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A N U P P E R LIMIT P R O P E R T Y O F T H E E U L E R 
F U N C T I O N 

BY 
MIRIAM HAUSMAN 

If <f)(n) denotes the Euler function, for n = p a prime we have <fi(n)/n = 
(1 -1 /p) , which implies that 

lim = 1. 
n-̂ oo n 

In this note we consider a refinement of this result. Namely, we prove that 

hm m m l ^ v , . . . , , , = mmi^f^ , . . . , ^ - ^ 
n—- \ rc + 1 n + k I \ 1 fc / 

= <ft(P*(fc)) 
P*(fc) 

where P*(fc) is the largest integer of the form Ili = iPi —k where P i < p 2 < 
• • • < p r are the first r primes in ascending order. 

Proof of (1). We first note that for each l < i < f c , the fc integers 
n + 1 , . . . , n + k consist of at least i consecutive integers and thus i divides n + / 
for some /, 1 < / < fc, which implies 

nKHH 
p|n+j V P / p|i V P or 

(2) l i m m i n Y V > - • • > , 7 - m i n 

n^o° \ n + 1 n + k J i<i<k\ z / 

Thus it suffices to prove that given any e > 0 there exist arbitrarily large n such 
that for all i = 1 , . . . , fc 

(3) ^ ^ S ( l - £ ) m i n ( ^ , . . . « Y 
n + i \ 1 fc / 

Let e > 0 be given and choose n = k\(J[p<Dp)t where D is a large fixed 
integer to be chosen later and t is a parameter to be chosen once D is fixed. 
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Then 

M. HAUSMAN [September 

n + i = kl(U p)t+i = i(-(U p)t+l). 

Let riiit) = (fc!/0(Ilp<D p)t+ l> a n d n o l e t n a t anY prime q which divides nt(t) is 
greater than D. Also if D > fc then for all i = 1,. . . , fc, (^(f), i) = 1, which in 
turn gives 

(4) 
»+o •«•("("«"•M <P(n + i) <t>(i) 

n + i i fc! ^(rw) r + 1 

>(0^(Wi(0) 

Thus (3) will follow if arbitrarily large t can be chosen so that for all 
i = 1 , . . . , fc 

(5) m ^ i _ e . 

This is achieved by producing a t for which (q denotes a prime) 

(6) 

For then 

1 i<a 
qk( t ) Q 
q>D 

*< ^ -n ( i - i ) - «p{ZK»H)} 

= exp|- I ~ = 

for large D and 6 small. 
To find such a £, fix i and consider 

(7) I I I . 
t<z q M t ) 4 

q > D 

To obtain an upper bound for (7), interchange the order of summation and 
note that 

Z i=' 
Mi( t )=0(modq) 

- if q < z 

d if q>z, 1 q 

Thus 

z z ^ z \ z i 
t<z qlrijCt) H JD<q<z(ni(t)) 4 t<z 

q > D n;(t)=0(modq) 
1 

D<q<z(ni( t ) ) <? D<q<z(ni( t )) Q 
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But by the well known result [1], 

it follows that 

(8) 

X - = loglogx + Cl + 0(l) 
psxP 

I I 1^-^+cloglog[z(n j(0)] 
l £ z q | n , ( t ) 3 U 

{h i .ciogiogEzfatoxn z - + 

If M = t h e number of f < z such that X i . ^ l A ï ^ X ) , ^ fixed small, it 

follows from (8) that 

q > D 

or 

(9) M < Z [ — + c l O g l O g [ z ( n i ( 0 ) ]1 
L8D 8z J 

Thus if D>3k/8 (which is clearly ^fc), and z is sufficiently large, then from 
(9), M<z(2 /3k) . Since for a given i, the number of f < z which are exceptions 
to (6) is M<2z/3fc, then for all i the number of f < z which are exceptions to 
(6) is Mk < (|)z. Thus there is at least one t > z/6 such that for all / = 1 , . . . , k, 
(6) is satisfied, which completes the proof of (3). 

Finally we note that as <J>(i)/i = ]lP|i (1 ~ 1/p) where each factor (1 - 1/p) < 1, 
the minimum of </>(/), i = 1 , . . . , k, is achieved for the value of i which has the 
largest possible number of prime factors, where the primes are as small as 
possible, namely P*(fc). 
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