exchanged,

holds at p¯ 0.

(ii) Application to our model

We now apply this theory to a generalized one-locus

version of our model in which it is not assumed that

the heterozygote coincides with the midpoint 0±5 of

the selection cycle. Let the effects of the genotypic

values of A
"
A

"
, A

"
A

#
and A

#
A

#
be 0±5h®a, 0±5h

and 0±5ha, respectively, where a" 0. The fitnesses

of the three genotypes can then be computed from

Eqns 1 and 2. After normalizing the fitnesses of the

heterozygote to 1 in each generation, we obtain

w
t
¯ exp[®as(a®2h)] exp

A

B

®2asA sin
2πt

L

C

D

, (A6a)

and

�
t
¯ exp[®as(a2h)] exp

A

B

2asA sin
2πt

L

C

D

, (A6b)

and a further simple calculation yields

P
w
¯ exp[®asL(a®2h)], (A7a)

P
v
¯ exp[®asL(a2h)]. (A7b)

Using

�
t
0
L

t= j

w
t
¯ e−#a

#
s 0

L

t= j+"

w
t
,

and observing

3
L

j="

0
L

t= j+"

w
t
¯ 3

L

j="

0
L

t= j

w
t
1®P

w
,

we obtain

3
L

j="

(1®�
j
) 0

L

t= j

w
t
¯ 3

L

j="

0
L

t= j

w
t
®e−#a

#
s3

L

j="

0
L

t= j+"

w
t

¯ (1®e−#a#s) 3
L

j="

0
L

t= j

w
t
e−#a

#
s(P

w
®1).

From Eqn A4, we can now infer that

d #f
L

dp#
)
p="

" 0 if P
w
¯1,

if P
w
¯1. (In fact, the same conclusion can be shown

to be valid whenever P
w
!1ε for an appropriate

ε" 0). Hence, in this model, there are trajectories

converging to the boundary p¯1 (p¯ 0) if and only

if P
w
&1 (P

v
&1). Then, the boundaries are also

asymptotically stable.

Therefore, we can conclude the following:

1. There is a protected polymorphism if and only

a" 2rhr ; that is, if and only if the value of the

heterozygote is closer to 0±5 than any of the

homozygous genotypic values. Numerical compu-

tations of f
L
(p), as well as iterations of the recursion

relation, suggest that, in this case, all trajectories

converge to a uniquely determined limit cycle of

period L.

2. If h" 0 and a% 2h then p¯1 is locally stable and

p¯ 0 is unstable. Numerical computations of f
L
(p)

suggest that, in this case, p¯1 is always globally

stable ; that is, allele A
"

always becomes fixed.

3. If h! 0 and a%®2h, then p¯ 0 is locally stable

and p¯1 is unstable. Apparently, p¯ 0 is globally

stable.

(iii) An example of multiple stable equilibria

Following a suggestion by J. Hofbauer, we show

that, in the general one-locus model with cyclical

selection and only two environments (L¯ 2), up to

three stable (periodic) equilibria may coexist. The idea

is to perturb fitnesses that satisfy w
"
w
#
¯1 and 3#

j="

(1®�
j
) Π#

t= j
w

t
! 0 (thus, p¯1 is linearly neutral but

quadratically unstable) such that both

w
"
w
#
¯1 (A8a)

and

3
#

j="

(1®�
j
) 0

#

t= j

w
t
! 0 (A8b)

hold. Then, p¯1 is stable and an unstable fixed point

of f
#
should exist for p!1 because f

#
is concave near

p¯1. The same can be done with �
"

and �
#
.

Indeed, choosing w
"
¯ 0±52, �

"
¯1±0, w

#
¯1±94 and

�
#
¯1±1 yields the desired numerical example: local

stability of the boundaries p¯ 0 and p¯1, and local

stability of the periodic equilibrium p# (1)¯ 0±686 and

p# (2)¯ 0±777. If the initial fitnesses are w
"
and �

"
then

every trajectory starting in the interval (0, 0±308)

converges to 0, every trajectory starting in (0±934, 1)

converges to 1 and all others converge to the interior

limit cycle. If the initial fitnesses are w
#

and �
#

then

trajectories from (0, 0±275) converge to 0 and those

from (0±886, 1) converge to 1. This can be proved
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straightforwardly by studying the numerator of f
#
(p)

that is a polynomial of degree five. Because it has the

two zeroes p¯ 0 and p¯1, the problem is reduced to

analysing a polynomial of degree three.

For cyclical selection with period L& 3, examples

with more attractors should be constructible. More

complicated attractors than periodic orbits cannot

occur with two alleles because the map f
"
(p) (¯ p«) is

monotonic for any choice of fitness values. Therefore,

all iterates, in particular f
L
(p), are monotonic (cf.

Hofbauer & Sigmund, 1998, p. 241).
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