
10
Regge pole beyond perturbation theory

We address now the most interesting question, namely how much of what
we have found in the perturbation theory will survive in the real world
where the hadrons interact strongly.

The hadrons and hadron resonances lie on Regge trajectories α(t) which
relate the hadron spin σ and the mass, σ = α(m2

h). These trajectories de-
termine the asymptotic behaviour of the scattering in the crossing chan-
nel, t < 0, where the corresponding quantum numbers can be exchanged.

At the first sight, we succeeded in reggeizing the amplitude and ob-
tained the Regge pole as expected. Unfortunately, the trajectory that we
found in the perturbative gϕ3 theory,

α(q2) = −1 + ḡ2

∫
d2k⊥
2(2π)3

m2

[m2 + k2
⊥][m2 + (k − q)2⊥]

; (10.1)

t = −q2
⊥; ḡ2 =

g2

m2
,

does not possess a single particle;
as long as the coupling is small,
ḡ�1, the trajectory stays below
j = 0 at any t (at large |t| it falls
like ln t/t). In principle we could
get a bound state on the trajec-
tory, or even enforce α(0) = 1, if
we took a large coupling, ḡ2 = O(1).

4m2

j

α(t) t

−1

1

But this means moving outside the boundaries of perturbation theory
where we are helpless. The selection of diagrams based on the leading log
approximation is here not valid, since all sorts of corrections to the ladder
become essential.
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10.1 Basic features of multiparticle production 259

If we can hope at all that the realistic hadron Regge-pole picture will
be established, then only if the interaction is non-perturbative. In spite of
the impossibility to calculate the hadron trajectories, we will nevertheless
be able to describe the structure of inelastic processes that constitute the
base of the real Regge poles. And our experience with the investigation
of the reggeons in perturbation theory will help us to do that.

10.1 Basic features of multiparticle production

10.1.1 Particle density

The underlying inelastic processes in perturbation theory were domi-
nated by multiperipheral ladders. The simple reason for the ladder domi-
nance was large invariant pair energies of the neighbouring particles (see
Section 9.2):

〈si,i+1〉 = (ki + ki+1)2 � βiαi+1s ∼
βi
βi+1

m2
i+1,⊥ ∼ βi

βi+1
m � m2 . (10.2)

Particles were distributed scarcely in rapidity (see Section 9.3):

Δη = 〈ηi − ηi+1〉 � ln
〈si,i+1〉
m2

� 1
β(0)

� 1, (10.3)

and the permutation of two particles with large Δη in (9.29) produced a
significant recoil causing high virtuality of the propagator and the sup-
pression of the amplitudes with crossed lines.

With the growth of ḡ2 the decays become more frequent, the particle
density increases and the pair energies 〈si,i+1〉 decrease. The time order-
ing of successive decays starts to disappear and processes with particle
permutations cease to play the rôle of small corrections when we reach
〈si,i+1〉 ∼ m2 at ḡ2 ∼ 1.

The key question is whether the particle density will continue to grow
with the increase of the interaction strength, or will it stop and freeze at
a certain value? Will the rapidity distribution remain homogeneous and
independent of the total energy?

The problem we are dealing with reminds that of the one-dimensional
gas. We plant a few points into an interval. If there is no repulsion between
them, one can stuff in as many points as one wants. If there is, some mean
density will be established, depending on the dynamics.

Two statements can be made.
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260 Regge pole beyond perturbation theory

(1) If the asymptotic behaviour is determined by the Regge pole, then
in multi-particle production processes a certain constant rapidity
density of final particles is reached.

(2) Irrespectively of the Regge pole hypothesis, a serious reason for ar-
riving at a constant density lies in the astonishing, well established
experimental fact that transverse momenta do not grow with energy
(at least for energies up to 1013 eV).

The first statement can be rigourously proven. The second one is more
intuitive but rather general too. Let us start from the latter.

10.1.2 Limited transverse momenta and rapidity plateau

In inelastic high energy hadron interactions particles are produced in two
bunches following the directions of the colliding hadrons. If you measure
the average transverse momentum of produced particles at different col-
lision energies, you will get 〈

k2
⊥
〉

= const(s). (10.4)

This is just what happens in the perturbative model that we have used
above. There the inclusive cross section decreased rapidly at large k⊥,

φ(k2
⊥) = ∼

∫
d2q⊥
(q2

⊥)4
∼ 1

k6
⊥
, k2

⊥ � m2, (10.5a)

so that the average transverse momentum was of the order of the mass,∫
d2k⊥ φ(k2

⊥) · k2
⊥∫

d2k⊥ φ(k2
⊥)

= const ·m2. (10.5b)

This is a unique feature of the gϕ3 theory which is too simplistic and
specific to have any relation to the real world.

However, as we have already stated, if e.g. fermions are included in the
scheme, the integral (10.5b) defining

〈
k2
⊥
〉

becomes logarithmically diver-
gent, and the transverse momenta increase with s. In fact, this happens
in any renormalizable quantum field theory (with the only exception of
the superconvergent gϕ3)! Thus it is the experimental situation alone that
forces us to look for a theoretical description that would respect (10.4).

Let us show now that if we want
〈
k2
⊥
〉

to be restricted, a finite particle
density must be set up in the s → ∞ limit.
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Fig. 10.1 Flow of longitudinal momenta in multiperipheral kinematics.

Recall that in perturbation theory transverse momenta were restricted
by the virtual exchange propagators qi in Fig. 10.1,

m2 − q2
i = m2 + q2

i⊥ + αqβqs = m2 + q2
i⊥ +

( ∑
j≤i

αj

)( ∑
k≥i+1

βk

)
s.

(10.6)
In the perturbative multiperipheral kinematics (9.27) all αs and βs were
strongly ordered. The longitudinal part of the virtuality,

αqβqs �
(
αi + · · ·

)(
βi+1 + · · ·

)
s � m2

i+1,⊥ · βi+1

βi
∼ m2 · βi+1

βi
, (10.7)

was then negligible, and it was for m2 to set the upper bound for the
variation of q2

i⊥ in (10.6). If we increase ḡ2, the ‘comb’ gets denser and
denser, and at ḡ2 ∼ 1 we eventually reach the situation when the neigh-
bouring βs become comparable, βi ≥ βi+1. They are still ordered, but not
strongly ordered anymore, which makes the longitudinal virtuality (10.7)
comparable with m2. This situation corresponds to 〈si,i+1〉 >∼ m2, that is
to a unit density in rapidity.

Imagine now that with the increase of s the particle density keeps grow-
ing as dn/dη = D(s). Having D(s) particles with comparable Sudakov
components inside a unit rapidity interval, (10.6) will be modified as
follows:

m2 − q2
i � q2

i⊥ + m2 +
(
D(s)α̃

)(
D(s)β̃

)
s, α̃β̃s ∼ m2. (10.8)

As a result, the transverse momentum integrals will spread much broader,
up to q2

i⊥ <∼ D2(s)m2, and produce the average k2
⊥ increasing with energy

together with the density D(s).
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262 Regge pole beyond perturbation theory

(b)(a)

Fig. 10.2 Amplitude (a) and cross section (b) of the double-ladder process.

10.1.3 Large multiplicities and overlapping ladders

This does not mean, however, that in a collision of two hadrons there
will be no events with multiplicities significantly larger than the average
n̄ ∝ ln s. Even in the perturbative framework there is a simple way to
obtain a large particle density, not breaking the restrictedness of

〈
k2
⊥
〉
. Let

us draw a picture with two multiperipheral combs exchanged between the
target and projectile. Squaring the diagram of Fig. 10.2(a) we will apply
the previous analysis to the two ladders in Fig. 10.2(b) and will obtain the
final-state multiplicity ∼2n̄, and therefore the double density in rapidity,
while preserving limited transverse momenta inside each ladder.

When the interaction is strong, there is no reason for such a diagram
to be any smaller than one ladder. There is, however, something bizarre
about this picture.

Momentum distributions of particles in the two combs overlap perfectly.
Why will they not interact, especially since the interaction is, once again,
strong? On the other hand, if they do re-interact and become inseparable
from the t-channel point of view, then our previous arguments will work
linking the particle density to the average k2

⊥.

R
eg

ge
 p

ol
e

Actually, it is the t-channel we have to appeal
to for the explanation. As we know, the Regge
pole is a bound state in the t-channel.

But this implies that all the particles that
‘propagate’ in the t-channel must have bounds to
each other; there cannot be two non-interacting
groups of objects as in Fig. 10.2. In other words,
such pictures do not belong to the pole.

The diagrams like that of Fig. 10.2 have a full right to exist but, if we
believe in the pole approximation, they would better be small corrections
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10.1 Basic features of multiparticle production 263

describing density fluctuations on top of the underlying uniform plateau
due to the Regge pole exchange.

10.1.4 Mueller–Kancheli diagram for inclusive spectrum

Let us calculate the inclusive spectrum corresponding to the Regge pole
without appealing to the perturbation theory.

But first we make a qualitative remark to appreciate the key rôle played
by the factorization feature of the Regge pole.

No matter how complicated the underlying diagrams are, due to the
unitarity condition we have to take the imaginary part of the forward
amplitude and extract one particle with a given momentum k in the
intermediate multi-particle state,

p2

p1

=⇒ k
p2

p1

. (10.9)

What distinguishes the upper part of the
full block from the scattering amplitude of
particles p1 and k is that it is connected with
the lower part by some particle lines. If the
number of these lines increased with the total
energy s, the average transverse momentum

k

p1

p2

would also grow. Besides, if somewhere inside the process the number of
exchanges depends on the initial energy, how can there be factorization
on the l.h.s. of (10.9) which, as we have supposed, is described by the
Regge pole?

Repeating the same argument we isolate the particle k as shown in the
l.h.s. of (10.10),

u

ξ

η

0

Σ

p
1

p
2

gb

ga

gu

gd

k

a

b

cΣ
d

. (10.10)

https://doi.org/10.1017/9781009290227.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.011


264 Regge pole beyond perturbation theory

It is connected to the top and bottom parts of the graph in a non-trivial
manner via some particle ‘bunches’ u and d. If we additionally suppose
that the interaction between particles is local in the rapidity space, then
the central block g2

c;u,d that links the triggered particle (of type c) to the
states u and d will span a finite rapidity interval of the order of unity.

Under these circumstances the invariant energies of the top and bottom
blocks are large and we can substitute (imaginary parts of) the Regge pole
amplitudes as shown on the r.h.s. of (10.10),

∼
∑
u,d

·
[
gra eα(0)(ξ−η)gru

]
· g2

c;u,d ·
[
grd eα(0)ηgrb

]
.

Since, due to factorization, the central part of the diagram does not de-
pend on the total energy, we get the energy-independent rapidity plateau
in the inclusive spectrum,

f(k⊥, η; s) = grag
r
bs

α(0)−1 · φ(k⊥); φc(k⊥) =
∑
u,d

gru · g2
c;u,d · grd . (10.11)

The answer is represented by the Mueller–Kancheli reggeon diagram
(Gribov, 2003),

f(k⊥, η; s) =
1
s
· c

a

b

k = σab
tot · φc(k⊥) . (10.12)

To derive rigorously this important non-perturbative result, one consid-
ers the 3 → 3 scattering amplitude and continues it to complex angular
momenta. If one supposes that there are Regge poles in 2 → 2 scatter-
ing at large s, then the asymptotic behaviour of 3 → 3 amplitude in the
s1, s2 → ∞, s1s2/s = const limit is determined by the exchange of two
Regge poles i, j,

s1

s2
s

j

i

By taking the amplitude in which both i and j have vacuum quantum
numbers, one arrives at (10.12).

10.1.5 Scaling in the fragmentation regions

The independence of the inclusive particle yield of the rapidity holds, ob-
viously, if we take a particle far enough from the ends of the full rapidity
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10.1 Basic features of multiparticle production 265

interval, ξ±. Only then the invariant energies between the triggered par-
ticle and the incoming ones are large, and we can substitute the reggeons
for the corresponding scattering blocks.

What happens at the ends?

k

s1

Let us take a particle with large rapidity, from the
first ladder rungs on the side of the projectile. In this
case we will be able to replace only the bottom part
of the graph by a reggeon that covers a large ra-
pidity interval η − ξ− = η (in the rest frame of the
target p2):

η s2 ∼ s→∞
s1 ∼ m2

ξ− = 0

s2

s1
ξ

.

At the same time, there remains a serious dependence of the inclusive
particle yield on the ‘distance’ ξ − η,

b

c

a

0

ξ

η = eα(0)ηψ(k⊥, s1) = sα(0)grb · φac(k⊥, ξ − η). (10.13)

Only after stepping away from the incident particle by about 2 units in
rapidity, the system ‘forgets’ about the quantum numbers of the ‘initiator’
of the cascade, and the universal plateau starts developing.

Thus the inclusive spectrum consists of three regions: in addition to the
plateau, two so-called fragmentation regions appear as shown in Fig. 10.3.
They are called ‘target fragmentation’ and ‘projectile fragmentation’.

The name fragmentation carries a deep meaning. According to (10.13),
the structure of the fragmentation region of the projectile, in the interval
between ηp and ξ in Fig. 10.3, depends on the type of the projectile a and
that of the triggered particle c. Moving towards the kinematical boundary,
the inclusive particle distribution may either increase as shown by the
solid line (as in the reaction π−p → π− + X), or drop (π−p → π+ + X;
dashed). At the same time it stays independent of the total energy s and
of the type of the target b (the lower reggeon vertex grb factors out into
σab

tot). The same is true for target fragmentation, η < ηt.
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pt

ηmax

f (η)

0 η

Fig. 10.3 Fragmentation regions and plateau in the inclusive spectum.

Since for fast particles

eξ−η � p1z

kz
≡ 1

x
, φac = φac(k⊥, x),

the dependence on s1 translates into the dependence on the momentum
fraction x of the incident momentum p1 that is carried by the triggered
particle k.

This feature is called the Feynman scaling or the ‘limiting fragmenta-
tion hypothesis’. In our picture it is a direct consequence of the reggeon
factorization. With the increase of s the fragmentation regions in Fig. 10.3
just separate further while preserving their specific shapes.

It is clear that the scaling must manifest itself earlier in energy than
the plateau since for the latter one needs both s1 and s2 to be sufficiently
large. Indeed, the limiting fragmentation sets in already for s of the order
of a few GeV and is well established experimentally. At the same time, a
flat plateau appears only for ξ >∼ 5 corresponding to s � 150 GeV2.

What should one expect when comparing, e.g. the inclusive reactions

p p → π+ + X and p p → π− + X ? (10.14)

When we register a particle in the fragmentation region, we take it from
the residue of the cut pomeron, and not much can be said about it.
In particular, π± production is different not only in the fragmentation
of the incident pion as we have just mentioned above, but also in the
proton fragmentation region, since the proton feels very well the difference
between π+ and π−.

However, in the plateau region quantum numbers of produced particles
must be ‘well equilibrated’. Here the particle is taken from inside the
vacuum pole itself which is ‘blind’ to I3 or to (the sign of) the strangeness
or the baryon charge. In this case the yields, e.g. of π+ and π− mesons
must be identical. The symmetry between the reactions (10.14) holds
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Fig. 10.4 Subleading corrections to the inclusive plateau density.

within a few percent. (One needs much higher energies to see protons and
antiprotons ‘equalize’.)∗

Taking into consideration subleading reggeons R that also contribute
to the forward scattering, such as ρ and P′, one can study corrections
to the asymptotics, as well as the transition between the plateau and
fragmentation regions. Summing the diagrams of Fig. 10.4 gives for the
particle density

f(k⊥, η; ξ)
σtot

= φ(k⊥) + cR1 φ
′(k⊥)e−κ(ξ−η)

+ cR2 φ
′(k⊥)e−κη + cR1 c

R
2 φ

′′(k⊥)e−κξ,

(10.15)

where κ = αP (0) − αR(0) is the shift between the pomeron intercept and
that of the subleading reggeon R, and ci are the reggeon residues nor-
malized by the pomeron one, ci = gRi /g

P
i . In reality, κ � 1

2 for the f(P′)
and ρ trajectories, see Lecture 8. This shows that the graph Fig. 10.4(c)
corresponding to the last term in (10.15) provides a ‘flat’, η-independent,
pre-asymptotic correction ∝ 1/

√
s to the plateau height, while the mag-

nitude of the corrections due to mixed graphs of Fig. 10.4(b) depends
on rapidity. It increases towards the fragmentation region, introducing a
curvature to the plateau–fragmentation transition.

Introducing an R pole into the two-particle inclusive cross section,

P

R

P

ξ

η µ e−κ η−η

η

0

, (10.16)

∗ At nucleon–nucleon energies s = 104 GeV2, the yield of antiprotons became practically equal
to that of protons, as we learnt from experiments at the heavy ion collider RHIC, Brookhaven,
NY, USA (ed.).
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268 Regge pole beyond perturbation theory

results in a positive correlation (‘attraction’) between the particles since
the non-leading reggeon tends to ‘collapse’, to reduce the difference of the
rapidities.

In two different ways – by the extension of the perturbative analysis
to the region ḡ2 <∼ 1 and by the analytic continuation of the six-point
amplitude – under the assumption of the existence of the pomeron pole
P in elastic scattering we arrive at the conclusion that multi-particle
production processes at high energies have the following characteristic
features.

(1) Final state hadrons are distributed homogeneously in η, away from
the ends of the rapidity interval – the fragmentation regions,

f(k⊥, η; s) =

b

a

c = gagb φc(k⊥). (10.17a)

(2) In the fragmentation of the incident particle i, the spectrum
depends only on the relative rapidity f = f(ηi − η) – Feynman
scaling,

f(k⊥, η; s) =

b

c

a

0

ξ

η = φac(k⊥, ξ − η) gb. (10.17b)

(3) As a consequence, the average multiplicity increases logarithmically
with collision energy,

〈n〉 � β ln
s

m2
+ const . (10.17c)

Essentially, the key hypothesis that ensures the existence of the asymptot-
ically constant rapidity plateau is that the transverse momenta in hadron
interactions are limited.
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10.2 Inconsistency of the Regge pole approximation

Up to now we considered the Regge pole as the leading singularity in
the complex angular momentum plane, assuming that all the other sin-
gularities of the partial amplitude are subleading poles, sαR , that give
power-suppressed corrections and are irrelevant for the asymptotic be-
haviour.

We will show now that this assumption is contradictory.

10.2.1 Small-multiplicity events

Investigating perturbation theory, we have seen that the sum of ladder
graphs had a Regge behaviour and, consequently, could provide a basis
for the real Regge pole. Going beyond the perturbation theory, we have
found that the qualitative features of typical inelastic processes with the
production of n ∼ n̄ particles were similar to those of the multiperipheral
ladder diagrams of the perturbative theory, although at ḡ2 ∼ 1.

What about small multiplicity events? As we know, in perturbation
theory the topological cross sections σn follow the Poisson distribution

σn+2 = σtot · e−n̄ n̄
n

n!
, (10.18)

and fall fast when one takes n away from the maximum, in particular on
the left wing, n � n̄.

Elastic-scattering contribution to σtot. Let us look at the elastic scat-
tering – the first among small multiplicity processes – and calculate its
contribution to the total cross section:

σ2 =
1

16π

∫
dq2

∣∣∣∣Ael(s, q2)
s

∣∣∣∣2 =
1
2s q

p1

q
p2

p1

p2

. (10.19)

Substituting the asymptotic elastic amplitude determined by the Pomer-
anchuk pole P,

Ael(s, q2) = s

q2

= g2(t)ξα(q2)

( s

m2

)α(q2)
, α(q2) � 1 + α′q2,

we derive

σ2 �
(
g2(0)
m2

)2

· 1
32πα′ξ

, ξ = ln
s

m2
. (10.20)
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270 Regge pole beyond perturbation theory

Here we have used the fact that the momentum transfer in the integral
is small since it is cut by the Regge radius, |q2| � q2

⊥ ∼ [α′ ln(s/m2)]−1,
which allowed us to expand the pomeron trajectory, α(q2) � 1 + α′q2, and
to put q2 =0 in the reggeon vertex g and in the signature factor, ξ � i.

We immediately see that the result we have just obtained is in a
marked disagreement with the expectation based on the Poisson distribu-
tion (10.18) according to which the fraction of small multiplicity events is
suppressed as a power of energy, σ2/σtot ∝ s−β0 , due to the logarithmic
increase of the average n̄ � β0 ln s. At the same time, (10.20) is suppressed
at s → ∞ only logarithmically.

10.2.2 Multiregge kinematics

This contradiction shows that the perturbative consideration fails when
the number of final-state particles is small. It is clear what happened.

When the pair energy is small, two particles interact via the Born ampli-
tude, = g2/(m2 − s12). (If we take the coupling ḡ2 ∼ 1, the exact
amplitude is more complicated but not significantly different.) With the
energy increasing, however, a new parameter appears, ln s-enhanced terms
become essential and the Born amplitude is replaced by the reggeized am-
plitude which corresponds to the ‘floating spin’ exchange in the t-channel.
The standard 1/s amplitude gets enhanced:

s−1 =⇒ s−1 · sβ(q2).

When we treated final states with a number of particles of the order of
the average multiplicity, typical pair energies,

〈ln si,i+1〉 �
ln s

n
∼ ln s

n̄
∼ (ḡ2)−1,

were such that in the interaction between neighbours we could neglect the
reggeization effects. In the elastic channel, on the contrary, we have a huge
energy s12 = s applied to two particles. In this situation we must mod-
ify the interaction amplitude by substituting the reggeon for the scalar
particle exchange,

α
1

p2

Σ
p

.

https://doi.org/10.1017/9781009290227.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.011
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Obviously, the same substitution must be
done also when encountering a large pair
energy inside the multiperipheral ladder.
This happens when one has a wide gap in
the rapidity distribution of the produced
particles. By making the ladder more and

α

more sparse, one can form many rapidity gaps, and ultimately arrive at
the picture with all final particles (or compact groups of particles) widely
separated in rapidity and connected by reggeons,

0

p2

p1

kn+1

kn

k1

k

si,i+1 � m2, s01s12 · · · sn,n+1 ∼ sm2n. (10.21)

Such a situation is referred to as multiregge kinematics and corresponds
to specific fluctuations in multi-particle production.

10.2.3 Multiregge amplitudes

We have to learn how various multiplicity fluctuations contribute to σtot.

Derivation of the 2 → 3 multiregge amplitude. We start with three final-
state particles. If an additional hadron is produced in the fragmentation
region of one of the colliding particles, the pomeron exchange dominates
(see Lecture 8) and we get a contribution of the order of σ2,

δσ3 ∼ σ2.

Now we take the multiregge kinematics,

s12, s23 � m2, s12 · s23 ∼ sm2.

Omitting the complex phase, we can guess the answer straight away:

p1

p2

k2

k3

α2

α1

k1
∼ g1(k1⊥)sα(t1)

12 γ(k1⊥,k3⊥)sα(t2)
23 g2(k3⊥),

t1 = (k1−p1)2, t2 = (k3−p2)2.

(10.22)
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272 Regge pole beyond perturbation theory

It is not an easy task to derive rigorously the multiregge amplitudes by
analytic continuation to complex j. The amplitude has specific analyticity
in each of many sub-channels, and the signature structure of multi-point
amplitudes becomes rather involved.

k3

p1

q2

q1

k−q1
k2

p2

k1

k
k q2

For our purpose of evaluating contributions to σtot

in the s-channel, this subtlety is, however, irrelevant.
So we can rely on the perturbative analogy and derive
the 2 → 3 amplitude in the multiregge kinematics from
the ladder picture. For the final particle momenta we
write

k1 = β1p+ +
m2

1⊥
β1

p− + k1⊥,

k2 = β2p+ + α2p− + k2⊥,

k3 =
m2

3⊥
α3

p+ + α3p− + k3⊥.

For momentum transfers qi this gives

q1 � (1 − β1)p+ − k2
1⊥ + (1 − β1)m2

β1s
p− − k1⊥,

q2 � (1 − α3)p− − k2
3⊥ + (1 − α3)m2

α3s
p+ − k3⊥.

Then, due to the rapidity ordering and the momentum conservation,

β3 � β2 � β1, β3 + β2 + β1 = 1;

α1 � α2 � α3, α3 + α2 + α1 = 1,

we have (1 − β1) � β2, (1 − α3) � α2, and the longitudinal components
of the transferred momenta qi become expressed in the multiregge kine-
matics via the observed particle momentum k2:

q1 � β2p+ − k2
1⊥
s

p− − k1⊥, q2
1 � −k2

1⊥;

q2 � α2p− − k2
3⊥
s

p+ − k3⊥, q2
2 � −k2

3⊥.

We have to integrate over the loop momentum k,

k = βp+ − αp− + k⊥, d4k =
s

2
dα dβ d2k⊥,
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whose Sudakov components determine the invariant energies of the top
and bottom ‘ladders’,

s′ ≡ (p1 − k)2 = (α + γ)(1 − β)s + m2 + k2 � αs ≡ x · s12,

s′′ ≡ (p2 + k)2 = (1 − α)(β + γ)s + m2 + k2 � βs ≡ y · s23.
(10.23)

In (10.23) we have introduced momentum fractions

x = α/α2, y = β/β2, (10.24)

and used s12 = (k1 + k2)2 � α2s and s23 = (k2 + k3)2 � β2s. Finally, let
us have a look at the propagators:

m2 − (k − q1)2 = m2 + (k + k1)2⊥ + α(β − β2)s,

m2 − k2 = m2 + k2
⊥ + αβs, (10.25)

m2 − (k + q2)2 = m2 + (k − k3)2⊥ + (α− α2)βs.

The integrals over x and y converge at x ∼ y ∼ 1; therefore the invari-
ant energies (10.23) are large and we can substitute Regge poles for the
‘ladder’ amplitudes,

A(s′, q2
1; k

2, (k − q1)2) ∼ ga(q2
1) · ξα1(s

′)α1 · g̃1(q2
1; k

2, (k − q1)2),

A(s′′, q2
2; k

2, (k + q3)2) ∼ gb(q2
2) · ξα2(s

′′)α2 · g̃2(q2
2; k

2, (k + q2)2).

Here α1 = α1(q2
1) and α2 = α2(q2

2) are trajectories of the two reggeons,
ga, gb are the standard reggeon–particle vertices, and the vertices g̃ con-
tain the dependence on the virtualities of the participating particles. The
answer has the form

A2→3(s,k1⊥,k2⊥, η2) = g1(q2
1)g2(q2

2) ξα1ξα2 m
2
2⊥ · sα1

12s
α2
23 × γ,

γ = γ(k1⊥,k2⊥) =
∫

d2k⊥
2(2π)2

∫
dx dy

(2π)2i
xα1yα2

(1)(2)(3)
g̃1 g̃2;

(10.26a)

the propagators (10.25) in terms of the rescaled variables (10.24) read

(1) = m2 + (k + k1)2⊥ + x(y − 1) ·m2
2⊥ − iε,

(2) = m2 + k2
⊥ + x y ·m2

2⊥ − iε, (10.26b)

(3) = m2 + (k − k3)2⊥ + (x− 1)y ·m2
2⊥ − iε.

The concrete form of the function γ depends on details of the interaction.
Importantly, it is a function of the transverse momenta and is independent
of the energy invariants. Therefore we can look upon γ as a new reggeon–
reggeon–particle vertex.
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Multiregge amplitudes 2 → 2 + n. The generalization of (10.26) to the
case of many particles separated by large rapidity gaps is straightforward.
For the amplitude A2→2+n in the multi-regge kinematics (10.21) we can
write (modulo the complex phase factor)

k0

kn

kn

k1

b

a
q

1

q
n

q
2 ∼ ga(q2

1)s
α1
01γ12s

α2
12 · · · γn,n+1s

αn+1

n,n+1gb(q
2
n+1), (10.27)

where each subscript in the trajectory αi and the vertex γi,i+1 marks
the dependence on the corresponding transferred transverse momentum,
αi = α(−q2

i⊥), and γi,i+1 = γ(qi⊥,qi+1⊥).

Contribution to σ3 from the multiregge kinematics. Let us estimate the
2 → 3 cross section in the kinematical region (10.23). To begin with, the
three-particle phase space volume is

dΓ3 =
d4k1

(2π)4
d4k3

(2π)4

3∏
i=1

[
2πδ+(m2 − k2

i )
]

=
dβ1

β1

dα3

α3

d2k1⊥
2(2π)3

d2k3⊥
2(2π)3

2πδ+(m2 + k2
2⊥ − α2β2s)

� dη

s

d2k1⊥ d2k3⊥
4(2π)5

; dη =
dβ2

β2
.

(10.28)

Integrating the multiregge amplitude squared (10.26),

σ3 =
1
J

∫
dΓ3|A2→3|2 ,

and omitting the constant normalization factor, we have

σ3 ∼ s2(α(0)−1)

∫
dη

∫
dk2

1⊥ e−2α′(ξ−η)k2
1⊥

∫
dk2

3⊥ e−2α′η k2
3⊥

∼
∫ ξ−η0

η0

dη

η (ξ − η)
∼ ln ξ

ξ
� ln ln s

ln s
; 1 <∼ η0 � ξ.

(10.29)

Although this estimate is valid only in an academic limit ξ � 1, it demon-
strates that, at least formally, σ3 is enhanced as compared to the elastic
contribution σ2. The origin of this slight enhancement is a broad integra-
tion over rapidity of the particle k2 from the plateau region.
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10.2.4 Multiplicity fluctuations and s-channel unitarity

The study of small multiplicities, n � n̄, is a test of the Pomeranchuk
pole hypothesis. If multiplicity fluctuations are weak and the pomeron
is ‘resistant’ to the s-channel unitarity, we have a self-consistence theory
at our disposal. If, however, fluctuations are strong and contribute ‘too
much’ to σtot, then we have either to abandon altogether the initial idea
that the pole is the rightmost singularity in the j plane, or to review the
concept of P being an isolated singularity.

So, having started from the vacuum pole which from the s-channel point
of view corresponds to an uniform particle distribution in rapidity,

, (10.30a)

we are driven by the unitarity relation in the s-channel to accept the
existence of the processes that are difficult to accommodate into the pure
Regge pole model. Thus, fluctuations in multi-particle production with
large gaps in rapidity have led us to reggeize the amplitude by sending a
reggeon between the two neighbouring particles with a large pair energy,

. (10.30b)

This resulted in the cross section graphs containing the two poles which
coexist, from the t-channel viewpoint. (Thick lines mark a cut-through P.)

By broadening the gap we eventually arrive at the elastic scattering

. (10.30c)

As we have seen above, small multiplicity fluctuations contribute signif-
icantly to σtot; their contributions are suppressed only logarithmically in
s, while we would expect a power smallness if there were only poles in the
complex angular momentum plane.

The graphs with two ‘parallel’ reggeons, (10.30b) and (10.30c), make
one think of branch-cut singularities, by an analogy with threshold branch
cuts for usual particles. Another argument in favour of reggeon loops
comes from the ‘opposite side’ – high multiplicity fluctuations. Indeed, we
can imagine two multiperipheral cascades which will give rise to doubled
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plateau density,

. (10.30d)

In the cross section this corresponds again to a picture like (10.30b) but
this time with all the pomerons being cut, P → 2 ImP.

You may often hear people saying that the picture of multiple hadron
production is very similar to statistics of a fluctuating gas. Literally, this
analogy is wrong. The probability of finding in a gas just two molecules
is exponentially small; in our case it cannot be small due to the optical
theorem! It is the special rôle of elastic scattering that forces us to separate
quasi-diffractive (fragmentation) processes from multi-particle production
with n ∼ n̄. It is the latter for which the gas analogy works.

There are certain fluctuations that signal a catastrophic instability of
our system. Let us discuss one particular very important fluctuation,

. (10.30e)

10.2.5 Inelastic diffraction: triple-pomeron limit

This is the process in which one of the colliding particles scatters elasti-
cally, while the second one breaks up into a many-particle state. It may
be referred to as the high-mass inelastic diffraction.

The reason for calling this process ‘important’ is, in the first place, its
experimental accessibility.

It is not simple to investigate hadron collision events with rapidity gaps
experimentally. One has to measure many particles (or rather their ab-
sence) to make sure that the event contains indeed rapidity gap(s). The
process (10.30e) offers a much simpler option. Indeed, it is sufficient to
register the leading scattered particle with sufficiently large energy, close
to the initial one. Then the energy conservation law will ensure that there
are no other energetic particles in the event, and we will get a gap in
rapidity. Thus this process is a particular case of inclusive measurement
with triggering of the particle from the very top, close to the kinematical
boundary.
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a aq
p1 p

k
s2

s1

b

p2

Let us look into kinematics. We choose for clarity
the laboratory frame of the target, p2 = 0. Then

s = (p1 + p2)2 � 2mp10 � m2,

s1 = (q + p2)2 � 2p2q = 2mq0 � m2.
(10.31)

The invariant mass of the diffractive hadron system, M2 = s1, is deter-
mined by the energy transferred from the projectile to excite the target,

s1 =
q0
p10

s ≡ (1 − x)s, (10.32a)

where x = p′0/p10 is the energy fraction preserved by the scattered parti-
cle a. Practically the whole energy q0 transferred to the target fragmen-
tation block by the reggeon is carried by the fastest particle, the one on
the top of the ‘ladder’, k0 � q0. This allows us to evaluate the invariant
energy s2 corresponding to the size of the gap:

s2 = (p′ + k)2 � 2(p′k) � p0 ·
m2 + k2

⊥
k0

� m2
⊥
p0

q0
=

m2
⊥

1 − x
. (10.32b)

By choosing x in the interval

m2

s
� 1 − x � 1 (10.33)

we have the multiregge kinematics with s1 and s2 being both large, and

q2 = −p′2
⊥
x

− m2(1 − x)2

x
� −p′2

⊥.

We square the amplitude and, replacing the target fragmentation block
summed over all possible hadron states by 2 ImP, arrive at the graph
shown in Fig. 10.5. This is called the triple-reggeon limit, or 3P since all
three reggeons are pomerons in our case.

Substituting the pomeron trajectory, αP(q2) = 1 + α′q2, and integrat-
ing over q2 and x we get the probability of these fluctuations increasing
with the energy:

σ3P

σtot

∝ ln ln
s

m2
. (10.34)

We arrive at a contradiction: we supposed that σtot is asymptotically
constant, and found a part of it that grows infinitely.
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s1

s2
q

p

p2

p1

=⇒
s2

s1
2 Im P

ga

PP

ga

r (q2)

gb

Fig. 10.5 Triple-regge limit for high-mass inelastic diffraction.

Let us calculate the contribution of the diagram of Fig. 10.5 to the total
cross section. We have

σ3P =
1
J

∫
d3p′

2p′0(2π)3
g2
a(q

2)s2α(q2)
2 r(q2)2sα(0)

1 gb(0), J = 2s, (10.35a)

where ga, gb are couplings of P to the incoming particles ‘a’ and ‘b’, and
r is a new three-reggeon vertex function. We did not write the signature
factors |ξα|2, because at small q2 which dominate the integral, ξP = i +
cot 1

2πα(q2) � i.
Invoking (10.32) we absorb the factor m2

⊥ from (10.32b) into redefining
the vertex r to write

σ3P =
gb(0)sα(0)−1

16π2

∫
dx

x

∫
d2q⊥
π

g2
a(q

2) · r(q2) · (1 − x)α(0)−2α(q2)

� σtot

16π2 ga(0)

∫
dx

1 − x

∫
dq2

⊥(1 − x)2α
′q2

⊥g2
a(q

2) · r(q2)

=
σtot

32π2

ga(0)
α′ · r(0)

∫
dy

y
, y = ln

1
1 − x

. (10.35b)

Here we have extracted from under the integral the values of vertices ga
and r at q2 = −q2

⊥ = 0, since the essential transverse momenta are small,
due to the shrinkage of the diffractive cone,

〈
q2
⊥
〉
∼ (α′y)−1 � m2, at

large y values. The integration over x in the multi-regge region (10.33)
gives the catastrophic result announced above in (10.34):

σ3P

σtot

= r(0) · ga(0)
32π2α′ · ln ln

s

m2
, ln

s

m2
� 1. (10.36)

How can the apparent contradiction, σ3P > σtot in the s → ∞ limit
be handled? Let us examine the region of x in which the dangerous
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contribution has been accumulated. Actual integration limits are

s1 = (1 − x)s > Λm2 � m2, s2 ∼ m2

1 − x
> Λm2 � m2,

where Λ is a large number. First of all, in order to apply the reggeon
amplitudes to both the top and the bottom parts of the diagram, we need
to take at least Λ >∼ 10 which corresponds to stepping by about 2 units
in rapidity from the projectile and the target (we know that only then
the plateau starts emerging). So, we have to ‘renormalize’ the argument
of the logarithm; conservatively,

ln
s

m2
=⇒ ln

s

100m2
.

Secondly, when we evaluated the integral over q⊥ we have ignored the size
proper of the proton, embedded in ga(q2). Hence, another modification:

ln ln s =⇒ ln
(
R2

α′ + ln s

)
,

R2

α′
P

∼ 4.

Moreover, the factor before ln ln in (10.36) is numerically small. At present
energies, the inelastic diffraction constitutes less than 10% of σtot. And
ln ln is hardly a function: it is indistinguishable from a constant. A real
contradiction may appear only at fantastically high energies; in fact we
have only ln ln s = 5 when s equals the mass squared of the Universe!

However, in order to accept this as an excuse we need to have a theory
in which the mass of the Universe enters and solves this ln ln phenomenon,
which option is likely to belong to the domain of science fiction.

Therefore we must view this apparent contradiction as a serious fault
of the theory we are constructing.

Fortunately, there is a more practical way to resolve the problem. In the
three-reggeon diagram we have, in fact, introduced a new notion, that of
the reggeon interaction vertex r(q2). We have supposed that the value r(0)
is finite. Further, we shall see that the vanishing of reggeon interaction
vertices at q⊥ = 0 in one of the possible solutions of the problem of taming
multiplicity fluctuations.

In Lecture 15 we will return to the multiplicity fluctuation pattern
and will discuss physical reasons for inelastic processes to vanish in the
forward direction, q⊥ = 0.

10.2.6 Multiparticle production with large rapidity gaps

High-mass inelastic diffraction is not the only multiplicity fluctuation
going wild. Another example, due to K. Ter-Martirosyan, builds up on
the multi-regge amplitudes (10.27) that describe the production of many
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particles with large rapidity gaps between them.

k0

kn 1

kn

k1

b

a
q

1

qn 1

q2 ∝ gas
α1
01γ12s

α2
12 · · · γn,n+1s

αn+1

n,n+1gb.

The cross section σ2→2+n can be calculated in the same way as for ordi-
nary multiperipheral ladders. There is one essential difference: the Regge-
dependence of the ladder cell amplitude on the pair energy has to be taken
into account

Mi ∼ ξαi
s
α(q2

i )
i−1,i ∼ s

α(0)
i−1,i e

−α′q2
i⊥yi ; yi = ln

si−1,i

m2
, i = 1, . . . , n + 1.

(10.37)

Here yi is the relative rapidity of two particles i− 1 and i, which we will
treat as large, yi � 1. The cross section contains n + 1 integrals over
transverse momenta qi, i = 1, . . . , n + 1. These integrals are cut from
above by Regge radii at sufficiently high energies si,i+1:

q2
i⊥ <∼

1
α′ ln si,i+1

=
1
α′y

� m2, (10.38)

therefore we put qi⊥ = 0 in the vertices, g and γi,i+1, as we have done
before in a number of occasions. Squaring the matrix element (10.37) and
integrating over qi, we get the product of inverse relative rapidities. We
are left with n integrations over ordered rapidities of final state particles
ki, i = 1, . . . , n, which we represent as n + 1 independent integrals over
rapidity differences, yi, satisfying the kinematical relation (10.21):

δσn
σtot

∼ γn(0, 0)
(2α′)n+1

∫ ξ

ln Λ

dy1 dy2 · · · dyn+1

y1y2 · · · yn+1
δ

(
n+1∑
i=1

yi − ξ

)
. (10.39)

Here we have combined the product
∏

s
α(0)
i−1,i = sα(0) and the vertices

ga,b(0) into the total cross section and put ln Λ for the lower limits of
rapidity integrals to justify the usage of the multi-reggeon approximation
(see the discussion above). As far as the formal s → ∞ asymptote is con-
cerned, the leading contribution comes from the configurations when one
of variables is much larger than the rest, y(k) � ξ � yi, i �= k, and we de-
rive the answer for the fraction of the cross section due to the production
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of a sparse n-particle final state in the multi-regge kinematics:

δσn
σtot

� const · (n + 1)
(ln ξ)n

ξ
. (10.40a)

(Importantly, there is no n! in the denominator.) Our derivation implied

ln〈yi〉 � ln
ξ

n
� ln

n̄

n
� R2

α′ � 4,

so we better ‘soften’ our result (10.40a) as follows,

δσn
σtot

� const · n + 1
ξ

(
ln

ξ

n

)n

. (10.40b)

Still, the formal contradiction is there. Let us demonstrate that at s → ∞
we can always find such a ‘sparse ladder’ the cross section of which grows
arbitrarily large. Expressing n as a fraction of the mean multiplicity, n ≡
ξ/F , lnF � 1, and keeping F fixed, we obtain

δσβ〈n〉
σtot

∼ const
F

(lnF )ξ/F ∝ s(ln lnF )/F ,

that is, the fraction of events increasing as a (very small but finite) power
of energy! Again, we arrive at a contradiction with the pomeron pole
hypothesis: multiplicity fluctuations tend to ruin it (unless in (10.39) the
pomeron–pomeron interaction vertex vanishes in the origin, γ(0, 0) = 0).

10.3 Reggeon branch cuts and their rôle

What is the composition of the total cross section in our modified picture?

++ + . . .++

(10.41)
In addition to the multiperipheral ‘ladders’ with n ∼ n̄(s), we have the
contribution of the (quasi)elastic scattering, as well as a series of terms
describing multiparticle production with large rapidity gaps between
(groups of) hadrons.

We have introduced the pomeron pole as the rightmost singularity
in the vacuum channel. This implied that the total cross section was
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asymptotically given, with power accuracy, by the imaginary part of the
pomeron amplitude,

σtot → ImAP(s, 0) =
1
2

×
(

1 + O
(

1
sa

))
, s → ∞. (10.42a)

From the perturbation theory we learned that the ‘s-channel content’ of
the pomeron pole corresponds to the first term of (10.41),

. (10.42b)

Where in (10.42a) are then the logarithmically behaving ‘fluctuation’
terms that are present in (10.41)? To add an insult to injury, according
to the logic that we have advocated before, the Regge pole must accom-
modate the structures that are dynamically bound in the t-channel; but
the just-mentioned missing terms hardly satisfy this criterion, especially
the first – elastic – one. There are two possible escapes:

(1) σtot in (10.41) differs from the multiperipheral model (10.42b) by
a sum of positive terms. If we were to rescue the pure Regge pole
approximation, we could imagine that the prescription (10.42b) was
simply inaccurate, and in fact

AP
exact = AP

ladder − Δ,

with Δ a small correction compensating the unwanted contributions
in the optical theorem (10.41).

(2) An alternative possibility is that we made a mistake not in identi-
fying the pomeron pole with the characteristic rapidity plateau as
in (10.42b) but in the very assumption that the pole is the only
significant contributor to the full amplitude, even in the s → ∞
limit:

Aexact = AP − Δ;
Δ
AP

∼ 1
ln s

.

The second option – the only viable one, as it turns out – implies that the
pomeron is not the leading singularity; more accurately, is not an isolated
leading singularity. To legalize the existence of the corrections to ImP
that are suppressed only logarithmically in s in the unitarity condition,
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there must exist other singularities in the j-plane, weaker than the pole,
positioned at the same point j = 1 at t = 0.

10.3.1 Enter reggeon branchings

Two-pomeron correction to the elastic amplitude. Let us examine the first
correction to the elastic scattering amplitude due to s-channel iteration
of the pomeron exchange:

2 Im = q1+   12q

p1 p1+q

q1− 1
2q

p2

=
∫

d4q1
(2π)4

g2(t1)g2(t2)ξα(t1)s
α(t1) · ξ∗α(t2)

sα(t2)

· 2πδ((p1 − q1)2 −m2)2πδ((p2 + q1)2 −m2),

(10.43)

where

t1 � −(q1 − 1
2q)2⊥, t2 � −(q1 + 1

2q)2⊥.

A simple calculation yields

� s2α(t/4)−1g4|ξα|2
∫

d2q1⊥
2(2π)2

exp
{
−2α′q2

1⊥ · ln s
}

� g4(t/4)
∣∣ξα(t/4)

∣∣2 s2α(t/4)−1

16π α′ ln s
.

(10.44)

Here we substituted t1 = t2 = t/4 in the pre-exponential factors since the
transverse momentum integral at large ξ = ln s selects small q1⊥. Taking
the forward scattering amplitude, t � −q2

⊥= 0, we recover the correction
σ2 that we have calculated above in (10.20). The energy exponent of
(10.44) corresponds to a new singularity whose trajectory is

j2 = 2α(t/4) − 1 � 1 + 1
2α

′t. (10.45)

It has a twice-smaller slope than the pomeron; at t = 0 the position of this
new singularity coincides with that of the pomeron. The pre-exponential
factor (ln s)−1 in (10.44) shows that this is not a pole but a branch cut in
the angular momentum plane.

Multi-reggeon moving branch point singularities. In the next lecture we
will demonstrate that the necessity of branch cuts in the complex angular
momentum plane follows directly from the t-channel. They are driven by
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...α(t1) α(tn) 

Regge poles. Once a Regge pole α(t) is introduced
into the theory, it generates a series of moving
branch-point singularities with trajectories

jn(t) = nα

(
t

n2

)
− n + 1, (10.46)

the expression generalizing (10.45) to all n and orig-
inating from the exchange of n reggeons in the t-
channel.

Historical remark, and a lesson. The question of branch-point singular-
ities (branchings) has a curious history. First, people thought that such
angular momentum singularities cannot exist, which is the case in the
non-relativistic quantum mechanics. Then it was understood that they
must be present. Searching for a model for branching, a diagram of
Fig. 10.6(a) was suggested based on the perturbative picture of a pole
as a ladder.

(b)(a)

Fig. 10.6 The diagram (a) falls with s much faster than its imaginary part (b).

It was soon realized, however, that with s increasing this diagram is
falling fast, as a power of s. This looks puzzling, since we have just seen
above that its imaginary part shown in Fig. 10.6(b) is rather large and
models the two-reggeon branching very well indeed!

The point is, the diagram (a) has many cuts in s, many ‘imaginary
parts’, so to say, while we have selected in (b) one specific cut. In the full
sum of all possible discontinuities of the diagram (a) different ‘imaginary
parts’ cancel, making the picture with parallel ladders a wrong model for
the branching. We will discuss this issue in detail in Lecture 12 where we
will understand the physical reason behind this cancellation and construct
the true s-channel image of the t-channel branch-point singularity.

But already at this stage there is an important message to take on
board. When we have been discussing multiplicity fluctuations, we cut the
diagrams for σtot in (10.41) ‘in the middle’, and avoided cutting through
reggeons (where possible). At the same time, the reggeon amplitudes have
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a non-trivial complexity themselves. In the complete theory we must take
these alternative discontinuities into full account. We had already a hint
in this direction when we saw how different cuts of the same graph with
a pomeron loop produced a rapidity-gap event, (10.30b), and a double
multiplicity fluctuation, (10.30d).

10.3.2 Branchings in non-vacuum and vacuum channels

Let us look at the behaviour of (10.46) at large n and fixed t,

jn(t) � (n− 1)(α(0) − 1) + α(0), n → ∞.

There are three qualitatively different patterns.

α(0)<1. High order branchings move to the left and become insignifi-
cant.

α(0)>1. No-go: jn → +∞ violates analyticity/causality: the corre-
sponding A(s) would grow faster than any power of energy.†

α(0)=1. In this exceptional case branch cuts accumulate at j = 1 and
are all important. (From the consideration of s-channel phe-
nomena, we already learnt that they have to be.)

The first case applies to all Regge trajectories but P.
A remarkable link between t-channel resonances and the asymptotic

energy behaviour of corresponding scattering amplitudes in the s-channel
stay intact after we take into account reggeon branchings.

For example, at large s the charge exchange reaction
π−p → π0n is dominated by the ρ Regge pole having
trajectory β(0) � 0.5. Repeating such a reggeon in the
t channel produces a 1/

√
s suppressed correction:

j2(0) − j1(0) = (2β(0)−1) − β(0) = −(1−β(0)) � 0.5.

ρ

p

π0

n

π−

Another possibility is to send a pomeron in parallel to the ρ pole. In this

Pρ

np

π− π0
case we get

j2(0) = α(0) + β(0) − 1 = β(0).

The power falloff of the amplitude remains the same.
However, the scattering angle dependence at small t < 0
will be affected by branching corrections.

† Dynamics of t-channel branch cuts almost contains the Froissart theorem!
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t

11 jj

t< 0>0

Fig. 10.7 Relative position of the pomeron pole and branchings in j-plane.

Return to the most interesting vacuum channel case, α(0) = 1. Let us
draw what happens in the j-plane (Fig. 10.7). If t > 0, branchings are on
the left from the pole and accumulate at j = 1. In the physical region of
the s-channel, t < 0, the picture looks dramatic: the pole is no longer the
rightmost singularity. This means that pomeron branchings are likely to
seriously modify the t-dependence of the scattering amplitude.

As for the total cross section, here a difficult story starts. Prior to
addressing the problem we must develop adequate means first. To connect
colliding particles by parallel reggeons as we did before is not enough. We
need to learn how reggeons interact among themselves.

This is exactly what happens, from the t-channel point of view, in
high-mass inelastic diffraction and multi-gap events, in particular, those
very fluctuations that we found most damaging for self-consistency of the
pomeron picture:

λr

One possibility is that branchings are significant to such an extent that
they turn out to play the dominant rôle, changing the energy behaviour
of the cross section, of the plateau density, etc. (the so-called ‘strong
coupling’ regime).

Another possible scenario preserves the asymptotic constancy of σtot.
One can construct a self-consistent theory if all effective reggeon inter-
action vertices (r, λ, etc.) vanish when the transverse momenta flowing
through participating reggeons tend to zero. In this (‘weak coupling’) so-
lution pomeron branchings, and multiplicity fluctuations along with them,
are kept under control as corrections. A recently found unexpected con-
sequence of this theory runs as follows: if total cross sections are asymp-
totically constant, they must tend to one and the same constant for all
scattering processes!

But first we have to return to the t-channel and to complex angular
momenta.
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