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Abstract

We investigate a class of infinite-dimensional, modular, graded Lie algebra in which the homogeneous
components have dimension at most two. A subclass of these algebras can be obtained via a twisted loop
algebra construction from certain finite-dimensional, simple Lie algebras of Albert-Frank type.

Another subclass of these algebras is strictly related to certain graded Lie algebras of maximal class,
and exhibits a wide range of behaviours.
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1. Introduction

The program of classification of pro-p -groups of finite coclass proposed in [19] has
been completed in [18] and [25]. It is natural to investigate families of pro-p-groups
that extend the family of pro-p-groups of finite coclass. One such family is that of
groups of finite width [20], in which the order of the lower central factors is bounded.

In [4] a subfamily of such groups has been introduced, that of thin groups. These
are groups whose lower central factors are elementary abelian, of rank at most 2,

Partially supported by MURST, Italy. First author partially supported by EU via HCM contract
CHRXCT 93-0418 'Computational Group Theory'.
Authors are members of CNR-GNSAGA, Italy.
© 1999 Australian Mathematical Society 0263-6115/99 $A2.00 + 0.00

157

https://doi.org/10.1017/S1446788700001142 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001142


158 A. Caranti and S. Mattarei [2]

and satisfy a further covering property. This property can actually be read on the
associated graded Lie ring (see (1) below), which in this case is a Lie algebra over a
prime field. The approach to thin groups via the associated Lie algebra has been taken
in [91, where the location of the second diamond in such a group was investigated.
A lower central factor of rank two in a thin group or in its associated Lie algebra is
called a diamond. There is of course a diamond at the top of a thin group. It follows
from the theory of p-groups of maximal class (see for instance [13, III.14J) that in
a thin group the second diamond occurs in class at most p. In [9] we proved that
the associated Lie algebra has bounded dimension, except when the second diamond
occurs in class 3, 5 or p. Now the Nottingham group is a thin group, in which the
second diamond occurs in class p. The connection back from Lie algebras to groups
has been completed by the results of [22].

In [5] we studied the graded Lie algebra associated to the Nottingham group with
respect to its lower central series, and more generally Lie algebras in which the second
diamond occurs in class which is a power of p, the characteristic of the underlying
field.

The arguments of [91 are extended in [2] to show that there can be infinite-
dimensional thin algebras, besides the cases already mentioned, only if the second
diamond occurs in class congruent to — 1 modulo p. Here we begin to study these
algebras. It turns out that in such an algebra the second diamond actually occurs in a
class of the form — 1 + 2q, where q is a power of the characteristic of the underlying
field. It follows that the Lie algebras we study here have no counterpart in groups.

One can attach to the diamonds of these algebras a certain parameter, with values
in the prime field plus infinity, which we call the type of the diamond. If all diamonds
are of infinite type, the resulting algebras exhibit a close connection (Theorem 2 and
Theorem 4) to some of the algebras of maximal class studied in [8] and [10]. It follows
from the theory of the latter algebras that there is a wide variety of thin algebras of
this type.

If the second diamond is of finite type, then we obtain that the algebra is uniquely
determined (Theorem 5) by the value of q as a (twisted) loop algebra of a certain finite-
dimensional simple algebra of Albert-Frank type [1]. (See also [3].) It is convenient to
consider also the loop algebra of a certain central extension of this algebra. We prove
that the latter loop algebra is finitely presented, and this in turn yields uniqueness for
the corresponding thin algebra.

In the related paper [7] we will provide, among others, an explicit identification
of this finite-dimensional simple Lie algebra with a non-graded Hamiltonian algebra.
This follows implicitly from the classification of modular, simple Lie algebras over
algebraically closed fields of characteristic greater than 7 (see [17]). However, we
have not been able to find such an explicit identification over the ground field in the
literature.
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[3] Thin Lie algebras 159

Our methods are mostly based on direct computations. These rely in turn on
evaluations of (sums of) binomial coefficients modulo a prime, exploiting Lucas'
Theorem. The details are elementary, but the reason why we perform a particular
calculation may appear obscure. We believe that there are deeper combinatorial
reasons behind all this, probably related to the subtle problem of what exactly are
the Lie words in positive characteristic [26], but this eludes us at this stage. In our
calculations, we have been led by computational experiments with the Australian
National University p-Quotient Program (ANU pQ, see [12]), as explained elsewhere
[9].

Computational evidence also appears to show that there are thin algebras in this
class containing diamonds of both finite and infinite type; we plan to come back to
these algebras in another paper.

We are grateful to Claretta Carrara and Marina Avitabile for pointing out several
errors in previous versions. We are grateful to the editor and the referees for several
useful remarks and corrections.

2. Notation

We write Fq for the finite field with q elements. We recall that we have

Y^ , ( - 1 iff==O (mod q - 1),

~£ 10 otherwise.

We write Kronecker's S in the form

8(a,b)=\l

0 otherwise.

On one occasion we have integers a, b that are also considered as elements of a prime
field Fp. We then write

( l if a = b (mod/?),

10 otherwise

to avoid ambiguities.
We also use several times Lucas' Theorem [21], which states the following. Let a

and b be two non-negative integers, and p a prime. Write a and b in p-adic form,

a = ao + axp H 1- an-Xp"~l + anp
n,

b = bo + blP + --- + h-ip"-1 + bnp",

https://doi.org/10.1017/S1446788700001142 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001142


160 A. Caranti and S. Mattarei [4]

that is, 0 < ah b, < p, for all i. Then we can compute the binomial coefficient
modulo p as

; ) = ( : ) ( : ) • • • ( ; : : ) ( :

We call a0 the the first p-adic digit of a.
We use several times, without explicit mention, the standard expansion in a Lie

algebra

i = 0

Note that here and in the following our repeated commutators are left-normed, that is,
[xyz] — ]\xy\z\ and we use the notation

We write (u,v,...)foi the subspace spanned by the vectors u, v,... in an appro-
priate vector space.

We use [14] and [27] as general references.

3. Preliminaries

Let

1=1

be a graded Lie algebra over a field F of characteristic p > 3. We will say that L is a
thin algebra when d i m ^ ) = 2, and the following covering property holds

(1) for all i > 1, and all u e L,, u ^ 0, we have Li+l = [uL{].

It follows from (1) that L is generated by elements of weight 1, that is, Li+l — [LtLi\,
for / > 1. It also follows that dim(L,) < 2 for all i, so that a thin algebra is of finite
width. We call a homogeneous component L, of dimension 2 a diamond. Therefore
L i is a diamond. If there are no other diamonds, than L is an algebra of maximal class
(see [8]). By convention, we do not consider algebras of maximal class to be thin.
If there are other diamonds, then we refer to the finite sequence of the homogeneous
components of dimension 1 between two consecutive diamonds as a chain.
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Note that the same definition makes perfect sense even if the grading is not over
the positive integers, but over a cyclic group. We will make use of this later.

When the grading is over the positive integers, it is convenient to take thin algebras
L to be infinite-dimensional, that is, L, ^ 0 for all /. However most of what we do
makes sense for algebras that have large enough class (see [8] for similar details).

Suppose L is an infinite-dimensional thin algebra in which the second diamond
occurs in class k = — 1 (mod p), and that we have

(2) CLl (L2) = CLl (L3) = • • • = Ctl (Lt_2) = (y).

We call such an algebra a (-l)-algebra.
We refer to [6] for a proof of the fact that (2) is not restrictive in odd characteristic;

see also [16] for the case of characteristic two.
Choose arbitrarily x e Lx \ (y), so that x and y generate L. The element

v = [yxk~2]

is thus nonzero, and has weight k — 1. Note first that k is odd. In fact, if k = 2(h + 1),
then

0 = [[yxh][yxh]] = {-l)h[yx2hy] = (-l)h[vyl

and there is no diamond in class k after all.
Now write h — {k- l)/2 = - 1 (mod p). We have

0 = [[yxh][yxh]] = ( - D " " 1 ^ * \vyx] + (-l)"[vxy],

that is,

(3) [vxy] + [vyx] = 0.

Take an element v~x e Lk~2 so that [i;"1.*] = v. We have [v~ly] — 0, and thus we
obtain

0 = lv~l[yxy]] = -[v~lxyy] + 2[v~lyxy] - [v~lyyx] = -[vyy].

By the covering property, Lt+i = ([vyx], [vyy]) = ([vyx]) is one-dimensional.
Therefore, [vxx] must be a multiple of [uy*]. From (3)

[v, x + ay, x + ay] = [vxx] + a([vxy] + [vyx]) + a2[uyy] = [vxx].

If [vxx] = 0, then we say the the second diamond is of infinite type. Note that
this condition is independent of the choice of x. Otherwise, we say that the second
diamond is of finite type. We refine these definitions later.
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4. The first chain

In this section we prove the following result, which is critical in the sequel.

PROPOSITION 1. Let L bea (-l)-algebra over a field ofcharacteristic p > 2, with
second diamond in weight /t = — 1 (mod p). Since k is odd, we can write

k = -l -\~2qn,

where q — ph for some positive h, and n ^ 0 (mod p). If n > 1, then L is
finite-dimensional, of dimension at most k + q + 1.

PROOF. Write 0 ^ v = [yxk~2] e Lk-\. Recall that we have [vyy] - 0 =
[vxy] + [vyx]. Takey < q — 3. We want to prove, proceeding by induction ony , that

We have [yxJ+l v] = 0, so that

0 = l[yxk~2][yxJ+iy}] = [[yxk-2][yxj+i]y] - [yxk-2y[yxj+i]]

= [yxk~2yxxj y] — (/ + l)[yxk~2xyxJ y] — {—\)i+l[yxk~2yxxi y]

= (j +2-(-iy+l)[yxk-2yxxiy].

This fails to show what we need when j + 1 = 0 (mod p) (for odd j), and when
j + 3 = 0 (mod p) (for even j ) .

In the latter case, write j + 3 = /Jp', where /? ^ 0 (mod p). Sincey < ^ — 3, we
have p ' < q, so that./' + p ' + 1 < q-3 + q < 2qn - 3. Therefore [yxj+p>+1y] — 0,
and we obtain

0 = [[yxk-2-"']\yxJ+"'+ly]] = [[yxk-2-p'][yx'+p'+'}y]

(j +P' +

p + 1

where

\ p- -t i /

[vyxxJ y],

Note that even if p' = 1, the resulting coefficient is
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so that this also covers the case when j + 1 — 0 (mod p).
Now if n > 1 we have [yx2g~3y] = 0, so that

0 = [[yxk-x-«}[yx^y]} = [[yxk-l-"][yx2^]y]

where

nq-2\ (q + q-2
= 1 (mod p).

Also, using [yxlg~2y] = 0 we get

0 = [[y**-1"«][yjc2*-2y]] = [[yxk-i-"][yx2"-2]y]

q-\r \ q
[vyxxq-2y],

where

Finally, for A = (k + q — 2)/2 we have

0 = [[yxh][yxh]]

\

where

h + l\ (qn + (q-3)/2
q ) = [ q

It follows that the component of L of weight k + q vanishes, so that L is finite
dimensional, as claimed. D

https://doi.org/10.1017/S1446788700001142 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001142


164 A. Caranti and S. Mattarei [8]

5. The case when all diamonds are of type oo

In this section we consider (—l)-algebras L in which all diamonds are of type oo.
This is defined as follows, and extends a definition we have given for the second
diamond. As in Section 3, choose a non-zero element y e CLl (L2), and an arbitrary
element* e Li, independent of y. Suppose there is a diamond in L in weight h > 1.
Choose a non-zero element u of weight h — 1. We say that this diamond is of type oo if

[uxy] + [uyx] = 0, [uxx] = [uyy] = 0.

As in Section 3, one sees that this definition is independent of the choice of y e CLl (L2)
and*.

These algebras turn out to have a strong connection to algebras of maximal class,
as studied in [8,10,15]. We refer to [8] for all facts about algebras of maximal class
mentioned without reference in the following.

Throughout this section p will be an odd prime. We recall that an algebra of
maximal class is a graded Lie algebra

over a field F of characteristic p, where dimCA^) = 2, dim(M,) < 1, for i > 2,
and [MiMi] = Mi+l, for all i > 1, or equivalently, Mi generates M as an algebra.
All subalgebras and ideals will be taken to be graded. A two-step centralizer [8] in
M is a one-dimensional suspace of Mx of the form CMl (M,), for some i > 2. We
choose an element y e Mi such that y spans the first two-step centralizer, that is,
(y) = CUl(M2).

Let M be an infinite-dimensional algebra of maximal class. Consider a maximal
graded subalgebra L of M. Such an L is of the form M{z) = (z) + M2, where
0 7̂  z e Mi, and M2 = [MM] = © l > 2 M,. Clearly L inherits a grading from M.
We want to study which of these algebras L are thin, with respect to a suitable new
grading. In fact, all homogeneous components of L have dimension 1 in the grading
induced by M, so L cannot be thin with respect to this grading.

To begin with, M(z) has to be two-generated, so it has to be generated by z and
[yx]. We thus try and reassign weight 1 to both z and [yx], and investigate for which
z does this assignment makes M(z) into a graded Lie algebra, and a thin one.

Note that M(y) is not thin, as [yxy] = 0. If (y) is the only two-step centralizer,
then M is metabelian, and all maximal subalgebras other than M(y) are again of
maximal class. This holds true more generally for all M(z), when z is not in any
two-step centralizer, because then [Mtz] = M,+[ for all / > 2.
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[9] Thin Lie algebras 165

Suppose now M has at least two distinct two-step centralizers, and let (x) be the
second one in order of occurrence. We show that if (z ) is a two-step centralizer other
than (y ) or (x ), then M(z) is not thin.

Suppose it is. Without loss of generality, we may assume z = x + y. Then the thin
grading has to be obtained by taking z and [yz] to be of weight 1. We have then that
[yzz] acquires weight 2, and so on. Let now Mh be the first homogeneous component
centralized by x. Let O ^ u e Mh-\, so that u has weight h — 2 in M(z), and

[uy] = 0, [uz] = [ux]^0, [MJCXJ = O, [uxy] ^ 0.

As [M[VZ]] = [uyz] - [uzy] = — [uxy], we see that the independent elements [ux]
and [uxy] acquire the same weight h — 1 in M(z), so that we have a diamond in M(z)
in this weight. But [[wx]z] = [uxy] acquires also weight h ^ h — 1, a contradiction.

We have proved part of

THEOREM 2. Let M be an infinite-dimensional algebra of maximal class, and let

(y ) = CM, (M2) be its first two-step centralizer.

(1) The maximal subalgebra M(y) is not thin.
(2) If' z € M\ is not in any two-step centralizer, then M(z) is of maximal class, if

one takes z and [yz] to be of weight one.
(3) If M has more than two distinct two-step centralizers, then no maximal subal-

gebra is thin.
(4) If M has exactly two distinct two-step centralizers, and ( x ) is the second two-

step centralizer in order of occurrence, then no subalgebra M(z), with ( z ) ^ ( x ) , is
thin. However, if ( z ) ^ (x ) , ( y ), then M(z) is of maximal class.
(5 ) If M has exactly two distinct two-step centralizers, and {x } is the second two-

step centralizer, then M(x) is a (-l)-algebra with all diamonds of type oo.

PROOF. Let M be an algebra of maximal class with at least two distinct two-step
centralizers, and let {x ) be the second one. We complete the proof of the theorem by
proving that M{x) is a thin algebra, and it has the required type, if and only if M has
exactly two distinct two-step centralizers.

Let Mh be the first homogeneous component of M centralized by x, and let 0 ^
u e M,,,,. Note that 0 ^ [yxh~2] = [[yxj.x'1"''3] € AfA_i, so that u has weight h-2in
the thin grading of M(x). We have

lux] ^ 0 and [u[yx]] = ~[uxy] ^ 0,

so that M{x) has a diamond in weight h — 1. Also,

[uxx] = 0, [K|>*] |J*]] = [uxyxy] = 0,
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[HX[>>X]] = [uxyx] ^ 0 and [«[>>x]x] = — [uxyx],

so that this is indeed a diamond of type oo.
The two equalities on the second line follow from basic properties of the so-called

constituents in graded Lie algebras of maximal class, as p > 2. See [8] for details.

The same argument shows that each homogeneous component centralized by x
gives rise to a diamond in M(x), and that homogeneous elements in M stay homo-
geneous in M{x). However, if M has a two-step centralizer (z) other than (y) and
(x ), say z = x + y, then the grading is destroyed when we reach the first homoge-
neous component Mh of M centralized by z. This is basically the same argument we
have seen above. Let u 6 MA_i, so that [uz] — [ux] ^ 0, and [uxz] = 0, so that
[uxx] = — [uxy] ^ 0. Then the latter element acquires two distinct weights from

[uxx] = [u[yx]],

a contradiction. •

To prove the converse (Theorem 4 below), we first need a technical lemma.

LEMMA 3. Let L be an infinite-dimensional thin algebra with all diamonds of type
oo, and second diamond in weight 2q — 1, for some power q of the characteristic p of
the underlying field. Choose 0 ^ y e L\ such that [L2y] = 0, and any x e L[\ (y).
Let u be a non-zero homogeneous element ofL, of weight k. Suppose [uy] = 0, but
[uxy] y£ 0. Then [uxx] and [uxy] are linearly independent, so that there is a diamond
in weight k + 2.

PROOF. We proceed by induction on k. From our assumption, our statement holds
for k < 2q. To provide the induction step, we may suppose there is a diamond
in weight k — 1. Let v be a non-zero homogeneous element of weight k — 2. By
assumption we have [vxy] = —[vyx], and [vxx] = [vyy] = 0.

Suppose

0 = [vyy] = [vyxy] = • • • = [vyxly],

but [vyx1+1y] ^ 0. Let u = [vyx']. If we show that [MXX] and [uxy] are linearly
independent, we have the induction step.

Suppose this is not the case, and [uxx] = X[uxy] for some A. Redefining x to be
x — Xy, we may assume [MXX] = 0. We show that this leads to a contradiction.

Note that we have [yxmy] = 0 for all values of m ^ 2q - 2, 2q - 3. We actually
have already [yxm] = 0 for m > 2q — 1.

We first show that / > q — 3. In fact, if / < q — 3, we may compute

0 = [v[yxI+ly]] = [v[yxl+l]y] - [vy[yx'+l]] = (l + (Z + 1) + (-1)/+1) [uxy].
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This gives [uxy] = 0, a contradiction, unless / is odd, and 1 + 3 = 0 (mod p), or / is
even, and / + 1 = 0 (mod p).

Write / + 3 = ftp', with ft =£ 0 (mod p). Note p' < q, as / < q - 3, so that
/ + 1 + /?' < 2q — 3. In various places it is handy to write something like v~k, with
k > 0 for a homogeneous element such that [v~*jt*] = u. Suppose first t > 0, and
compute

0 = [ t r '

If ? = 0, that is, / -t- 3 §£ 0 (mod p), then we may assume / + 1 = 0 (mod p), and
thus the binomial coefficient above evaluates to

2 ) = — "2 —'~ = l ( m o d P^-

We also have I <2q — 2. This follows from

0 = [vx[yx2q~1]] = [vxyx2q~l] = —[vyx2g~lx

s o / + 1 <2q - 1.
We now obtain a contradiction, by proving L to be infinite-dimensional. This

follows from

(4) 0 = [uxyy] — [uxyxy] = [uxyxxy] = • • • = [uxyxqlpy],

and

(5) [uxyxk] = 0, for some k < q/p.

We first have

0 = [u[xyy]] = [uxyy].

More generally, let m = pp', with y3 # 0 (mod /?). Suppose first f > 0, and compute

0 = [u-p'+l[yxm+p'-1y]] = -p[uxyxm-ly].

This works for all values of m, as m + p' — 1 = — 1 (mod p). If t — 0 the coefficient
is m ^ 0 (mod p). This holds now for m < 2q — 3, that is, for m — 1 < 2q — 5.
Note 2q — 5 > q/p for p odd, so that (4) holds.

To prove (5), we distinguish some cases, according to the value of /.
If / = q — 3, we compute

0 = [v{yx"-ly\i = [v[yx"-']y] - [vy[yx"-1]]
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= [vyxq~ly] + [vxyxq~2y] — [vyxg~2yx] — [vyxq~xy] = — [uxyx].

This is (5) for k = 1.
Now let / be arbitrary. If / ^ 2q — 4, 2q — 5, we have [yxl+2y] = 0, so that we can

compute

0 = [v[yx'+2y]] = ±(l + 2)[vyxl+lyx) = ±(l + 2)[uxyx].

This is (5) for k = 1, unless / + 2 = 0 (mod p). In this case, write / + 2 = ftp', with
fj # 0 (mod p), and r > 0. Note thatp' < q, and / + 1 + p ' = —1 (mod p), so that
[yx'+1+/J'y] = 0. We compute

0 = [v[yxl+l+p'y]] = ±(PP'+P' ~ l\vyx'+lyxp>] = ±P[uxyxp'].

Thisis(5)foryfe = p ' <q/p.

We now deal with the two remaining cases. If / = 2q — 4 it is enough to compute

0 = [u[.yx'+3;y]] = ±1 )[i'vx/+Iyxj:] = ±[uxyxx],

which is (5) for k = 2. If / = 2q — 5 we compute

0 = [u[>'X/+4j]] = ± ( j[iry;t/+1;yjt;cjt] = ±[uxyxxx],

which is (5) for k - 3. D

THEOREM 4. Let L be an infinite-dimensional thin algebra with all diamonds of
type oo. Then there is a grading ofL, different from the original one, and a derivation
D of L, which is of weight 1 with respect to this new grading, such that the extension
M = L + {D)isan algebra of maximal class. In particular, L is a (-l)-algebra.

PROOF. We choose a homogeneous basis SB of L in the following way. We choose
0 ^ y € L1 with the property that [L2y] = 0, and any x € L\ \ (y), and take x and
y to be part of the basis. Proceeding by induction on the weight, if the homogeneous
element u of weight k is in the basis, and there is no diamond in weight k + 1, then we
add [ux] to the basis, according to Lemma 3, and continue with u replaced with [ux].
If there is a diamond in weight k + 1, then we add the elements [ux], [uy], [uyx] to
the basis, and restart the procedure replacing u with [uyx].

Now we define a linear map D on L by specifying it on SB. We show that D is a
derivation, and that it has weight 1 with respect to a suitable new grading of L. This
proves our claim.
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We define D in the following way

Dx = y,

Du = [vy] if u = [vx] for some v € 88 such that 0 ^ [vy] e 38,

Du = 0 otherwise.

The second possibility arises when v lies just before the diamond.
To prove that D is a derivation, we have to check that for all u, v 6 98

D[uw] = [Du, w] + [u, Dw]

holds. Proceeding by induction on the minimum of the weights of u and w, we see
that it is enough to show this when w e (x, y).

As D is nearly always zero, there are only a few cases to be checked.

(1) w — x, and u •= v is just before a diamond. We have Dw = Dx = y, and
D[uw] - D[vx] = [vy], and in fact [DM, W] + [u, Dw] = [Dv, x] + [vy] = [vy].
(2) w = x, and u = [vx] for some v just before a diamond. Here we have [uw] =

[vxx] = 0, and [Du, w] + [u, Dw] = [D[vx], x] + [vxy] = [vyx] + [vxy] = 0.
(3) w = y, and u = [vx] for some v just before a diamond. Here D[uw] —

D[vxy] = 0, and [DM, W] + [u, Dw] = [vyy] = 0.

Therefore, it is clear that we have exploited the whole definition of a diamond of
type oo here.

We now grade the extension M = L + (D) by assigning weight 1 to x and D. As
D is nonzero precisely on those elements of the basis 3§ on which ad(x) vanishes, we
see that x and D span M, that this assigns unique weights to the elements of SS, and
that each homogeneous component of weight greater than 1 is one-dimensional, so
that M is of maximal class.

Note that with respect to this new grading x takes weight 1, and y takes weight 2,
so this induces a grading on L that is different from the original one. •

Note that over any field F of positive characteristic there are 2K° algebras of maximal
class with two distinct two-step centralizers, and that these algebras can be classified
(see [10,15] for details). Also, among these algebras we have (periodic) soluble ones,
periodic insoluble, and (insoluble) non-periodic ones. Therefore, we have a similar
variety among the (—1)-algebra with all diamonds of type oo.

6. Finite diamonds

We now consider (—l)-algebras in which all diamonds are of finite type, as defined
in the following. Let T be a (—l)-algebra over the field F, where the second diamond
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occurs in weight k = — 1 + 2q, where q is a power of the characteristic p of the field
F, and suppose the second diamond is of finite type.

We always work over a field of characteristic p > 2; later we assume that p > 3.
We have, in the notation of the preliminaries,

[vyx] = X[vxx],

where 0 ^ y e Tx is defined by [T2y] = 0, the element* € Lx is independent of y,
but otherwise arbitrary, and v = [yx2g~^]. By renaming y to be A~'y> w e s e e m a t w e

can rewrite the above as

[vyx] = [vxx].

We see that the thin Lie algebra T is now uniquely determined. To describe T, we
need to fix some conventions.

From now on we keep y and x fixed. Suppose in T there is a diamond in some
weight h > 1, and let u be a homogeneous element of weight h — 1. Suppose

[uxy] + [uyx] = 0, [uyy] = 0, [uyx] = k[uxx],

for some A. Then we say that this diamond has finite type A. Thus in the above we
have arranged the second diamond to be of type 1.

Now T have diamonds in all weights congruent to 1 (mod q — 1), the diamond in
weight 1 + X(q — 1) being of type A — 1. Thus the types run over the elements of the
base field Fp, so that in particular T is defined over ¥p, and it is periodic. We note
that if A = 1 (mod p), and v is a nonzero element of weight X(q — 1), then

[vyx] = (A - l)[vxx] = 0,

so that in this case we do not have a real diamond, but a degenerate one, as the element
[vy] is central.

Our main result can be stated as follows.

THEOREM 5. Let F be afield of characteristic p > 5, and let q be a power of p.
Then there is uniquely determined, infinite-dimensional (-l)-algebra T with second
diamond in weight 2q — 1, and second diamond of finite type. In T all diamonds are
of finite type. One can prescribe the second diamond to have type 1. Then the types
of the diamonds run cyclically through the integers 0, 1,... ,p — 1 modulo p.

To establish uniqueness of the algebra T, we proceed as in [5]. We construct first
a particular finite-dimensional simple algebra A, according to the methods of Albert
and Frank [1]. We exhibit certain cocycles of A, which are independent in the second
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cohomology group H2(A, F), and consider the corresponding extension A. We then
consider a certain loop algebra N of A. The algebra N has an infinite-dimensional
centre Z(N), inherited by that of A. We show that N/Z(N) is thin, with second
diamond of type 1 in weight — l+2q. We also show that N is finitely presented.
More precisely, prescribing the structure of N up to weight 2q is enough to determine
N completely. It follows that T = N/Z(N) is the unique infinite-dimensional thin
algebra with second diamond of type 1 in weight —1 + 2q.

As in [5], we may note that T = N itself is not finitely presented, by the following
result of B. H. Neumann ([23], see also [24, 2.2.3]).

THEOREM 6. Let L be a finitely presented Lie algebra, and M be a finitely generated
Lie algebra M. Suppose there is a surjective morphism

g: M -> L.

Then ker(g) is finitely generated as an ideal ofM.

In fact, taking M = N', L = T — N/Z{N), and <p to be the natural epimorphism,
we see that ker(g) = Z(N) is not finitely generated as an ideal, thus preventing T from
being finitely presented. By the same argument, the fact that N is finitely presented
implies that our cocycles are a basis of H2(A, F).

7. Constructing the algebra with all diamonds of finite type

Letp be an odd prime, q a power of p. Consider the F,, -vector space S = Fp © F9,
and the Fp -bilinear, alternating map

i? : S x S ->• F,

((M, or), (v, f})) i-> va — ufi.

Consider the F?-vector space A with basis fs, s e S*. Now A becomes a Lie
algebra over Fq defining

[fsf,] = WS, t)f,+l,

where we understand/0 = 0. This is an instance of the algebras constructed by Albeit
and Frank in [1]. It would not be difficult to see, with the methods of [1], that A is a
simple Lie algebra. We prove this, however, in the related paper [7], by identifying it
with a non-graded Hamiltonian algebra, as mentioned in the introduction.
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In the following we simply write/„,„ for/(HO). Easy direct calculations show that
the following n -f 1 maps are cocycles for the algebra A:

\ap'
<Prifu,a, fv.fi) = . „

10 otherwise,

for 1 < r < n, where q — p", and

t(fu.a,fv.i>) = I" X " V.~ "'
[0 otherwise.

To prove that these cocycles are independent in the cohomology group, consider
the vector space

turn it into a Lie algebra by declaring the zr and w to be central, and defining a Lie
bracket via

Usftl = Ifsf,] +
r=l

(See [14] or [11] for the easy cohomological background.) In the next section we
show that w and the zr lie in the derived subalgebra of A.

8. A thin grading

From now on we assume p > 3. Consider the Fp-subalgebra B of A generated by

aeF,

We revert to the usual Lie bracket [•, •] here. We have first

oeF, aeF,

and in general, proceeding by induction

aeF,
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Note that

Thin Lie algebras 173

— /^, a q Vl+(9-l)j>,« —
aeF. aeP-

so that the elements \yx' '] are periodic iny, of period (q — l)/>.
Note that 10 occurs with a nonzero coefficient if and only if j = 0 (mod p), and

y — 2 = 0 (mod q — 1). This holds in the range 1 , . . . , (q — \)p when/ = 1q. Here
we get

We claim that all the elements we have obtained are independent over ¥q. Note
that w does not play a serious role here, as it occurs only once. Now the elements that
have the same support [fj,a: a e F9}, for a given j , are the

[yXi-1+n =

These elements have coefficient matrix

[aJ~l+p% 0 , for a e F*, and 0 < i < q - 1,

and we have

« / ~ i + "]( . .o)=(n«

a nonzero Vandermonde determinant.
Now we compute

[[yxj-

a,/3eF,

n - 1

r=0

Note first that

0"
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\aeF, / yeF, \oeF,

Also note that the coefficient of w is always zero, as X^eF 1—0.
The sums J2aeF aJ1 anc* HaeF a J vanish, except in the following cases, which

give rise to diamonds. When j = X(q — 1) for some A, then X!«6F
 aJ ~ ~1»

oeF;

is an element just before a diamond. We have here

^y] = (A - 1 Y.
KeF, r=l \or6F, /

The second term always vanishes, except when A = 1. In this case only the summand
for r — n survives, and the first term vanishes to give

[yx"-2y] = -zn.

This shows that zn lies in the derived subalgebra of A; we do not have a real diamond
here, as this element is of course central. For A ^ l w e have

(X - 1) £ Yf-X+7,y - (A. - 1
yeF,

w h e r e the coeff icient of w is aga in a l w a y s ze ro .
W h e n y — 1 = X(q — 1) for s o m e A, then XL*eF aJl = ~*>

Also

[yxW-Vy] = (1 - A)

so this is a diamond of type A — 1, except when A = 2. Here we get, as we have seen,

[yx2q-1] = £ > / ( , „ + w = -{yx2"-2y) + w.
aeF,

This also shows that w lies in the derived subalgebra of A.
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Finally, the coefficient

aeF,

of zr always vanishes, unless j = — 1 (mod p) and q — 1 divides j — 1 + pr. We
have then

and the coefficient is —1. We obtain

[yx2"-"r-2y] = -zr,

for all 1 < r < n (this includes the case r = n, which we have already seen), and all
the zr lie in the derived subalgebra.

We have obtained that the algebra B, which is defined over the prime field, has
dimension

dim(fi) = p(q — l)+p+n = pq + n = dim(A) + n 4- 1 = dim(A)

over Fq. It follows that A = B <8> F9, so that A itself is defined over the prime field.

9. The presentation

The algebra A is completely described by the following relations, that describe
ad(x) andad(v):

(6a)

[vh^xxxjy] = 0 for 0 < j < q — 3, if h ^k 1 (mod p),

[voxq-pryx] = 0 for 1 < r < n,

[vox'y] = 0 for 0 < i < q — 1, and i ̂  q — pr,

vh = [a*.,*'"1],

(6b) [vhyx] = -[vhxy]

[ -h[vhxx] if/z#l (modp),
(6c)

I [ ] [ ] is central if h = 1 (mod p),

(6d) [vhyy] = 0.

Here the unlabeled relation DA = [I;A_1J:?~1] is just a recursive definition. The indices
h of the vh range over the non-negative integers regarded modulo p, where p is a
prime bigger than 3.
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It is useful to define formally an element u_j such that [u_i;c] = y — x,[v^\y] — —y;
this provides some uniformity in the definitions. Modulo its centre

([viyx] - [vixx], {voxi-^yx} : 1 < r < n),

the algebra A is graded over a cyclic group of order (q — l)p, and as such is thin, with
diamonds

at weights congruent to 1 (mod q — 1). There is not really a diamond for i = 0
(mod p), as the element [voy] is central. In A there is another exceptional diamond
after the one for i = 1 (mod p), because here the elements [vixx] and [v^yx] are not
equal, but their difference is central.

Now we apply a twisted loop algebra procedure, that is, we take a tensor product

where Fp [t] is a polynomial ring, and consider the subalgebra N generated by x <g> /
and y <g> t. Abusing notation, we keep writing x and y for these two elements, and
obtain an algebra with the same relations (6a)-(6d), the index h now running over the
integers, starting from — 1, and the element u_i is again used formally for uniformity
in the definitions, as explained below.

With a further notational abuse, we take the algebra L presented as

L = (x, y : [yxjy] = 0 for 0 < j < 2q - 3, and

j: ^ 2q - pr - 2, for 1 < r < n,

[yx2q-pr-2yx] = [yx2"-pr-2xy] = 0, for 1 < r < n,
lq-}yx] = [yx29-3xy]

[[yx2'*-3yx]-[yx2'>-3xx),x] =

Clearly Â  is a homomorphic image of L, taking J B I , and v i-> y. We show
that (7) implies all of (6a)-(6d). Here we take formally an element v_i with the
property [u_i;c] = y — x, [v_\y] = —y, and define the vt recursively via VH =
[Vk-lX*-1].

Clearly (7) gives (6a)-(6d) for h - 0, and for h = 1 up to (6c). The relation (6d)
then follows from

0 = b>*29-4[}'*)>]] = -[yx2"-3yy].

Thus we proved (6a)-(6d) for values of h up to some i > 1. Our task is to prove (6a)-
(6d)for/i = j + l.
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10. The hard case

We deal first with the more difficult case h = 1 (mod p), so let i = h — 1 = tp
for some /. As / > 0, we have i > p. For (6a), we first compute, for j < q — 3,

0 = [vtp^[yxi+qy]\ = [vlp-Ayxi+q]y] - [vlp^

= (l+j +(-iy)[vlpxxxJy],

which fails to show what we need only forj even, withy + 2 = 0 (mod p), and for
j odd, withy =• 0 (mod p).

Now take the element u = [vlp_2x
q~2] so that [ux] = v,p_i. As in Section 5, in

the following it is handy to use the notation v~k, where v is a homogeneous element,
for a homogeneous element such that [v~kxk] = v. In this case, thus, we would write

We have

0 = [u[yxj+"+1y]] = [u[yxi+l>+i]y]

= - ( / + l)[vlp.lyxxi+t'-ry]

(j +D(/ +2) r ,+,_,
= ^ [v,P-\xyx1+q ly],

which again fails to show what we need only for j + 2 = 0 (mod p). In fact this
is the place where all cocycles except one sneak in. Let j + 2 = ppr, with /3 ^ 0
(mod p). We want to use the calculation

- ±P[v,pxxxJy].

This works unless

j+q+pr=q + (P + \)p
r -2 = 2q-2,
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that is, unless fi = p"~r — 1, or j = q — pr — 2. Here r ranges from 1 to n — 1. Note
that for r — n the corresponding statements

[vlpyx] = [vtpxy] = 0

also hold, because of (6b) and (6c) in the previous iteration. Here we understand
formally [vlpxxx~2] — v,p.

So we have to prove by backward induction on r

We start with

0 = [vlp-dyx2"-p'-ly]] = K -

The second calculation is

= [vlp.2xyx3q-p'-3y] - (-l)2(-3)[vlp-2xy • • -yx] - (-l)'[u,p_2xy • • • xy].

We have omitted terms whose coefficients

/3q-pr_3\ ,3q-pr-3\ /3q-p'-3\

\ q-\ Y \ q-2 ) ' V 9 - 3 / '

vanish, as pr < q. For instance

as pr < q. The total result is

0 = 4 [v^x^'xy] + 6 [vtpx"-p'yxl

which completes the proof of (6a).
The relation (6d) immediately follows from

0 = [[v^-^lyxy]] = -[v!p+1yy].
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We consider now (6b), that is,

[v,p+ixy] + [Vtp+iyx] = 0.

This identity has weight (tp + 1 + 1)(<? - 1) + 2 = tp(q - 1) + 2q. Take

^ = tp(g-l) + 2g l = ff(g-l) | _ 2

Note that A = — 1 (mod /?). We want to expand 0 = [[;y.rx][;y;tx]]. Consider first the
case t even, so that

A = (q - 1) (lp +

Note that in this case A is even, and [yxx] = [vlp/2x] lies in a diamond of type zero.
We expand

0 = [[yxk][yxx]]

_ ^[vvv+sxyx]} - k[vlp+1yx] + [vlp+ixy]

- 1 )

We have A + 1 = 0 (mod p), so the first p-adic digit of A + 1 is zero. Now the
first p-adic digit of s(q — 1) is the remainder of — s (mod p). By Lucas' theorem, the
binomial coefficient can only be nonzero when 5 = 0 (mod p). But in this case it is
the coefficient t/2p + s that vanishes, so that we are left with (6b).

Now consider the case t odd. This time we have

and [yxx] = [v(lp+l)/2x
("+l)/2]. We expand

0 = [[yxk][yx"]]
(lp-U/2

[ * ] j - k[vlp+lyx] + [vlp+lxy]
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+ [v,p+iyx] + [vlp+lxy].

This time the first p-adic digit of (q — l)/2 +s(q — 1) is the remainder of —1/2 — 5, so
the values of s for which the binomial coefficient does not vanish are s = (p — l)/2
(mod p). But as in the previous case it is the coefficient

tp + 1 tp + 1 p - 1 t + \ , . ^

that now vanishes, so that we are again left with (6b).

We now turn to (6c), which in this case requires us to prove that

[vlp+xyx] - [vtp+lxx]

is central. We have first

0 = [v,p+i[yxy]] = -[vlp+iyxy].

Also [v,p+ixxy] = 0; this is because

0 = [v^

The first two terms cancel out, and so do the third and the fourth, so we get [vlp+1xxy] —
0. So we are left with proving in this case

[[v,p+iyx] - [vtp+\xx],x] = 0.

Consider now

1) + 2.

so that A, = 1 (mod p), and all other nonzero p-adic digits of A are p — 1. Note also
that

and [y^^y] = 0, as p > 3. We have

0 = [v(l-.1)p+l[yxky]] = [v^l)p+l[yxk]y] - [vit-i)p+ly[yxx]].
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We compute first

J2 ([5,q _

~ \s( - 1) + 1)

1 \
A 2[v,p+lyx]

p~1 ( A + 1
( _

The first p-adic digit of A + 1 is 2, whereas that of 5 (q — 1) + 1 is the remainder of
l—s (mod p). Thus the binomial coefficient vanishes except possibly for the values
s = 0, s = 1 and s = p — 1. In the last case the coefficient s + 1 vanishes. The first
two terms yield a total coefficient

Thus

[v^X)p+l[yxk]y] - 2[vlp+lyxy] = 0,

as we have seen. Now we compute

p~l / / A.
0 = [vll-1)p+iy[yxk]] = ] T ( - ( _ i ) _

We note first that the summation term equals

As above, the terms giving a non obviously zero contribution are j = p — 2 and
s — p — 1. The last one yields a zero coefficient, whereas the first one yields a
coefficient

A + 1 \ = (2 + p(p - 1) + P
2(p - 1) + • • • + iq/p)ip - 1)\

ip - 2)iq - \)) \2 + pip - 1) + pHp - 1) + • • • + iq/p)ip - 3))

-n-
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Of the final three terms, the last one has already been seen to vanish, and the first
one has a zero coefficient

as

as

k = 1 (mod

required.

/ > ) •
We obtain

[V,p + l

nW

xxx] H

k(k - 1)
2

\- [v,p+ixyx]= 0,

11. The easy case

We finally deal with the case i ^k 0 (mod p), which is considerably easier. The
relation (6a) comes, via induction, from familiar arguments. The two expansions

0 = [ViX[yxJy]] = [VjX[yxJ]y] - [ViXy[yxJ]]

= [Vixyx'y] - (-lYiv.xyxJy] = - i ( l - (-l)j)[viXxxJy],

and

0 = [Vilyx^'y]] - [Vi[yxi+i]y] - [v,y[yxJ+l]]

= [vtyxxjy] - (J + l)[ViXyxjy] - (-iy+l[ViyxxJy]

fail at the same time only when j is even, and j + 3 = 0 (mod 3). In this case, we
obtain (6a) by writing./ + 3 = /3p', with /8 # 0 (mod p), and proceeding as we did
to compute the length of the first chain. As before, we now easily prove (6d) as

0 = [[vtx^lyxy]) - -[vi+lyy].

We obtain (6b) from

0 = [v.lyx^y]] = [Vilyx'-^y] - [viy[yx"-']]

= [Viyxx*-3xy] -{q- D^xyx^xy]

- (-l)"-2(q - l)[viyxx"-3yx] - (-ly-^V

= i((l - 1 - \)[vi+lxy] - )

We are left with proving (6c), that is,

[vi+lyx] = (i
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an identity in the even weight (/ + 2){q — 1) + 2. We take

_ (i + 2)(q - 1) _ i
X- 2 =~2~L

We need to calculate the expansion

0 = [[yxK][yxK]]

only to a small degree of accuracy. In fact, this gives

0 = fi[vi+ixx] - k[vi+lyx] + [vi+lxy] = /u,[vi+lxx] - (X + l)[vi+lyx],

for some /z. This shows that in L there is a nontrivial linear relation between [u,-+1xx]
and [vt+iyx], as

A.+ l = - - # 0 (modp).

But then we can read off this relation in the homomorphic image TV of L, where it is
of course (6c).
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