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Abstract

We show that complex Fano hypersurfaces can have arbitrarily large degrees of irrationality. More
precisely, if we fix a Fano index e, then the degree of irrationality of a very general complex
Fano hypersurface of index e and dimension n is bounded from below by a constant times

√
n.

To our knowledge, this gives the first examples of rationally connected varieties with degrees of
irrationality greater than 3. The proof follows a degeneration to characteristic p argument, which
Kollár used to prove nonrationality of Fano hypersurfaces. Along the way, we show that in a family
of varieties, the invariant ‘the minimal degree of a dominant rational map to a ruled variety’ can
only drop on special fibers. As a consequence, we show that for certain low-dimensional families
of varieties, the degree of irrationality also behaves well under specialization.

2010 Mathematics Subject Classification: 14E05 (primary); 14J45 (secondary)

There has been a great deal of interest in studying questions of rationality of
various flavors. Recall that an n-dimensional variety X is rational if it is birational
to Pn and ruled if it is birational to P1

× Z for some variety Z . Let X ⊂ Pn+1
C

be a complex degree d hypersurface. In [9], Kollár proved that when X is very
general and d > (2/3)(n+3), then X is not ruled (and thus not rational). Recently,
these results were generalized and improved by Totaro [16] and subsequently by
Schreieder [15]. Schreieder showed that when X is very general and d > log2(n)
+ 2, then X is not even stably rational. In a positive direction, Beheshti and Riedl
[2] proved that when X is smooth and n > 2d!, then X is at least unirational, that
is, dominated by a rational variety.
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Given a variety X whose nonrationality is known, one can ask if there is a way
to measure ‘how irrational’ X is. One natural invariant in this direction is the
degree of irrationality, defined as

irr(X) := min{δ > 0 | ∃ a degree δ dominant rational map X 99K Pn
}.

For instance, Bastianelli et al. [1] computed the degree of irrationality for very
general hypersurfaces of degree d > 2n+1 by using the positivity of the canonical
bundle. Naturally, one is tempted to ask what can be proved about hypersurfaces
with a negative canonical bundle.

Our main result gives the first examples of Fano varieties with arbitrarily large
degrees of irrationality.

THEOREM A. Let Xn,d ⊂ Pn+1
C be a very general hypersurface of dimension n

and degree d. If d > n + 1−
√

n + 2/4, then

irr(Xn,d) >

√
n + 2
4

.

In fact, we prove the stronger statement that the minimal degree map from Xn,e to
a ruled variety is bounded from below by

√
n + 2/4. These give the first examples

of rationally connected varieties X with irr(X) > 4. (Irrational Fano varieties
X have irr(X) > 2, and rational covers of degree 2 always admit birational
involutions. Iskovskih and Manin’s work [6] on the Noether–Fano method implies
that a general smooth quartic threefold X has a trivial birational automorphism
group. Thus irr(X) = 3.)

The proof of Theorem A proceeds by extending ideas from Kollár’s paper [9],
using a specialization to characteristic p > 0. This involves two main additions to
the arguments in [9]. First, we use positivity considerations involving separation
of points to show that the hypersurfaces constructed by Kollár do not admit low-
degree maps to ruled varieties. Our main technical result then asserts that such
mappings, if they exist, behave well in families. Specifically, given a family of
projective varieties over the spectrum of a discrete valuation ring (DVR), we prove
that the minimal degree of a rational map to a ruled variety can only drop upon
specialization. To be more precise, let T be the spectrum of a DVR with generic
point η and residue field κ , and let XT be an integral normal scheme that is flat
and projective over T such that Xη is geometrically integral. With this set-up in
mind, we have the following theorem.

THEOREM B. If Xη admits a dominant and generically finite rational map to a
ruled variety with degree 6d, then so does every component X ′

κ ⊂X red
κ .
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A similar result holds when comparing the geometric generic fiber to the special
fiber (see Theorem 1.1).

We give other applications of Theorem B concerning the behavior of the degree
of irrationality in certain families. The last few years have seen major progress in
understanding the behavior of rationality and stable rationality in families. Hassett
et al. [5] showed that there are families of varieties where there is a dense set of
rational fibers, but the very general member is irrational. Nicaise and Shinder [14]
(respectively, Kontsevich and Tschinkel [12]) established that stable rationality
(respectively, rationality) specializes in smooth projective families. The behavior
of unirationality and the degree of irrationality in families is understood to a
lesser extent. Applying Theorem B, we show that in certain families the degree of
irrationality can only drop upon specialization.

PROPOSITION C. Let π : X → T be a smooth projective family of complex
varieties over a smooth irreducible curve T with marked point 0 ∈ T . Assume
that a very general fiber Xt is either:

(1) a surface with H 1,0(Xt) = 0; or

(2) a simply connected threefold with ωXt
∼= OXt (that is a strict Calabi–Yau

threefold).

If irr(Xt) 6 d, then irr(X0) 6 d.

By work of the first author [4], it is known that a very general abelian surface A
has irr(A) 6 4. From Proposition C, we are able to deduce:

COROLLARY D. Every complex abelian surface A has irr(A) 6 4.

In Section 1, we prove a generalized version of Theorem B, as well as
Proposition C and Corollary D. In Section 2, we prove Theorem A. Throughout
the paper, by variety we mean an integral separated scheme of finite type over a
field (not necessarily algebraically closed). By very general, we mean away from
the union of countably many proper closed subsets. If X is a scheme over T and
k is a field with a map Spec(k)→ T , by abuse of notation we write

Xk :=X ×T Spec(k).

1. Maps to ruled varieties specialize

The goal of this section is to prove a slightly more general version of Theorem B.
Let T = Spec(A) be the spectrum of a DVR with uniformizer t , fraction
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field η = Frac(A), and residue field κ = A/t . Let η and κ be their respective
algebraic closures. Assume that XT → T is a flat projective morphism, and XT

is a normal integral scheme such that Xη is geometrically integral.

THEOREM 1.1. With the set-up above:

(1) If Xη admits a dominant generically finite rational map to a ruled variety

ϕ : Xη 99K Zη × P1
η

with deg(ϕ) 6 d, then so does every component X ′

κ ⊂ X red
κ (where X red

κ

denotes the reduction of the special fiber).

(2) Suppose that X ′

κ ⊂ Xκ is a component that is geometrically reduced and
geometrically irreducible. If Xη admits a dominant rational map to a ruled
variety

ϕ : Xη 99K Zη × P1
η

with deg(ϕ) 6 d, then so does X ′

κ .

Proof. First we prove (1). We may assume Zη is the generic fiber of a reduced
and irreducible projective scheme ZT over T . As XT is normal and the schemes
are projective over T , the rational map ϕ extends to a map ϕT which is defined
on all codimension 1 points. By an argument of Abhyankar and Zariski [11,
Lemma 2.22] for any codimension 1 point δ ∈X , there is a birational morphism
µ : RT → ZT × P1 so that the induced rational map

ϕ′T : XT 99K RT

satisfies ϕ′T (δ) is a codimension 1 point and RT is regular at ϕ′T (δ). When δ is the
generic point of X ′

κ , then the closure of the image R′κ := ϕ
′

T (δ) ∈ Rκ satisfies
the hypotheses of Matsusaka’s Theorem (see [10, Theorem IV.1.6]). Therefore
R′κ is ruled, and we have produced a dominant generically finite rational map
ϕ′κ : X

′

κ 99K R′κ with deg(ϕ′κ) 6 d .
Next, we prove (1) implies (2). There is a finite field extension η ⊂ L ⊂ η such

that ϕ is defined over L , that is, there is a map XL 99K ZL×P1 whose base change
to η is ϕ. Let B ⊂ L be the integral closure of A. Let p ⊂ B denote the ideal of a
closed point over (t = 0) with residue field κB = B/p. This gives a map of DVRs
A→ Bp. Let S = Spec(Bp) and let XS := XT ×T S be the base change of XT

to S. (1) implies that every component of the special fiber of the normalization
(X norm

S )κB admits a map to a ruled variety with degree bounded by d .
It remains to show that for any component X ′

κ ⊂ Xκ which is geometrically
reduced and geometrically irreducible (as in the statement of the theorem),
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the normal locus of XS contains the generic point of the divisor

X ′

κB
:=X ′

κ ×κ κB ⊂XS.

The assumption that X ′

κ is geometrically reduced implies that XS is regular at
the generic point of X ′

κB
. So in particular, XS is normal at the generic point

of X ′

κB
.

Now we prove two results about the behavior of the minimal degree map to a
ruled variety. We thank the referee for providing a cleaner proof of the following
lemma.

LEMMA 1.2. Let L ⊃ k be a field extension of an algebraically closed field k. If
X is a variety over k of dimension n, then X admits a dominant generically finite
rational map of degree d to a ruled variety over k ⇐⇒ X L := X ×k L admits a
dominant generically finite rational map of degree d to a ruled variety over L.

Proof. The forward direction is clear. For the converse, assume that X L admits a
dominant generically finite rational map of degree d to a ruled variety over L:

X L 99K ZL × P1
L .

As all of this must be defined over a finitely generated extension of k, we may
assume that L/k is finitely generated. There is an affine variety B with k(B) ∼= L .
The above rational map of L-varieties spreads out to a dominant generically finite
rational map

X × B 99K Z × P1
k,

where Z is a variety over B. Since k is algebraically closed, B has a k-point
b ∈ B(k) such that X × {b} meets the locus where the above rational map is
defined. This gives the desired dominant generically finite rational map

X × {b} 99K Zb × P1
k .

We thank François Greer and Burt Totaro for suggesting the following lemma.

LEMMA 1.3. Working over C, let X → T be a smooth projective family of
varieties over a variety T with geometric generic point η. If a very general fiber
Xt admits a generically finite dominant rational map of degree d to a ruled
variety then so does Xη, and every fiber admits a generically finite dominant
rational map of degree 6d to a ruled variety.
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Proof. By [17, Lemma 2.1], there is a field isomorphism of ϕ : η ∼= C such that
the fiber product Xt×Cη is isomorphic to Xη as varieties over η. Let Xt 99K Z×C
P1
C be a dominant generically finite rational map of degree d to a ruled complex

variety. This induces a dominant generically finite rational map of degree d:

Xη
∼=Xt ×C η 99K (Z ×C P1

C)×C η.

Finally, (Z×P1)×C η ∼= (Z×C η)×P1 is a ruled variety over η, which completes
the proof.

Using Theorem 1.1, we can now prove Proposition C and Corollary D.

Proof of Proposition C. Let
π : X → T

be a family of smooth projective varieties as in Proposition C. By Theorem 1.1 and
Lemma 1.3, it follows that the special fiber X0 admits a dominant and generically
finite rational map

ϕ : X0 99K Y 'bir Z × P1

such that deg(ϕ) 6 d , and Z is smooth. Consider the MRC fibration of Z , given
by

ψ : Z 99K B,

where B is smooth and projective. Then B has dimension 0, 1, or 2. We treat each
dimension separately. In the case B has dimension 0, then Z is in fact rational,
and we have irr(X0) 6 d .

Now we rule out the cases where dim(B) = 1 or 2. If dim(B) = 1, then B must
have positive geometric genus. But there are no dominant rational maps from X0

to such a curve (as h1,0(X0) = 0). If dim(B) = 2, then we are in the case (2)
of Proposition C, so X0 is a strict Calabi–Yau threefold. Iitaka’s Cn,m conjecture,
which is known for n = dim(X) 6 6 (see [3]), states

0 = κ(X0) > κ(B)+ κ(F),

where F is a general fiber of the map X0 99K B, and κ denotes the Kodaira
dimension. Neither κ(F) nor κ(B) are −∞ as X0 and B are not uniruled. Thus
κ(B) = κ(F) = 0, and B is a Kodaira dimension 0 surface. By the classification
of surfaces there is a finite étale cover B ′ → B such that ωB ′

∼= OB ′ . As X0 is
simply connected, the map from X0 to B factors through B ′. But this contradicts
the fact that strict Calabi–Yau threefolds have h p,0

= 0 for p = 1, 2.

Proof of Corollary D. The quotient map from A to the Kummer surface A/ ± 1
has degree 2, so it suffices to prove irr(A/± 1) = 2. The main result of [4] can be
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rephrased as saying that a very general Kummer surface has degree of irrationality
equal to 2. It follows that one can put A/±1 in a family over a curve such that the
very general member has degree of irrationality equal to 2. Taking a simultaneous
resolution gives a family of K3 surfaces, so by Proposition C every member of
the family has degree of irrationality equal to 2.

2. Irrationality of Fano hypersurfaces

The goal of this section is to prove Theorem A. We follow an idea of Kollár’s
[9], which he used to prove nonruledness of certain Fano hypersurfaces. Kollár
reduces to positive characteristic and observes that if a smooth projective variety
X is ruled, then no sheaf of i-forms ∧iΩX can contain a big line bundle. The
main observation in this section (Lemma 2.3) is that if X admits a separable
rational map of degree d to a ruled variety, then no sheaf of i-forms ∧iΩX can
contain a line bundle which separates 2d points on an open set. This allows us to
directly apply Kollár’s degeneration argument (albeit in a different degree range)
to deduce Theorem A.

DEFINITION 2.1. Let X be a variety over an algebraically closed field k and let
M be a line bundle on X . We say that H 0(X,M) separates ` points on an open
set if there is a Zariski open set U ⊂ X such that for any distinct ` points x1, . . . ,

x` ∈ U , there is a section s ∈ H 0(X,M) which vanishes on x1, . . . , x`−1 but not
on x`.

EXAMPLE 2.2. Let X and Y be projective varieties of dimension n over an
algebraically closed field k and suppose there is a map

ψ : X → Y,

which is a dominant, generically finite, purely inseparable morphism. Then over
the open set U ⊂ Y where ψ is finite, there is a bijection on k-points:

ψ−1(U )(k) ∼= U (k).

As a consequence, if there is a line bundle M on Y such that H 0(Y,M) separates
` points on an open set, then H 0(X, ψ∗M) separates ` points on an open set in X .

LEMMA 2.3. Let X be a projective variety over an algebraically closed field and
M a line bundle on X such that H 0(X,M) separates 2δ points on an open set.
Suppose that there is an injection

M ↪→ ∧iΩX
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for some i > 0. If there is a dominant, separable, generically finite rational map

ϕ : X 99K Z × P1

to a ruled variety, then deg(ϕ) > δ + 1.

Proof. Let b := deg(ϕ). Without loss of generality, we may assume that X and Z
are normal and Z is projective. Let Γ be the normalization of the closure of the
graph of ϕ. This gives two regular maps µ, ψ , which make the diagram commute:

Γ

X Z × P1.

µ ψ

ϕ

Note that µ is birational, so µ∗M is a line bundle that separates 2δ points on an
open set in Γ and injects into ∧iΩΓ .

Recall that there is a trace map

Tri
ψ : H 0(Γ,∧iΩΓ )→ H 0(Z × P1, (∧iΩZ×P1)∨∨)

(see [7, Proposition 3.3] and [8]) which extends the usual trace map for finite
morphisms in characteristic 0. Over the dense open set in Z × P1 where ψ is
étale, Tri

ψ corresponds to the sum over fibers. Let π1 (respectively, π2) denote the
projection of Z × P1 onto Z (respectively, P1). By a computation,

(∧iΩZ×P1)∨∨ ∼= (∧
i(π∗1ΩZ ))

∨∨
⊕ ((∧i−1(π∗1ΩZ ))

∨∨
⊗ π∗2 (ΩP1)).

So any section of H 0(Z×P1, (∧iΩZ×P1)∨∨) is necessarily constant along {z}×P1

for every z ∈ Z .
However, if we take a general point z ∈ Z and two general points z1, z2 ∈ z×P1,

then the preimage of these points will consist of 2b distinct points

ψ−1({z1, z2}) = {γ1, . . . , γ2b}.

If b 6 δ, then there will be a section

α ∈ H 0(Γ, µ∗(M)),

which vanishes on γ1, . . . , γ2b−1 but does not vanish on γ2b. Tracing α as an i-form
gives a section

Tri
ψ(α) ∈ H 0(Z × P1, (∧iΩZ×P1)∨∨),

which vanishes on z1 but not on z2, yielding a contradiction. Therefore
b > δ + 1.
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CONSTRUCTION 2.4. Now we recall Kollár’s degeneration argument
[9, Section 5] (the construction of the family used in the argument is due to
Mori [13]). Let R be a DVR with an algebraically closed residue field κ of
characteristic p and fraction field η which is countable of characteristic 0. Kollár
shows that over T = Spec(R), one can construct an irreducible normal variety

π : X → T

such that Xη ⊂ Pn+1
η is a hypersurface of degree pe and Xκ is a reduced degree

p inseparable cover of a smooth degree e hypersurface Y ⊂ Pn+1
κ with ‘simple’

singularities. Kollár gives an explicit resolution of singularities of Xκ :

X ′

κ Xκ Y,
µ

ν

(?)

Assuming n > 3, Kollár shows that M := ν∗(OPn+1
κ
(pe+ e− n− 2)) injects into

∧
n−1ΩX ′

κ
.

Having recalled Kollár’s construction, we are ready to prove the following
lemma:

PROPOSITION 2.5. Let X ⊂ Pn+1
C be a very general hypersurface of degree pe. If

ϕ : X 99K Z × P1
C

is a dominant generically finite rational map, then

deg(ϕ) > min{b(pe + e − n)/2c, p}.

Proof. Consider a hypersurface Xη ⊂ Pn+1
C of degree pe degenerating to a p-fold

cover of a degree e hypersurface, as in Kollár’s construction above. We know that
the map ν in (?) is purely inseparable, and the sections of

H 0(Pn+1
κ ,OPn+1(pe + e − n − 2))

separate every set of pe + e − n − 2 points. So by Example 2.2 we see that
H 0(X ′

κ ,M) separates pe + e − n − 2 general points. Lemma 2.3 then implies
that there are no dominant separable generically finite rational maps from Xκ to
a ruled variety of degree <b(pe + e − n)/2c.

Since p must divide the degree of any inseparable map, any dominant
generically finite rational map from Xκ to a ruled variety must have degree
>min{b(pe + e − n)/2c, p}. Thus, Theorem 1.1 implies that any dominant
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generically finite rational map from Xη to a ruled variety must have degree
>min{b(pe + e − n)/2c, p}. By base changing η to C and applying Lemma 1.2
it follows that every dominant rational map from XC to a ruled variety has
the same lower bound. By Lemma 1.3, the same holds true for a very general
hypersurface.

Now we are ready to prove Theorem A.

Proof of Theorem A. The idea is to degenerate X to the union of a very general
hypersurface of degree pe and d − pe hyperplanes and then apply Lemma 2.5
and Theorem 1.1.

Theorem A is trivial for n < 14, so assume n > 14. Let d and n satisfy

d > n + 1−
√

n + 2/4 (1)

as in the statement of the theorem. Bertrand’s postulate says that given any m > 1,
there is always a prime p such that m < p < 2m. This implies there exists a prime
p with

√
n + 2
4

6 p 6

√
n + 2
2

. (2)

Fix such a prime p and let f be the remainder of d modulo p, so that

d = pe + f.

First we have

pe − n = d − f − n

> 2−
√

n + 2
4
− p (by (1) using that f 6 p − 1)

> 2− 2p (by (2)). (3)

This yields the following inequality:

p(pe + e − n) = n + (p + 1)(pe − n)
> n + (p + 1)(2− 2p) (by (3))
= n − 2p2

+ 2
> 2p2 (by (2)). (4)

Thus,
pe + e − n > 2p. (5)

Let W be a very general hypersurface of degree pe. By Proposition 2.5 and
inequality (5), any dominant, generically finite, rational map from W to a ruled

https://doi.org/10.1017/fms.2020.20 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.20


Fano hypersurfaces with arbitrarily large degrees of irrationality 11

variety has degree at least p. Consider a pencil of degree d hypersurfaces, which
contains both a smooth hypersurface and the union of W and f hyperplanes. By
Theorem 1.1 and Lemma 1.3, the very general member of this pencil admits no
dominant generically finite rational maps to a ruled variety with degree less than p.
Applying Lemma 1.3 to the universal family of smooth degree d hypersurfaces, if
X is a very general degree d hypersurface, then every dominant generically finite
rational map from X to a ruled variety has degree at least p. The theorem follows
from inequality (2).

REMARK 2.6. We note that the above bound is not optimal. One might hope
that the bound on irr(X) can be improved to a linear bound. If one applies
Proposition 2.5, the first new bounds occur using p = 5, n = 34 and d = 35.
In other words, a very general degree 35 hypersurface X ⊂ P35

C has irr(X) > 4.
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