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ApsTrACT. The theory of the sliding of glaciers presented by the author in earlier papers has been
generalized (1) by taking into account the resistance to sliding offered by obstacles both smaller and larger
than the controlling obstacles and (2) by relaxing the assumption that ice is always in intimate contact with
the bed at the down-stream side of an obstacle. The sliding velocities and controlling obstacle sizes which are
found from the generalized theory are approximately the same as those found from the earlier theory. A new
result obtained from the present theory is that a water layer an order of magnitude smaller in thickness than
the height of the controlling obstacles can cause an appreciable increase in the sliding velocity. The
generalized theory contains Lliboutry’s sliding theory as an extreme limiting case. For certain thicknesses
of a glacier the sliding velocity is a double-valued function of the shear stress exerted at the bed.

REsumE, La théorie du glissement des glaciers présentée par I'auteur dans de précédents articles est
généralisée (1) en tenant compte de la résistance au glissement présentée par des obstacles plus petits ou plus
grands que les obstacles de taille critique, (2) en abandonnant 'hypothése que la glace est toujours en contact
direct avec le lit en aval d'un obstacle. Les vitesses de glissement et les dimensions des obstacles de taille
critique que Pon trouve a partir de la théorie généralisée sont approximativement les mémes que celles
trouvées dans les théories précédentes. Un résultat nouveau obtenu a partir de la théorie actuelle est qu’une
couche d’eau dont I'épaisseur est plus petite de un ordre de grandeur que la hauteur des obstacles de taille
critique, peut causer un accroissement appréciable de la vitesse de glissement. La théorie généralisée englobe
la théorie du glissement de LrLiBoUTRY considérée comme un cas limite. Pour certaines épaisseurs d’un
glacier la vitesse de glissement est une fonction 4 deux solutions du cisaillement exercé contre le lit.

ZusamMENFASSUNG. Die Theorie des Gletschergleitens, die der Verfasser in fritheren Versffentlichungen
vorgelegt hat, wurde verallgemeinert (1) durch Beriicksichtigung des Gleitwiderstandes an Hindernissen,
die einerseits kleiner, anderseits grosser als die kritischen Hindernisse sind, und (2) durch Aufgabe der
Annahme, dass Eis immer in enger Beriihrung mit dem Untergrund auf der stromabwirts gelegenen Seite
eines Hindernisses ist. Die Gleitgeschwindigkeiten und kritischen Hindernisgrossen, die sich aus der
verallgemeinerten Theorie ergeben, stimmen annidhernd mit denen der fritheren Theorie iiberein. Die
vorliegende Theoric liefert das neue Ergebnis, dass einec Wasserschicht, deren Dicke um eine Gréssenordnung
kleiner ist als die Hohe der kritischen Hindernisse, einen merklichen Anstieg der Gleitgeschwindigkeit
verursachen kann. Die verallgemeinerte Theorie schliesst Lliboutry’s Gleittheorie als einenextremen
Grenzfall mit ein, Fir bestimmte Gletscherdicken ist die Gleitgeschwindigkeit eine doppelwertige Funktion
der Scherspannung am Untergrund.

InTrRODUCTION

Until recently the amount of experimental research devoted to the study of the sliding of
glaciers has been quite limited. Whatever understanding we had of this phenomenon came
principally from theoretical work (Weertman, 1957, 1958, 1962; Lliboutry, 1959; [Union
Géodésique et Géophysique Internationale], 1963, p. 61-68; in press). The situation now is
changing. Kamb and LaChapelle (1963, 1964) have carried out extremely interesting field
studies and laboratory tests on the mechanisms involved in glacier sliding. Lliboutry and
Brepson (1963) have constructed a large machine in which 30 kg. blocks of ice will be made
to slide. Elliston ([Union Géodésique et Géophysique Internationale], 1963, p. 65-66) has
shown from field work on the Gornergletscher that (melt) water at the bottom of a glacier
profoundly influences the sliding velocity.

It seems likely that the phenomenon of glacier sliding will be the subject of an active field
of research in the near future. Obviously data have been and will be obtained which can be
used to test quantitatively the theories on glacier sliding. It is desirable that the theories
themselves be developed as completely as possible for these tests.

It is the purpose of this paper to develop a sliding theory which is more general than that
previously presented (Weertman, 1957, 1958, 1962; [Union Géodésique et Géophysique
Internationale], in press). One improvement incorporated into the new theory is the fact that
whereas in the previous version all resistance to sliding comes from a “controlling protuber-
ance size”’, now the resistance produced by other sizes of obstacles is considered. The resistance
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offered by the other obstacles is smaller than that caused by the controlling obstacles; never-
theless it is appreciable and should be taken into account.

Another improvement in the present theory comes from the relaxation of the assumption
made in the older version that the hydrostatic pressure at the bottom of a glacier always is
larger than any possible tensile stress occurring there. In the newer theory account is taken
of situations in which this assumption is not valid.

It is hoped that the present version of the theory and the discussion of certain of its features
will permit a more meaningful quantitative test of the theory from the field and experimental
data which should be forthcoming in the near future.

TuEORY

Two sliding mechanisms form the basis of the theory. One of these involves the phenomenon
of pressure melting. In this mechanism ice is melted on the up-stream, high-pressure side of an
obstacle. The water produced flows around the obstacle to the low-pressure side where it
refreezes. The velocity of melting and freezing, and thus of ice motion, is determined by the
temperature gradient across the obstacle. This gradient is larger the smaller the obstacle, and
thus the speed of sliding is larger the smaller the obstacle size. The pressure-melting mechanism
permits relatively fast ice motion past small obstacles but not around large obstacles. A second
sliding mechanism was introduced in order to obtain motion of ice around large protuber-
ances. This mechanism is based on the enhancement of the creep rate caused by stress con-
centrations existing near obstacles. It leads to a sliding velocity which increases with increasing
obstacle size. The existence of both of these mechanisms has been verified by the field observa-
tions of Kamb and LaChapelle at the end of the ice tunnel in Blue Glacier. The basis of our
theory is thus established and no longer need be regarded as speculative.

In my original paper I postulated the existence of an idealized glacier bed containing
cubical obstacles. The assumption that the obstacles have a cubic shape was one of conveni-
ence. It is obvious that essentially identical results would be obtained from the analysis if the
exact shape of the obstacles were left unspecified and only their average dimension were used
in the equations. In order to make the sliding theory more general we shall consider in this
paper obstacles whose three dimensions do differ from one another. We let Ly represent the
average height of an obstacle, and Lq and L represent respectively the average widths in the
direction of glacier flow and in the direction perpendicular to the flow. It is not necessary to
specify the exact shape of the obstacles.

It was shown in the original paper that if the obstacles in a glacier bed all are of the same
size a definite sliding velocity can be calculated from each of the two sliding mechanisms. In
order to make this calculation it is necessary to assume that a shear stress cannot be supported
across a smooth rock—ice interface. This assumption obviously is valid if the ice is at the melting
point and a thin film of water exists between the rock and the ice. It is not valid if the ice is
below its melting point. Thus cold glaciers or ice sheets should not slip at their bed, a con-
clusion borne out by at least one field observation (Goldthwait, 1960).

Consider a bed containing obstacles of uniform size which are separated from one another
by an average distance L’. The average force exerted on any one obstacle is 7L."* when a shear
stress 7 acts parallel to the bed provided that a film of water exists between the rock at the bed
and the ice of the glacier. If the ice exerts a force on an obstacle then conversely the obstacle
pushes through the ice with the same force TL’2. Since the average cross-sectional area of an
obstacle is LyLp, this force produces a compressional stress approximately equal to 71."*/LyL,
on the up-stream side of the obstacle. A stress of this magnitude should exist within a volume
of ice of the same size as the obstacle itself.

In his review of the original (unpublished) version of my first paper (Weertman, 1957) on
glacier sliding J. W. Glen, in a private communication, pointed out that the force exerted on
the ice by an obstacle results not only in the existence of a compressive stress on the up-stream
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side of the obstacle but it also may cause the ice to experience a tensile stress on the down-
stream side. In order that this tension exist it is necessary that the ice does not lose contact with
the rock surface. Thus if the hydrostatic pressure is great enough to prevent a cavity from being
formed on the down-stream side of an obstacle, the obstacle produces not only compression in
the ice on its up-stream side but also tension on its down-stream side. (The tensile and com-
pressive stresses we are discussing are stresses additional to the hydrostatic pressure normally
present at the bottom of the glacier.) It is obvious that if the obstacle is symmetric the tensile
stress is of the same magnitude as the compressive stress. Ifice is to close in behind an obstacle
as it flows around it the flow lines on the up-stream and down-stream side of a symmetric
obstacle must be symmetric and the stresses causing this flow likewise must be symmetric,
Therefore when Glen’s condition is valid and the compressive stress is 7L'2/2LyLy and the
tensile stress also is equal to =L"*/2LnLy. The combination of these two stresses represents a
total force of 71."* exerted on the obstacle.

If the hydrostatic pressure is not great enough to prevent the formation of a cavity on the
down-stream side of an obstacle the compressive stress on the up-stream side is 7L"*/LpL,, a
value which is twice as great as that which is realized when Glen’s condition holds.* In the
published version of the sliding theory (Weertman, 1957) it was assumed that Glen’s condition
always is satisfied.

In this paper we shall consider situations in which Glen’s condition is valid and those in
which it is not.

Pressure melting

The velocity of'sliding caused by pressure melting is found from a calculation of the change
in hydrostatic pressure [rom one side of an obstacle to another. Because the melting tempera-
ture of ice varies with pressure, there is a temperature difference across the obstacle which
gives rise to the flow of heat, the melting of ice, and the freezing of water. The difference in
temperature 47 is equal to CAP, where C is a constant equal to 7+4 % 1079 °C., cm.?/dyn. and
AP is the difference in hydrostatic pressure.

There is some ambiguity connected with the pressure difference 4P. In the water layer
existing between the ice and rock the pressure difference will be 4P = 7L"*|LyL,,. In the ice
itself, however, the difference may be only 7L."2/3LpL . The factor of } in this latter expression
arises because a uniaxial compression or tension produces a hydrostatic pressure of only & the
magnitude of the compressive or tensile stress. (That is, through a rotation of the coordinate
system, a uniaxial stress in one coordinate system can be changed in another coordinate system
to a stress system containing only pure shear stresses and a hydrostatic stress. The value of the
hydrostatic stress turns out to be } the value of the original uniaxial compressive or tensile
stress.) In our previous papers on sliding we assumed that the factor 1 should appear in the
equations. On the other hand, Kamb and LaChapelle (1964) consider that it should not. This
is a question best answered by experiment, and Kamb and LaChapelle’s (limited) experimental

* If the ice is cold and frozen to a rock surface the ice-rock interface can support a tensile force normal (o it.
In this situation a tensile stress could exist on the down-stream side of an obstacle even when the hydrostatic
pressure is small. It also should be realized that even if ice is at the melting point an ice—water—rock interface
might be able to support a tensile force across it since liquids do have an appreciable tensile strength. The hydro-
static tensile strength of water has been measured by Briggs (1950). He finds it to rise steeply with temperature
from 20 bars at a temperature slightly ahove 0°C. to 280 bars at temperatures between 57 to 10°C. Fisher (1950),
has pointed out that the drop in strength by an order of magnitude with a small decrease in temperature may be
caused by the nucleation of ice under the reduced hydrostatic pressure. It would be desirable to have an experi-
mental measure of the tensile strength of water in contact with an ice surface to see if it still has a finite value under
these conditions.

For a liquid to have a tensile strength it must be in a confined space. This condition may not be met at the
bottom of a glacier and the tensile strength of the water layer could be zero. Nevertheless in laboratory experiments,
such as those carried out by Kamb and LaChapelle in which blocks of rock are pulled through ice, it is possible
that a tensile stress is exerted across the water layer separating ice from rock since in this type of experiment the
water layer may be confined.
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data do seem to support their viewpoint. Therefore in what follows we shall consider that the
temperature difference across an obstacle is CrL"*/LpL, rather than the smaller value we used
previously. The temperature gradient across the obstacle is C7L"*[LpLpLq. If all the heat flow
is through the obstacle a volume of ice is melted in a unit time which equals the temperature
gradient (C7L'*/LnlLyLq) times the area of an obstacle (LyLp) times the coeflicient of thermal
conductivity D of the rock divided by Hp, where H is the heat of fusion of ice (8o cal./g.) and
p is the density of ice. The velocity of sliding is equal to this volume of melted ice divided by the
area of an obstacle. The following equation is obtained for the velocity of the sliding §: which
results from pressure melting:

8y = GeL Dl slola = (CeDBpL) (L2157 (1a)
where L is the average dimension of an obstacle (L3 = LpL,Lq). Except for the absence of a
factor of } equation (1a) is identical to the equation previously obtained for the pressure-
melting mechanism. Equation (1a) is derived with the assumption that all the heat flows
through the obstacle and none goes through the surrounding ice. To take this latter heat flow
into account we rewrite equation (1a) as follows: Y

S: = oCrL*D|HpLnLoLa = (aCrD|HpL) (L"/L?) (1h)
where « is a constant whose value is 1 if all of the heat flow is confined to the obstacle and is
somewhat larger than 1 if additional heat flows through the ice. The value of a could be
determined by laboratory experiments.

Stress concentralions

The velocity of the sliding which results from the creep-rate enhancement caused by stress
concentrations is found by noting that the volume of ice which is subjected to the concentrated
stress is of the order of the volume of the obstacle itself. The creep rate € of ice is given by Glen’s
creep law. It is

€ = Bon (2)

where o is the stress, 2 is a constant equal to g or 4, and B is another constant which is equal to
o-017 bar—"/yr. when the stress is uniaxial tensile or compressive. The compressive stress o on
the up-stream side of an obstacle is equal to 7L"*[BLyLp, where B = 2 if the hydrostatic pressure
is sufficiently large to prevent cavity formation and 8 = 1 if it is not. The sliding velocity S,
caused by the stress concentration is equal to the creep rate ¢ times the distance in the direction
of motion over which this creep rate is effective. Thus

S2 = éLq = BLg(rLa/BL)"(L"*|L*)" (3a)
where, as before, L is the average dimension of an obstacle. This sliding velocity is almost the
same as that derived previously. The sliding velocity given by equation (3a) is, of course, only
a rough estimate of the sliding velocity S since we do not know exactly the distance over which
the creep rate ¢ is effective. A more exact expression for the sliding velocity is

Sy = béLq = bBLg(rLa/BL) »(L"|L})n (3b)

where & is a constant of the order of 1. The exact value of & could be determined from labora-
tory experiments.

Double-valued nature of the sliding velocity due to stress concentrations

It should be emphasized that in a certain range of values for the overburden pressure the
sliding velocity S; actually is a double-valued function of the shear stress 7. The reason for this
multiplicity of value is the fact that 8 may take on one of two possible values. We have noted
that if the hydrostatic pressure is very large B = 2 but if it is small 8 = 1. Suppose however
that the hydrostatic pressure has an intermediate value. Let P equal the hydrostatic pressure,
where P = pgh, p is the density of ice, g is the gravitational acceleration, and 4 is the thickness
of the glacier. Let 7 represent the tensile stress on the down-stream side of an obstacle. This
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tensile stress is exerted in a direction parallel to the bed. Further, let 8 represent the maximum
angle between the slope of the obstacle and the average slope of the bed. Thus f is go” [or an
obstacle having part of its surface perpendicular to the average slope of the bed. The maximum
tensile stress exerted normal to an ice—rock surface is 7 sin*f. In order for a tensile stress to
exist on the down-stream side of an obstacle the ice must remain in contact with the rock antl
thus the hydrostatic pressure must be larger than 7 sin®f, where T = 7L /2Lyl .

If the ice loses contact with the down-stream surface of an obstacle only a compressive
stress exists on the up-stream side of the obstacle. Its magnitude is vL."*[LyLy,. A cavity will
form on the down-stream side. The hydrostatic pressure will tend to close the cavity. The
rate of closure (Nye, 1953) is proportional to P*. However the cavity is being opened up by
ice flow around the obstacle. If P is greater than 7L."*/Lyl}, a cavity will not be able to form.
On the other hand if P is less than 7L."*/Ly Ly a cavity can remain open. The value of P can be
smaller than 7L."*[LyL;, and yet be larger than 71" sin*f/alyL}, the stress which it must
exceed to prevent an ice-rock interface surface from separating and a cavity being formed.
Therefore at any value of P = pgh in the range

7L sin/2LnLy < pgh < 7L™|LoLy

a cavity which is formed behind an obstacle will remain open but if the cavity is not already
in existence it will not form. Therefore 8 can equal either 1 or 2 in this range of values of P.
As a result the sliding velocity is double valued.

The glacier sliding velocily

In our previous papers on sliding it was found that the actual sliding velocity of a glacier
whose bed contains a full spectrum of obstacle sizes is determined by those obstacles for which
S§1 = 8. It was argued that the pressure-melting mechanism enables ice to flow easily around
smaller obstacles because this mechanism gives a sliding velocity which is larger the smaller
the obstacle. It was argued further that the stress-concentration mechanism enables ice to
flow around the larger obstacles without any trouble since for this mechanism the larger the
obstacle the greater is the sliding velocity.

We still hold to this viewpoint but we wish to refine the calculation of the actual sliding
velocity. In the previous paper it was assumed implicitly that only the “controlling” obstacles,
that is, those obstacles whose size is such that S and S of equations (1b) and (3) are equal,
hinder the ice flow. The resistance offered by obstacles both smaller and larger than the
controlling obstacles was considered to be negligibly small. This assumption obviously is only
an approximation. The smaller and the larger obstacles also hinder the ice motion although
not to the same degree as the controlling protuberances.

We wish now to calculate the sliding velocity of a glacier when the effect of obstacles hoth
smaller and larger than the controlling protuberances is taken into account.

It is postulated that the glacier bed is made up of obstacles of various sizes. One simplifica-
tion will be made in the distribution of obstacle sizes. It will be assumed that instead of being
continuous the spectrum of sizes is discrete. If A is regarded as the average dimension of the
smallest obstacle the next largest obstacle will be taken to have the average dimension 104,
the next largest 1004, the next 1000A and so on to the largest sized obstacles (which could be
of the order of 4} of the thickness of the glacier).

Because of the existence of the shear stress 7, a glacier transmits over an area 4 a total force
74 to the bed of the glacier. This force is transmitted through the obstacles and thus each size
group will transmit some fraction of the total force. The obstacles in the controlling size group
will, of course, transmit the major portion of the force. Suppose we let 734 represent that force
which the obstacles of size (10)7A transmit to the bed. We must have the condition that

2 7miAd = 74, or —
Ti T th, o (5)
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The stress 7; can be regarded as the effective shear stress which causes the flow of ice around
obstacles of the size (10)#A. Since the sliding velocity must be the same for every sized obstacle
it follows that

S = ($1+82)i = (aCriD[HpL)(L'#|L*) +bBLay(miLa;lBild) "(L'#|L3) ® (6)

where § is the actual sliding velocity of the glacier and the subscripts refer to the values of
L, L', etc., for the particular size of obstacle.*

Equation (6) gives 7; in terms of the sliding velocity S. If all of the values of 7; are sub-
stituted into the summation term of equation (5) an equation is obtained which contains only
the sliding velocity § and the applied shear stress = as the independent variables. The sliding
velocity has been determined as a function of the shear stress acting at the bed of a glacier,
By inspection it is obvious that this equation is a complicated one. A good approximation to
this more exact equation can be found by observing that in equation (6) the first term on the
right-hand side is predominant for obstacles smaller than the controlling sizef whereas the last
term predominates for obstacles larger than the controlling size. Thus we can make the
approximation that § = (S:); for the smaller obstacles, that § = (55); for the larger, and that
S = (8:+52) = 285; = 25, for the controlling obstacle size.

Now let A represent the average overall dimension and /4 the dimension in the direction
of motion of the controlling obstacles. Let us assume that the “roughness” of the bed is not a
function of the size of obstacles. Therefore L'3/L; = r is constant for all obstacle sizes. The
term r is a measure of the roughness of the bed. Also let Lqg;/L; = ¥ be a constant independent
of obstacle size. Let 7, represent the effective shear stress acting on the controlling obstacles.
Since the sliding velocity is identical for all obstacles the effective shear stresses acting on
obstacles smaller than the controlling size are 74/5, 74/50, 74/500, etc. Similarly, the effective
shear stresses acting on the larger obstacles are 7.4(8/B.4)/5" ", T4(B/B4)[50" ", T4(B/B4)[500" "
etc., where B, is the value of B for the controlling obstacles.

With these values for the stresses 7; equation (5) reduces to

7 = Tal(11/9)+2v"/{ (10)"/"—1}] (7a)

when the value of g for all the larger obstacles is identical to 84 of the controlling obstacles.
Since n x4 this last equation reduces to
T = 231474 (7b)

If B4 = 1 for the controlling obstacle size but 8 of the larger obstacles is equal to 2, equa-

tion (7b) becomes
T = 3'40574. (7¢)
Equations (7b) and (7c) represent two limiting cases.

It can be seen that the effective shear stress acting on the controlling protuberances is only
about § to 4 of the applied shear stress. Thus an appreciable part of the resistance to sliding
comes from obstacles other than the controlling obstacles. This additional resistance is provided
principally by the obstacles which are larger than the controlling size.

If we substitute equations (7) into equation (6) and set L; = 4 and S; = §., we obtain
the following expression for the sliding velocity of a glacier

S = 2aCDr*7/kHpA (8a)
where k represents the constant term of equations (7) and has a value which lies between

* In the previous papers on sliding we set § = 8 for the obstacle size which corresponds to §: = §:. Since
sliding is produced by two mechanisms it would have been more accurate to have set § = (§:1+8:) = 25 = 25
in those papers.

t Hereafter the controlling obstacle size will be defined to be the size of that obstacle for which the two sliding
mechanisms give identical contributions to the sliding velocity.
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2:314 and 3-405. An expression for A is derived from the condition that §; = S, at the
controlling ohstacle size:

A= (aCDknfl,BAn'[HPbBrznfz.},ﬂ—!Tﬂ—l)é' (9}
The substitution of this expression into (8a) results in the equation
S = 2(aCDbByn—1[Hpfn)t(7r? k) tnt+1)lz, (8b)

This equation gives the sliding velocity of a glacier as a function of the shear stress acting at the
bed of a glacier. Apart from a constant factor it is identical to the sliding velocity calculated
previously. Both the sliding velocity and the controlling obstacle size derived previously
(Weertman, 1957, 1962) can be obtained from these last two equations by setting k£ = & =
y = 1,a = %and 8, = 2, and by dividing the right-hand side of equation (8b) by 2.

Figure 1 shows plots of sliding velocity at constant stress versus the roughness factor r of
the bed. (The larger is r the smoother is the bed.) Also shown in these plots is /1, the controlling
obstacle size, versus r. In the calculations for these plots it was assumed that « = 1, 2 = 3,
y=1, b=1, C=%4x103C./bar, B = 0-017 bar3/yr.,, D = o0-005 cal./°C. sec. (a
typical value for rocks), and 7 = 1-0 bar. In the figure one set of curves was found for 84 = 1
and £ = 2-31 and another set for 8, = 2 and & = 2-31. These values of .1 and £ represent
limiting cases. The set of values 8., = 1 and k = 3-405 correspond to curves which are
intermediate to those plotted.
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Fig. 1. Plot of sliding velocity S and size of controlling obstacles A as a function of the roughness factor r for a shear stress
T = I bar, k= 2-37 and Ba = 1 or 2. (The case of k = 3-4 and Ba = 1 falls between the curves shown)
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In these plots the controlling obstacle size at a particular sliding velocity can be found
by drawing a vertical line from the sliding velocity curve to the obstacle size curve. This is
done in Figure 1 for a sliding velocity of 8o m. yr., which is of the order of the sliding velocity
of glaciers having a shear stress around 1 bar at their beds. The roughness factor of a glacier
which slides with the velocity of 80 m./yr. under a stress of 1 bar must be of the order of
r = 15 to 20. Also shown in Figure 1 are the obstacle sizes and roughness factors connected
with sliding velocities of 10 m./yr. and 1-0 m./yr. under a 1 bar shear stress. A somewhat
different method of presenting the results of equations (8) and (g) is shown in Figures 2 and 3.
Here we find plotted the sliding velocity and controlling obstacle size as a function of the shear
stress for various values of the bed roughness.
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Fig. 2. Plot of sliding velocily S and controlling obstacle size A as a function of the shear stress v for various values of the
roughness factor r and k = 2531 and Ba = 2

Kamb and LaChapelle (1964) measured a sliding rate of 5-8 m./yr. at the end of their
ice tunnel, They estimated that the roughness factor of the bed was equal to g and the shear
stress acting on the bed was o-7 bar. For these values of the roughness and the shear stress
Figure 2 predicts a sliding rate of 2 m.[yr., a value close to the observed rate. The controlling
obstacle size obtained {rom this plot is about 4 cm. This size is comparable to the maximum
thickness (about 3 cm.) of the observed regelation layer. If the maximum thickness of the
regelation layer is taken as an approximate measure of the controlling obstacle size, as was
suggested by J. W. Glen at the Berkeley symposium, it would appear that theory and observa-
tion agree reasonably well. Nevertheless, Kamb and LaChapelle feel that the controlling
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obstacle size is much greater because the regelation layer behind the obstacles they examined
appeared to be undeformed by creep. However, I pointed out ([Union Géodésique et Géo-
physique Internationale], in press) the improbability of finding an obstacle of a size exactly
equal to the controlling obstacle size. It is only for this special size that the regelation and creep
flow contribute comparable amounts to the total slippage. A given obstacle is more likely to
be either smaller or larger than the controlling size. If it is smaller, flow of ice around it occurs
predominately by regelation; if it is larger the flow takes place largely through creep
deformation,
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Fig. 3. Plot of sliding velocity S and controlling obstacle size A as a function of the shear stress = for various values of the
roughness factor r and k = 2-31 and Ba = 1

Glen’s condition

The values of the sliding velocity and the controlling obstacle size depend upon whether or
not Glen’s condition is satisfied. Glen’s condition is satisfied if the hydrostatic pressure pgh is
sufliciently large.

The effective stress on the controlling obstacles is =r*/f.4k, where B, = 2 when Glen’s
condition holds and B4 = 1 when it does not. If the hydrostatic pressure pgh is greater than
7r*/k, Glen’s condition always is valid; if pgh is less then 7r* sin*#/2k, Glen’s condition never is
valid (# is the angle between the maximum slope of an obstacle and the average slope of the
bed); but in the region where 77* sin*f/2k << pgh << 7r*[k Glen’s condition may or may not
be valid. In this region the sliding velocity is double-valued. (It is interesting to note that
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Meier (private communication) has some field observations which indicate, through an
indirect calculation, the occurrence of a double value in the sliding velocity of Nisqually
Glacier.)

Figures 4 and 5 show regions of validity and non-validity of Glen’s condition. In these
figures glacier thickness h is plotted versus shear stress for various values of the roughness
factor r. The intermediate areas of these plots indicate the region within which B4 can have
either one of two values. Here the sliding velocity is double valued.
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Fig. 4. Diagram of glacier thickness h and shear siress T showing the regions in which Ba — 1, Ba — 2and B4 = 1or 2.
The roughness factor r = 10 and k = 2-31. The ratio of maximum angle 0 between slope of the surface of the obstacle and
the average slope of the bed is assumed to be 30°

When Glen’s condition does not hold, cavities form behind the controlling obstacles and
also possibly behind obstacles larger than those of the controlling size. Lliboutry (1959) first
predicted the existence of cavities at the bed of a glacier. His prediction was based on a model
of a glacier bed, his washboard model, which is rather different than the one we have employed,
Nevertheless the physical reason for the appearance of cavities in our model of a glacier bed is
much the same as in his.

The length of the cavity which is formed behind an obstacle can be estimated as follows.
The stress which causes sliding around an obstacle is 7%/, where B8 = 1. The sliding velocity
is proportional to (77*/k)". Since the overburden pressure is pgh the velocity with which
the cavity is closed is proportional to (pgh)”. Therefore the cavity behind an obstacle
of size A4 will be closed off at a distance from the obstacle which is of the order of
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A(rr*[k)"[(pgh) *. The cross-sectional area of the cavity approaches zero at this distance. At
the head of the cavity the cross-sectional area is that of the obstacle itself. The probability
that another obstacle of size A is directly down-stream from the obstacle increases the further
down-stream one goes. A simple calculation shows that the probability is of the order of 1 at
the distance Ar*. Therefore the length of the cavity cannot exceed /r*.
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Fig. 5. Same diagram as Figure 4 except that r = 5 and r = 15

It is evident that when the length of the cavities becomes as long as Ar* the bottom of the
glacier touches the bed only at the tops of the obstacles. This is the condition fundamental to
Lliboutry’s theory of sliding (1959). I presented an argument (Weertman, 1962) that this
condition can occur only for extremely rapid sliding velocities such as would exist during the
avalanching of thin ice slabs. The argument that we presented still is valid. If an appreciable
fraction of a glacier loses contact with the bed through the formation of cavities the effective
hydrostatic pressure at the bottom of the glacier is increased over the value pgh by the factor
i (the area of the bed divided by the area of ice in contact with the bed). This increase in the
hydrostatic pressure increases the rate of closure of a cavity. The length of a cavity now is of
the order of A(w*/k)"[(upgh)™.

The value of u may be estimated easily. An area (r/1)* of the bed contains one obstacle of
size /1. The area of the glacier bed underneath the cavity behind this obstacle is approximately
A (72 k) 7| (upgh) ™. From these two areas the following equation is found for the ratio p:

pp—1) = (7r*[k)*[r*(pgh) ™ (10)
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Figure 6 shows a plot of u versus f for various values of 7. It is assumed that the shear stress
7 =1 bar and n = 3. (According to Figures 4 and 5 it is possible for 84 to equal 2 and p to
equal 1 for any ice thickness to the right of the vertical hatches in Figure 6.) If the ice is riding
on top of the obstacles, as it is pictured doing in Lliboutry’s theory, u is approximately equal
to *. In order for p to have this value under a stress of + = 1 bar and a roughness of r = 15,
10, or 5, the ice thickness must be less than 1o m. This conclusion is in harmony with my
previous discussion (Weertman, 1962) of Lliboutry’s paper. It can be seen from Figure 6 that
an appreciable separation of ice from rock can occur, although not to the extent envisaged by
Lliboutry, for glacier thicknesses of the order of 100 m.
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Fig. 6. Plot of the ratio p (ratio of area of bed lo area of ice in contact with bed) versus the thickness h of a glacier when = = 1
bar, k = 231 and fa — 1

In Lliboutry’s theory the ice separation at the bed profoundly influences the sliding velocity.

It is to be emphasized strongly that the separations occuring in the present analysis do not have

this strong influence on the velocity except when par* In fact so long as p << #* the sliding
velocity is not influenced by separation.*

* This statement should be qualified to the extent that if g is much larger than about g the effective resistance

to sliding by obstacles smaller than A is greatly reduced. The sliding rate thus will be raised by an amount equal

to the increase in velocity which results from the presence of a water layer smaller in thickness than the controlling

obstacle size. This velocity increase is discussed in the following section. It is much smaller than that found in
Lliboutry’s theory.
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Our analysis of cavities was based on the assumption that the cavities are free of water.
Lliboutry also considered cavities filled with water. His treatment was criticized by the present
author ([Union Géodésique et Géophysique Internationale], 1963, p. 67) as being incomplete.
There is no way to estimate the magnitude of the water pressure in a cavity from his analysis,
yet a knowledge of this pressure is important since the sliding velocity he derived depends
sensitively upon it.

I should like now to give an argument in favor of the idea of Lliboutry that cavities formed
by obstacles normally are filled with water. Consider the cavity whose cross-sectional and top
views are shown in Figure 7. If the cavity does not contain water the pressure P* of ice against
rock at the periphery of the cavity will be smaller than the pressure P at the ice-rock interface
a distance away [rom the cavity. This conclusion can be demonstrated quantitatively from
Nye’s theory (1953) of the closing of tunnels for the case when n of Glen’s creep equation is
equal to 3. (If » were smaller than about 2, P* would be larger than P according to Nye’s
theory.) The water at the bottom of a glacier which exists in the ice-rock interface will always
flow down a pressure gradient. Since the pressure gradient is towards the cavity a water-free
cavity will become filled with water.

P ICE P* P

(b)

Fig. 7. Water-free cavily behind an obstacle () eross-sectional view, (b) looking down from a point directly above the mmh' The
]Jre\mre P is the average hydrostatic pressure at the bed and the pressure "P* is that exerted near the cavity (P* << P)

Suppose that an isolated cavity is filled with water. Assume that for a constant sliding
velocity the cavity is in a steady-state condition. It is growing neither smaller nor larger. The
water pressure at the bottom of the cavity must be identical with that under the ice. Otherwise
water would flow into or out of the cavity. At the top of the cavity the water pressure could
differ from the pressure in the ice by an amount which at most is of the order of (p,,—p) g,
where p,, and p are the densities of water and ice respectively. For an obstacle 1 cm. in size this
pressure difference is of the order of 10~ bar. Therefore only a negligibly small pressure
difference is available for causing the closure of the cavity. (In a steady-state condition the
closure is exactly balanced by the sliding process which opens up the cavity.) Contrary to our
assumption the isolated cavity cannot be in a steady-state condition. If the cavity remains
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completely filled with water it must become longer and longer since there is insufficient
pressure available to close it off. Eventually it will connect with other cavities. When enough
cavities interconnect the water within them can drain off. Once this happens the average
diameter of a cavity will decrease through the creep flow of ice until the flow of water is so
restricted that the cavity again can be completely filled with water. The cavity would have a
tapered profile in the direction of ice flow similar to Figure 7 except that it would not be
completely closed off at its down-stream end. The length of the tapered cavity would depend
not only on the size of the obstacle, the roughness, and the shear stress acting across the bed,
but also on the amount of water flowing at the bottom of a glacier. If the amount of water flow
is large the average diameter of interconnecting cavities must be large in order to accommo-
date it. If it is small the average diameter will be small. In the latter situation the total area of
the water-filled cavities at the glacier bed would be about the same as for the case in which the
cavities were assumed to be water free. The velocity of sliding in this situation would be the
same regardless of whether the cavities were water-free or water-filled.

If the average diameter of a cavity remains large because of an abundance of melt-water
supply the interconnecting water-filled cavities can be approximated in a limiting case by a
sheet of water of uniform thickness at the bed of a glacier. The thickness of such a sheet of
water was shown (Weertman, 1962) to be determined by the amount of water flowing through
any section of the bed. We consider the effect of a water layer on the sliding velocity in the
following section.

Effect of the water layer at the bed of a glacier

The field observations of Elliston ([Union Géodésique et Géophysique Internationale],
1963, p. 65-66) on the Gornergletscher show convincingly that water at the bottom of a
glacier can change markedly the velocity of glacier movement. He finds that in the winter the
glacier velocity is 20-50 per cent slower than the annual mean velocity, and the summer
velocity exceeds the average by 20-80 per cent. These changes can be understood if melt
water acts as a lubricant at the bottom of a glacier. I have shown (Weertman, 1962) that if the
water layer at the bottom of a glacier is thicker than the height of the controlling obstacles an
increase in the sliding velocity will occur.

In our previous treatment it was found that the water layer has no effect on the sliding
rate until the thickness of the water layer is as great as the height of the controlling obstacles.
We should like to point out now that a water layer with a thickness an order of magnitude
smaller than the controlling obstacle size can cause an appreciable increase in the sliding
velocity. The reason that in the present theory a water layer of such small thickness can affect
the sliding rate may be seen from equations (5) and (6). No obstacles smaller than the thickness
of the water layer can cause a hindrance to the sliding motion. Thus the effective shear stress
7; in equation (5) acting on these obstacles is zero. As a result the effective stress on the larger
obstacles is raised and the sliding velocity is increased.

When the thickness d of the water layer is smaller than A, equation (7a) for 7, becomes

v = ma[1+2vn{(ra)Vr—1}+3 {1+ 4+ (&)*+ - - .(F)™ 1] (1)
The number of terms in the series 144+ ... depends on the thickness of the water layer.

If the water layer is equal to or larger than //10 no term is retained in the series. If the water
layer is equal to or larger than /100 but smaller than A/10 the first term only is retained; if
the layer is larger than or equal to A/1ooo but smaller than A/100 the first two terms are
retained; and so on. If the water layer is somewhat thicker than /1o but not so thick as 4,
equation (11) reduces to
T = (2-002)714 (12)

or k = 2-0g92. This value of £ is almost 10 per cent smaller than the previous value of 2-314.
Thus the sliding velocity, which is inversely proportional to the square of £, is approximately
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20 per cent larger than it would be if the water layer thickness were very much smaller. This
is an appreciable increase in the sliding velocity. If the water layer thickness were of the order
of A/100, k£ would be 1 per cent smaller and the sliding rate 2 per cent faster, and so on for still
smaller thicknesses of the water layer.

If the water layer is thicker than the height of the controlling obstacles, equations (5) and
(6) predict that the sliding velocity $* will be

§* = bByA ' (zylB'k)mrn (13)

where B’ is the value of B for the obstacles which are just bigger than the thickness of the water
layer and A" is the size of these obstacles. The term £ is equal to 1-82 if the value of 8 is the
same for all obstacles larger than the thickness of the water layer, and k = 2-04 if B’ = 1 for
obstacles of size /1" and 8 = 2 for all larger obstacles.

Figure 8 shows a plot of the ratio of the sliding velocity $* when an appreciable water layer
is present to the ordinary sliding velocity § versus the thickness of the water layer. (It is assumed
that 8 = 2 for all obstacles.) The plot is a step function because we have employed a discrete
rather than continuous distribution function for obstacle sizes. It is expected that the curve of
S$*[S versus water layer thickness for a continuous distribution function approximates the
dashed curve drawn in this figure.

i T T I'I‘I'I I T I'l'|'| T rl‘l'['l_‘
7
100 /

3 Al

C . ]

o / 1

/

L e o
?IO_— / =l
w i B

B 7 a

E / ]

I # ]

s ‘

I / ol

e
10 | =
1 E ey il 1 L |a|.|.| 1 i I.l.l.l
A/100 A/I0 A 10A

WATER LAYER THICKNESS

Fig. 8. Plot of the vatio S*|S versus thickness of the waler layer at the bed. (S* is the sliding velocity when an appreciable water
layer is present and S the sliding velocily when the waler layer thickness is extremely small.) The solid curve gives values of
S*/S for the bed with the discrele spectrum of obstacle sizes considered in the text. The dashed curve shows a possible variation
of §*|S with the thickness of the water layer for a bed with a continuous spectrum of obstacle sizes

TapLe I. ConTROLLING OBSTAGLE S1ZE AND ROUGHNESS FACTOR FOR A SLIDING VELOCITY OF 80 M./YR., UNDER A
I BAR SHEAR STRESS

Older Theory B =1 B =5 Br=1
(Weertman, 1962) £ = 2.3 k =23 k=34
Controlling size 4 mm. I: 35 6-0 3755
Roughness factor r 166 14-2 18-4 17-2
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DiscussION AND SUMMARY

In its essential features the sliding theory just presented is the same as the simpler theory
developed in eatlier papers (Weertman, 1957, 1958, 1962). The new values for the sliding
velocity and the controlling obstacle size are approximately the same as those found previously.
Table I shows that controlling obstacle sizes and roughness factors required for a sliding
velocity of 8o m. a year under a shear stress = of 1 bar. The new roughness factors are about
the same as the old. The controlling obstacle size is a factor of 2 to g larger than that previously
calculated. It can be seen that the more refined calculation does not lead to any significant
difference in the sliding velocity or the obstacle size. It is assumed in the new calculated values
that the constant factors o and b appearing in the sliding equations for S and $. (equations
(1h) and (3h)) are unity. These constant factors can be determined only by experimental tests.
It seems unlikely that laboratory tests will give values for these terms which differ much from
one.

Although the actual values for the sliding velocity and the controlling obstacle size have
not been changed much by the new calculations several interesting results not contained in the
older theory have come to light. The most interesting of these (see dashed curve of Figure 8)
is the fact that a water layer smaller in thickness than the height of the controlling obstacles
can change the sliding velocity by an amount of the order of 40 per cent to 100 per cent. Thus
if the obstacle sizes listed in Table I are representative the changes in the flow rate observed
by Elliston on the Gornergletscher could have been produced by a water layer of only
0-35 mm. to 060 mm. in thickness. This new result means that melt water may influence the
flow rate of glaciers much more than had been suspected previously.

The relaxation of the implicit assumption in the earlier version of the theory that Glen’s
condition always holds leads to the existence of a double-valued sliding velocity in a certain
range of values of the thickness of a glacier. The two velocities in this double-valued range
differ by a factor which is approximately equal to 2 or 3.

When Glen’s condition does not hold cavity formation occurs behind obstacles at the
bed. Such cavities were predicted previously by Lliboutry. In Lliboutry’s theory the cavity
formation is so extensive that the glacier only sits on the tops of obstacles. I had previously
shown (Weertman, 1962) that for a glacier of a typical thickness this condition can occur only
if the glacier is sliding at velocities which are 107 to 108 larger than those actually observed.
(Lliboutry also considered the situation in which the glacier rested on top of obstacles as well
as on top of the water trapped in the hollows of his washboard model of a glacier bed. This
situation of his would correspond to the case considered in this paper in which the water layer
at the bed of a glacier is sufficiently thick to have an influence on the rate of sliding. Contrary
to what Lliboutry concluded we do not find that the pressure of water in the water layer has
any influence on the sliding velocity.)

Lliboutry’s theory actually represents an extreme limiting case of the analysis of cavity
formation developed in this paper. This extreme case is not likely to occur in nature unless
the ice thickness is small (less than 10 m.), or the ice velocity is extremely large, as would occur
in avalanching ice slabs, or the shear stress at the bottom of an ice mass is considerably larger
than 1 bar. (Lliboutry’s theory probably is valid at the snout of a glacier where the ice thick-
ness becomes less than 10 m.) Under the thinner parts of a glacier (less than 100 m. in thick-
ness) cavities should form and of course have been observed to exist.

The theory of the sliding of glaciers that has been developed in this paper is more general
than that which T presented in the past. That earlier theory as well as Lliboutry’s theory are
contained as special cases in this more general theory.
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