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ABSTRACT. The theory of the sliding of glaciers presented by the author in earlier papers has been 
generali zed ( I) by taking into account the resistance to sliding offered by obstacles both smaller and larger 
than the controlling obstacles and (2) by relaxing the assumption that ice is always in intimate contact with 
the bed at the down-stream side of an obstacle. The sliding velocities and controlling obstacle sizes which a re 
found from the generali zed theory are approximately the same as those found from the earlier theory. A new 
result obtained from the present theory is that a water layer an order of magnitude smaller in thickness than 
the height of the controlling obstacles can cause an appreciable increase in the sliding velocity. The 
generalized theory contains Lliboutry's sliding theory as an extreme lim iting case. For certain thicknesses 
of a glacier the sliding velocity is a double-valued function of the shear stress exerted at the bed . 

RESUME. La theorie du glissement des glaciers presentee par I'auteur dans de precedents articles es t 
generalisee ( I) en tenant compte de la resistance au glissement presentee par des obstacles plus petits ou plus 
grands que les obstacles de tai lle critique, (2) en abandonnant I'hypothese que la glace est toujours en contact 
direct avec le li t en aval d'un obstacle. Les vitesses de glissement e t les dimensions d es obstacles de taille 
critique que I'on trouve a partir de la theorie generalisee sont approximativement les memes que celles 
trouvees dans les theories preced entes. Un resultat nouveau obtenu a partir de la theorie actuelle est qu'une 
couche d'eau d ont I'epaisseur est plus petite d e un ordre de grandeur que la hauteur des obstacles de taill e 
critique, peut causeI' un accroissement appreciable de la vitesse de glissement. La theorie generalisee englobe 
la theorie du glissement d e LLIBOUTRY consideree comme un cas limi te. Pour certaines epa isseurs d'un 
glacier la vitesse d e glissement est une fonction a d eux solutions du cisaillement exerce contre le lit. 

ZUSAMMENFASSUNG . Die Theorie des Gletschergleitens, die der Verfasser in frOheren Veroffentlichungen 
vorgelegt hat, wurde verallgemeinert (I) durch BerOcksichtigung des Gleitwiderstandes an Hindernissen , 
die einerseits kleiner, anderse its grosser a ls die kritischen Hindernisse sind, und (2) durch Aufgabe del' 
Annahme, dass Eis immer in enger BerOhrung mit dem Untergrund auf del' stromabwarts gelegenen Seite 
eines Hindernisses ist. Die Gleitgeschwindigkeiten und kritischen Hindernisgrossen, die sich aus del' 
verallgemeinerten Theorie ergeben, stimmen annahernd mit denen der frOheren Theorie Oberein. Die 
vorli egende Theorie liefert das neue Ergebnis, dass eine Wasserschicht, d eren Dicke um eine Grossenordnung 
kleiner ist a ls die H6he del' kritischen Hindernisse, einen merkli chen Anstieg del' Gleitgeschwindigkeit 
verursachen kann . Die verallgemeinerte Theorie schliesst LliboutI'Y's Gleittheorie a ls einenex tremen 
Grenzfall mit ein. FOr bestimmte Gletscherdicken ist die G leitgeschwindigkeit eine doppelwertige Funktion 
cler Scherspannung am Untergrund. 

I NTRODUCTION 

Until recently the amount of experimental research devoted to the study of the sliding of 
glaciers has been quite limited. Whatever understanding we had of this phenomenon came 
principall y from theoretical work (Weertman, 1957, 1958, ' 96'2; Lliboutry, '959; [Union 
Geodesique et Geophysique Internationale] , ' 963, p . 61 - 68; in press). The situation now is 
changing. Kamb and LaCha pelle (1963, ' 964) have carried out extremely interesting field 
studies and laboratory tests on the mechanisms involved in glacier sliding. Lliboutry a nd 
Brepson (1963) have constructed a large machine in which 30 kg. blocks of ice will be made 
to slide. E lliston ([Union Geodesique et Geophysique InternationaleJ , 1963, p. 65- 66) has 
shown from field work on the Gornergletscher that (melt) water at the bottom of a glacier 
profoundl y influences the sliding velocity. 

I t seems likely that the phenomenon of g lacier sliding will be the s u~ject of an active field 
01' research in the near future. Obviously data have been and will be obtained which can be 
used to test qua ntitatively the theories on glacier sliding. It is desirable that the theories 
themselves be developed as completely as poss ible for these tests. 

It is the purpose of this paper to develo p a sliding theory which is more o'eneral than that 
previously presented (Weertman, 1957, 1958, ' 96'2; [Union Geociesique et Geophysique 
Internationa le] , in press) . One improvement incorporated into the new theory is the fact that 
whereas in the p revious vers ion all resistance to sliding com es Ii"om a "controlling protuber
ance size", now the resista nce produced by other sizes of obstacles is considered. The resistance 
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offered by the other obstacles is smaller than that caused by the controlling obstacles ; never
theless it is appreciable and should be taken into account. 

Another improvement in the present theory comes from the relaxation of the assumption 
made in the older version that the hydrostatic pressure at the bottom of a glacier always is 
larger than any possible tensile stress occurring there. In the newer theory account is taken 
of situations in which this assumption is not valid. 

It is hoped that the present version of the theory and the discussion of certain of its features 
will permit a more meaningful quantitative test of the theory from the field and experimental 
data which should be forthcoming in the near future. 

THEORY 

Two sliding mechanisms form the basis of the theory. One of these involves the phenomenon 
of pressure melting. In this m echanism ice is melted on the up-stream, high-pressure side of an 
obstacle. The water produced flows around the obstacle to the low-pressure side where it 
refreezes. The velocity of melting and freezing, and thus of ice motion, is determined by the 
temperature gradient across the obstacle. This gradient is larger the smaller the obstacle, and 
thus the speed of sliding is larger the smaller the obstacle size. The pressure-melting mechani~m 
permits relatively fast ice motion past small obstacles but not around large obstacles. A second 
sliding mechanism was introduced in order to obtain motion of ice around large protuber
ances. This mechanism is based on the enhancement of the creep rate caused by stress con
centrations existing near obstacles. It leads to a sliding velocity which increases with increasing 
obstacle size. The existence of both of these mechanisms has been verified by the field observa
tions of Kamb and LaChapelle at the end of the ice tunnel in Blue Glacier. The basis of our 
theory is thus established and no longer need be regarded as speculative. 

In my original paper I postulated the existence of an idealized glacier bed containing 
cubical obstacles. The assumption that the obstacles have a cubic shape was one of conveni
ence. It is obvious that essentially identical results would be obtained from the analysis if the 
exact shape of the obstacles were left unspecified and only their average dimension were used 
in the equations. In order to make the sliding theory more general we shall consider in this 
paper obstacles whose three dimensions do differ from one another. We let Lh represent the 
average height of an obstacle, and La and Lp represent respectively the average widths in the 
direction of glacier flow and in the direction perpendicular to the flow . I t is not necessary to 
specify the exact shape of the obstacles. 

It was shown in the original paper that if the obstacles in a glacier bed all are of the same 
size a definite sliding velocity can be calculated from each of the two sliding mechanisms. In 
order to make this calculation it is necessary to assume that a shear stress cannot be supported 
across a smooth rock- ice interface. This assumption obviously is valid if the ice is at the melting 
point and a thin film of water exists between the rock and the ice. It is not valid if the ice is 
below its melting point. Thus cold glaciers or ice sheets should not slip at their bed, a con
clusion borne out by at least one field observation (Goldthwait, 1960) . 

Consider a bed containing obstacles of uniform size which are separated from one another 
by an average distance L'. The average force exerted on anyone obstacle is 7L'2 when a shear 
stress 7 acts parallel to the bed provided that a film of water exists between the rock at the bed 
and the ice of the glacier. If the ice exerts a force on an obstacle then conversely the obstacle 
pushes through the ice with the same force 7L'2. Since the average cross-sectional area of an 
obstacle is LhL p, this force produces a compressional stress approximately equal to 7L'2jLhLp. 
on the up-stream side of the obstacle. A stress of this magnitude should exist within a volume 
of ice of the same size as the obstacle itself. 

In his review of the original (unpublished) version of my first paper (Weertman, 1957) on 
glacier sliding J. W. Glen, in a private communication, pointed out that the force exerted on 
the ice by an obstacle results not only in the existence of a compressive stress on the up-stream 
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side of the obstacle but it also may cause the ice to experience a tensile stress on the down
stream side. In order that this tension exist it is necessary that the ice does not lose contact with 
the rock surface. Thus if the hydrostatic pressure is great enough to prevent a cavity from being 
formed on the down-stream side of an obstacle, the obstacle produces not only compression in 
the ice on its up-stream side but a lso tension on its down-stream side. (The tensile and co m
pressive stresses we are discussing are stresses additional to the hydrostatic pressure normally 
present at the bottom of the glacier. ) It is obvious that if the obstacle is symmetric the tensile 
stress is of the same magnitude as the compressive stress. If ice is to close in behind an obstacle 
as it flows around it the flow lines on the up-stream and down-stream side of a symmetric 
obstacle must be symmetric and the stresses causing this flow likewise must be symmetric. 
Therefore when Glen's condition is valid and the compressive stress is TL' Zj2LhLp and the 
tensile stress also is equal to TL'2j2LhLIl. The combination of these two stresses represents a 
total force of TL'Z exerted on the obstacle. 

If the hydrostatic pressure is not great enough to prevent the formation of a cavity on the 
down-stream side of an obstacle the compressive stress on the up-stream side is TL " jLhL p, a 
value which is twice as great as that which is realized when Glen's condition holds. * In the 
published version of the sliding theory (Weertman, 1957) it was assumed that Glen's condition 
always is satisfied. 

In this paper we shall consider situations in which Glen's condition is valid and those in 
which it is not. 

Pressure melting 
The velocity of sliding caused by pressure mel ting is found from a calculation of the change 

in hydrostatic pressure from one side of an obstacle to another. Because the melting tempera
ture of ice varies with pressure, there is a temperature difference across the obstacle which 
gives rise to the flow of heat, the melting of ice, and the freezing of water. The difference in 
temperature LI T is equal to CLJP, where C is a constant equal to 7·4 X 10- 9 QC. cm. 'jdyn. and 
LJP is the difference in hydrostatic pressure. 

There is some ambiguity connected with the pressure difference LIP. In the water layer 
existing between the ice and rock the pressure difference will be LIP = TL' 2jLbLp. In the ice 
itself, however, the difference may be only TL' Zj3LhLp. The factor of t in this latter expression 
arise because a uniaxial compression or tension produces a hydrostatic pressure of only t the 
magnitude of the compressive or tensile stress. (That is, through a rotation of the coordinate 
system, a uniaxial stress in one coordinate system can be changed in another coordinate system 
to a stress system containing only pure shear stresses and a hydrostatic stress. The value of the 
hydrostatic stress turns out to be t the value of the original uniaxial compressive or tensile 
stress.) In our previous papers on sliding we assumed that the factor t should appear in the 
equations. On the other hand, Kamb and LaCha pelle (1964) consider that it should not. This 
is a question best answered by experiment, and Kamb and LaChapelle's (limited) experimental 

• If the ice is cold and frozen to a rock surface the ice- rock interface can support a tensile force no rma l to it. 
In this situation a tensile stress could exist on the down-s tream side of an o bstacle even when the hydrostati c 
pressure is small. It also should be realized that even if ice is at the melting point an ice- wate r- rock interface 
might be able to support a tensile force a cross it since liquids do have an appreciable tensil e streng th . The hydro
static tensile strength of water has been measured by Briggs ( 1950) . H e finds it to rise steeply with tempera ture 
from 20 bars at a tempera ture slightl y above o°C. to 280 ba rs at temperatures be tween 5° to 10°C. Fisher ( 1950) , 
has pointed out that the drop in strength by an order of magnitude with a small decrease in tempera ture may be 
caused by the nucleation of ice under the reduced hydros ta tic pressure. It would be desirable to have a n experi
men tal measure of the tensil e strength of water in contact wi th an ice surface to see if i t still has a fini te va lue under 
these condi tions. 

For a liquid to have a tensile strength it must be in a confined space. This condition may no t be met at the 
bottom of a glacie r and the tensile strength of the water layer could be zero. N evertheless in laboratory experiments, 
such as those carried out by K a mb and LaChapelle in which blocks of rock are pulled through ice, it is possible 
that a tensile stress is exerted across the water layer separating ice from rock since in this type of experiment the 
water layer may be confined. 
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data do seem to support their viewpoint. Therefore in what follows we shall consider that the 
temperature difference across an obstacle is CTL'l jLhL p rather than the smaller value we used 
previously. The temperature gradient across the obstacle is CTL'l /LhLpLd. If all the heat floyv 
is through the obstacle a volume of ice is melted in a unit time which equals the temperature 
gradient (CTL'l jLhLpLd) times the area of an obstacle (LhLp) times the coefficient of thermal 
conductivity D of the rock divided by Hp, where H is the heat of fusion of ice (80 cal. /g.) and 
p is the density of ice. The velocity of sliding is equal to this volume of melted ice divided by the 
area of an obstacle. The following equation is obtained for the velocity of the sliding S I which 
results from pressure melting: 

Sf = CTL'lD jHpLhLpL d = (CTD jHpL ) (L'2jV ) ( la) 

where L is the average dimension of an obstacle (D = LhL,)Ld ) . Except for the absence of a 
factor of t equation ( I a ) is identical to the equation previously obtained for the pressure
melting mechanism. Equation ( la) is derived with the assumption that all the heat flows 
through the obstacle and none goes through the surrounding ice. To take this latter hea t flow 
into account we rewrite equation ( la) as follows: 

SI = aCTL"D/HpLhLpLd = (aCTD /HpL ) (L'l /V ) ( lb) 

where a is a constan t whose value is I if all of the heat flow is confined to the obstacle and is 
somewhat larger than I if additional heat flows through the ice. The value of a could be 
determined by laboratory experiments. 

Stress concentrations 
The velocity of the sliding which results from the creep-rate enhancement caused by stress 

concentrations is found by noting that the volume of ice which is subjected to the concentrated 
stress is of the order of the volume of the obstacle itself. The creep ra te E of ice is given by Glen's 
creep law. It is 

where a is the stress, n is a constant equal to 3 or 4, and B is another constant which is equal to 
o· 01 7 bar- nlyr. when the stress is uniaxial tensile or compressive. The compressive stress a on 
the up-stream side of an obstacle is equal to TL' 2/(3L hL p, where (3 = 2 if the hydrostatic pressure 
is sufficiently large to prevent cavity formation and f3 = I if it is not. The sliding velocity S2 
caused by the stress concentration is equal to the creep rate E times the distance in the direction 
of motion over which this creep rate is effective. Thus 

S2 = iLd = BLd (TLd j(3L ) n(L'l jL2)n (3a ) 

where, as before, L is the average dimension of a n obstacle. This sliding velocity is almost the 
same as that derived previously. The sliding velocity given by equation (3a) is, of course, only 
a rough estimate of the sliding velocity S 2 since we do not know exactly the dista nce over which 
the creep rate E is effective. A more exact expression for the sliding velocity is 

S2 = bELd = bBLd (TLd /f3L )n(L'2jv )n (3b) 

where b is a constant of the order of I. The exact value of b could be determined from labora
tory experiments. 

Double-valued nature of the sliding velocity due to stress concentrations 
It should be emphasized that in a certain range of values for the overburden pressure the 

sliding velocity S2 actua lly is a double-valued function of the shear stress T. The reason for this 
multiplicity of value is the fact that f3 may take on one of two possible values. We have noted 
that if the hydrostatic pressure is very large (3 = 2 but if it is small f3 = I. Suppose however 
that the hydrostatic pressure has an intermediate value. Let P equal the hydrostatic pressure, 
where P = pgh, p is the density of ice, g is the gravitational acceleration, and h is the thickness 
of the glacier. Let T represent the tensile stress on the down-stream side of an obstac le. This 
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tensile stress is exerted in a direction parallel to the bed. Further, let 8 represent the maximum 
angle between the slope of the obstacle and the average slope of the bed. Thus 8 is 90° for an 
obstacle having part of its surface perpendicular to the average slope of the bed. The maximum 
tensile stress exerted normal to an ice- rock surface is T sin 2 8. In order for a tensile stress to 
exist on the down-stream side of an obstacle the ice must remain in contact with the rock and 
thus the hydrostatic pressure must be larger than T sin2 8, where T = TL 12 j2LhL p. 

If the ice loses contact with the down-stream surface of an obstacle only a compressive 
stress exists on the up-stream side of the obstacle. Its magnitude is 'TL' 2jLhLp. A cavity will 
form on the down-stream side. The hydrostatic pressure will tend to close the cavity . The 
rate of closure (Nye, 1953) is proportional to pn. However the cavity is being opened up by 
ice flow around the obstacle. If P is greater than TL'2 jLhLp a cavity will not be able to form. 
On the other hand if P is less than TL'2 jLhLp a cavity can remain open. The value of P can be 
smaller than TL'2 jLhLp and yet be larger than TL'2 sin'8 j2LbL p, the stress which it must 
exceed to prevent an ice- rock interface surface from separating and a cavity being formed. 
Therefore at any value of P = pgh in the range 

TL" sin28j2LhL p < pgh < 'TL'2jLhLp 

a cavity which is formed behind an obstacle will remain open but if the cavity is not already 
in existence it will not form. Therefore fJ can equal either I or 2 in this range of values of P. 
As a result the sliding velocity is double valued. 

The glacier sliding velocity 
In our previous papers on sliding it was found that the actual sliding velocity of a glacier 

whose bed contains a full spectrum of obstacle sizes is determined by those obstacles for which 
SI = S ,. It was argued that the pressure-melting mechanism enables ice to flow easily around 
smaller obstacles because this mechanism gives a sliding velocity which is larger the smaller 
the obstacle. It was argued further that the stress-concentration mechanism enables ice to 
flow around the larger obstacles without any trouble since for this mechanism the larger the 
obstacle the greater is the sliding velocity. 

We still hold to this viewpoint but we wish to refine the calculation of the actual sliding 
velocity. In the previous paper it was assumed implicitly that only the " controlling" obstacles, 
that is, those obstacles whose size is such that SI and S 2 of equations ( I b) and (3) are equal, 
hinder the ice flow. The resistance offered by obstacles both smaller and larger than the 
controlling obstacles was considered to be negligibly small. This assumption obviously is only 
an approximation. The smaller and the larger obstacles also hinder the ice motion although 
not to the same degree as the controlling protuberances. 

We wish now to calculate the sliding velocity of a glacier when the effect of obstacles both 
smaller and larger tha n the controlling protuberances is taken into account. 

I t is postulated that the glacier bed is made up of obstacles of various sizes. One simplifica
tion will be made in the distribution of obstacle sizes. It will be assumed that instead of being 
continuous the spectrum of sizes is discrete. If A is regarded as the average dimension of the 
smallest obstacle the next largest obstacle will be taken to have the average dimension lOA, 
the next largest 100'\, the next 1000'\ and so on to the largest sized obstacles (which could be 
of the order of +0- of the thickness of the glacier) . 

Because of the existence of the shear stress T , a glacier transmits over an area A a total force 
'TA to the bed of the glacier. This force is transmitted through the obstacles and thus each size 
group will transmit some fraction of the total force. The obstacles in the controlling size group 
will, of course, tra nsmit the major portion of the force. Suppose we let TiA represent that force 
which the obstacles of size ( IO ) 'i ;\ transmit to the bed. We must have the condition that 

,2T'i = T. 
1 = 0 
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The stress Ti can be regarded as the effective shear stress which causes the flow of ice around 
obstacles of the size ( JO) i,.\ . Since the sliding velocity must be the same for every sized obstacle 
it follows that 

S = (S, + S')i = (aCTiD /HpLi)(L,/ /Li2)+bBLdi (TiLdi /f3iLi )n(L?/Li') n (6 ) 

where S is the actual sliding velocity of the glacier and the subscripts refer to the values of 
L, L' , etc., for the particular size of obstacle. * 

Equation (6) gives Ti in terms of the sliding velocity S. If all of the values of Ti are sub
stituted into the summation term of equation (S) an equation is obtained which contains only 
the sliding velocity S and the applied shear stress T as the independent variables. The sliding 
velocity has been determined as a function of the shear stress acting at the bed of a glacier. 
By inspection it is obvious that this equation is a complicated one. A good approximation to 
this more exact equation can be found by observing that in equation (6) the first term on the 
right-hand side is predominant for obstacles smaller than the controlling size t whereas the last 
term predominates for obstacles larger than the controlling size. Thus we can make the 
approximation that S = (S')i for the smaller obstacles, that S = (S')i for the larger, and that 
S = (S, + S 2) = 2S I = 2S, for the controlling obstacle size. 

Now let A represent the average overall dimension and Ad the dimension in the direction 
of motion of the controlling obstacles. Let us assume that the "roughness" of the bed is not a 
function of the size of obstacles. Therefore L'1/Li = r is constant for all obstacle sizes. The 
term r is a measure of the roughness of the bed. Also let Ldi/Li = Y be a constant independent 
of obstacle size. Let TA represent the effective shear stress acting on the controlling obstacles. 
Since the sliding velocity is identical for all obstacles the effective shear stresses acting on 
obstacles smaller than the controlling size are TA /S, TA /SO, TA/SOO, etc. Similarly, the effective 
shear stresses acting on the larger obstacles are TA({3/f3A )/s' j", TA(f3 /f3A )/SO' /n, TA(f3 /f3A) /SOo, jn 
etc., where f3A is the value of f3 for the controlling obstacles. 

With these values for the stresses Ti equation (S) reduces to 

when the value of f3 for all the larger obstacles is identical to f3A of the controlling obstacles. 
Since n ~ 3 this last equation reduces to 

T = 2' 3147.1. (7b) 

If f3A = I for the controlling obstacle size but f3 of the larger obstacles is equal to 2, equa
tion (7 b) becomes 

7 = 3 ·40 S7 A. (7c) 

Equations (7b) and (7c) represent two limiting cases. 
I t can be seen that the effective shear stress acting on the controlling protuberances is only 

about t to t of the applied shear stress. Thus an appreciable part of the resistance to sliding 
comes from obstacles other than the controlling obstacles. This additional resistance is provided 
principally by the obstacles which are larger than the controlling size. 

If we substitute equations (7) into equation (6) and set Li = A and S, = S" we obtain 
the following expression for the sliding velocity of a glacier 

S = 2aCDr27/kHpA (8a) 

where k represents the constant term of equations (7) and has a value which lies between 

* In the previous papers on sliding we set S = S. for the obstacle size which corresponds to S. = S,. Since 
sliding is produced by two mechanisms it would have been more accurate to have set S = (S. + S, ) = 2S. = 2S, 
in those papers. 

t Hereafter the controlling obstacle size will be defined to be the size of that obstacle for which the two sliding 
mechanisms give identical contributions to the sliding velocity. 
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2.314 and 3.405. An expression for A is derived from the condition that SI = S2 at the 
controlling obstacle size: 

A = (aCDkn- lf3/1 n jHpbBr2n-2yn- lTn-l)~ . 

The substitution of this expression into (8a) results in the equation 

S = 2(aCDbByn- l /Hpf3An)l(Tr2 jk) (n+]) 12 . 

(9) 

(8b) 

This equation gives the sliding velocity of a glacier as a function of the shear stress acting at the 
bed of a glacier. Apart from a constant factor it is identical to the sliding velocity calculated 
previously. Both the sliding velocity and the controlling obstacle size derived previously 
(Weertman, 1957, 1962) can be obtained from these last two equations by setting k = b = 
y = I, a = t and f3/1 = 2, and by dividing the right-hand side of equation (8b) by 2 . 

Figure 1 shows plots of sliding velocity at constant stress versus the roughness factor r of 
the bed. (The larger is r the smoother is the bed. ) Also shown in these p lots is A, the controlling 
obstacle size, versus r. I n the calculations for these plots it was assumed that a = I , n = 3, 
y = I, b = I, C = 7·4 X IO-3°C .jbar, B = 0.017 bar- 3jyr., D = 0·005 cal. /"c. sec. (a 
typical value for rocks), and T = 1·0 bar. I n the figure one set of curves was found for f3 /1 = I 

and k = 2·3 I and another set for f3/1 = 2 and k = 2 ·3 I. These values of f3,-, and k represent 
limiting cases. The set of values f3 /1 = I and k = 3.405 correspond to curves which are 
intermediate to those plotted. 
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Fig. 1. Plot of sliding veloci!y S and size cif controlling obstacles A as a function cif the roughness factor r for a shear stres. 

'T = 1 bar, k = 2 .31 and fJA = 1 or 2. (The case of k = 3 ·4 and fJ/I = [falls between the curves shown) 
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In these plots the controlling obstacle size at a particular sliding velocity can be found 
by drawing a vertical line from the sliding velocity curve to the obstacle size curve. This is 
done in Figure I for a sliding velocity of 80 m. /yr., which is of the order of the sliding veloci ty 
of glaciers having a shear stress around I bar at their beds. The roughness factor of a glacier 
which slides with the velocity of 80 m. /yr. under a stress of I bar must be of the order of 
T = 15 to 20. Also shown in Figure I are the obstacle sizes and roughness factors connected 
with sliding velocities of IQ m. /yr. and I' 0 m. /yr. under a I bar shear stress . A somewhat 
different method of presenting the results of equations (8) and (9) is shown in Figures 2 and 3. 
Here we find plotted the sliding velocity and controlling obstacle size as a function of the shear 
stress for various values of the bed roughness. 
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Fig. 2 . Plot oJ sliding velocity S and controlling obstacle size .!l as a J llllction of the shear stress T Jor variolls values qf the 
roughness Jactor rand k = 2' 3 I and f3/J = 2 

Kamb and LaChapelle (1964) measured a sliding rate of 5' 8 m. /yr. at the end of their 
ice tunnel. They estimated that the roughness factor of the bed was equal to 9 and the shear 
stress acting on the bed was o· 7 bar. For these values of the roughness and the shear stress 
Figure 2 predicts a sliding rate of 2 m. /yr. , a value close to the observed rate. The controlling 
obsta cle size obtained from this plot is about 4 cm. This size is comparable to the maximum 
thickness (about 3 cm. ) of the observed regelation layer. If the maximum thickness of the 
regelation la yer is taken as an approximate measure of the controlling obstacle size, as was 
suggested by J. W. Glen at the Berkeley symposium, it would appear that theory and observa
tion agree reasonably well. Nevertheless, Kamb and LaChapelle feel tha t the controlling 
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obstacle size is much greater because the regelation layer behind the obstacles they examined 
a ppeared to be undeform ed by creep. H owever, I poin ted out ([U nion Geodesique et Geo
physique In ternationa leJ, in press) the improbability of fi nding an obstacle of a size exactly 
equa l to the controlling obstacle size. It is only for this sp ecia l size that the regelation a nd creep 
flow contribute compa rable amounts to the total slippage. A given obstacle is more likely to 
be either smaller or larger tha n the controlling size. If it is sm aller, flow of ice aro und i t occurs 
predominately by regelation ; if it is la rger the flow takes place la rgely through creep 
deforma tion. 
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Glen's condition 
The values of the slid ing velocity and the controlling obstacle size depend upon whether or 

not Glen's condition is satisfied. G len's condition is satisfied if the hydrostatic pressure pgh is 
sufficiently large. 

The effective stress on the controlling obstacles is Tr 2/(3/1k, where (3/1 = 2 when G len's 
condition holds and (3/1 = I when it does not. If the hydrostatic pressure pgh is greater than 
Tr2 /k, Glen's condition a lways is valid; if pgh is less then T1'2 sin2 8/2k, Glen's condition never is 
valid (fJ is the angle between the maximum slope of an obstacle and the average slope of the 
bed) ; but in the region where T1'2 sin 2 8/2k < pgh < Tr2/k G len's condition mayor may not 
be valid. In this region the sliding velocity is doub le-va lued. (It is interesting to note that 
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Meier (private communication) has some field observations which indicate, through an 
indirect calculation, the occurrence of a double value in the sliding velocity of Nisqually 
Glacier. ) 

Figures 4 and 5 show regions of validity and non-validity of Glen's condition. In these 
figures glacier thickness h is plotted versus shear stress for various values of the roughness 
factor r . The intermediate areas of these plots indicate the region within which f3.1 can have 
either one of two values. Here the sliding velocity is double valued. 
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Fig. 4. Diagram of glacier thickness h and shear stress T showing the regions in which f3.1 = I , f3.1 = 2 and f3.1 = I or 2. 

The roughness factor r = la and k = 2.31 . The ratio of maximum angle e between slope if the swface of the obstacle and 
the average slope of the bed is assumed to be 30° 

When Glen's condition does not hold, cavities form behind the controlling obstacles and 
a lso possibly behind obstacles larger than those of the controlling size. Lliboutry (1959) first 
predicted the existence of cavities at the bed of a glacier. His prediction was based on a model 
of a glacier bed, his washboard model, which is rather different than the one we have employed. 
Nevertheless the physical reason for the appearance of cavities in our model of a glacier bed is 
much the same as in his. 

The length of the cavity which is formed behind an obstacle can be estimated as follows. 
The stress which causes sliding around an obstacle is Tr2 /k, where f3 = I. The sliding velocity 
is proportional to (Tr2 jk)n. Since the overburden pressure is pgh the velocity with which 
the cavity is closed is proportional to (pgh)n. Therefore the cavity behind an obstacle 
of size A will be closed off at a distance from the obstacle which is of the order of 
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A (Tr' /k) nj( pgh) n. The cross-sectional area of the cavity approaches zero at this distance. At 
the head of the cavity the cross-sectional area is that of the obstacle itself. The probability 
that another obstacle of size A is directly down-stream from the obstacle increases the further 
down-stream one goes . A simple calculation shows that the probability is of the order of I at 
the distance Ar' . Therefore the length of the cavity cannot exceed Ar'. 
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Fig . 5 . Same diagram as Figure 4 except that r = 5 and r = 15 

It is evident that when the length of the cavities becomes as long as Ar' the bottom of the 
glacier touches the bed only at the tops of the obstacles. This is the condition fundamental to 
Lliboutry 's theory of sliding (1959). I presented an argument (Weertman, 1962) that this 
condition can occur only for extremely rapid sliding velocities such as would exist during the 
avalanching of thin ice slabs. The argument that we presented still is valid. If an appreciable 
fraction of a glacier loses contact with the bed through the formation of cavities the effective 
hydrosta tic pressure at the bottom of the glacier is increased over the value pgh by the factor 
fL (the area of the bed divided by the area of ice in contact with the bed) . This increase in the 
hydrostatic pressure increases the rate of closure of a cavity. The length of a cavity now is of 
the order of A (TT2 /k) n/( fLpgh ) n. 

The value of fL may be estimated easily. An area (rA )2 of the bed contains one obstacle of 
size A. The area of the g lacier bed underneath the cavity behind this obstacle is approximately 
A2( TT' /k) n/ (fLPgh ) n. From these two areas the following equation is found for the ratio fL: 

fL2(fL - I ) = (TT2 /k) njr2 (pgh) n. (10) 
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Figure 6 shows a plot of fL versus h for various values of r. It is assumed that the shear stress 
T = I bar and n = 3. (According to Figures 4 and 5 it is possible for f3/1 to equal 2 and fL to 
equal I for any ice thickness to the right of the vertical hatches in Figure 6. ) If the ice is riding 
on top of the obstacles, as it is pictured doing in Lliboutry's theory, fL is approximately equal 
to r2. In order for fL to have this value under a stress of T = I bar and a roughness of r = 15, 
[0, or 5, the ice thickness must be less than 10 m. This conclusion is in harmony with my 
previous discussion (Weertman, (962) ofLliboutry's paper. It can be seen from Figure 6 that 
a n appreciable separation of ice from rock can occur, although not to the extent envisaged by 
Lliboutry, for glacier thicknesses of the order of 100 m. 
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Fig. 6. Plot of the ratio I" (ratio of area qf bed to area of ice in contact with bed) versus the thickness h of a glacier when T = [ 
bar, k = 2 ' 31 and fJ/I = I 

In Lliboutry's theory the ice separation at the bed profoundly influences the sliding velocity. 
It is to be emphasized strongly that the separations occuring in the present analysis do not have 
this strong influence on the velocity except when fL';:;:; r2. In fact so long as fL < r2 the sliding 
velocity is not influenced by separation. * 

* This statement should be qualified to the extent that if I" is much la rger than about 3 the effective resistance 
to sliding by obstacles smaller than A is greatly reduced. The sliding rate thus will be raised by an amount equal 
to the increase in velocity which results from the presence of a water layer smaller in thickness than the controlling 
obstacle size. This velocity increase is discussed in the following section. I t is much smaller than that found in 
Lliboutry's theory. 

https://doi.org/10.3189/S0022143000029038 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000029038


THE THEORY o r G LACIER SL IDIN G 299 

Our ana lysis of cavities was based on the assumption that the cavities are free of wa ter. 
Lliboutry also considered cavities fi lled with water. His treatment was criticized by the present 
a uthor ([Union Geodesique et Geophysique InternationaleJ, 1963, p . 67) as being incomplete. 
There is no way to estimate the magnitude of the water pressure in a cavity from his analysis, 
yet a knowledge of this pressure is importa nt since the sliding velocity he derived depends 
sensitively upon it. 

I should like now to give an argument in favor of the idea ofLliboutry that cavities formed 
by obstacles normally are filled with water. Consider the cavity whose cross-sectional and top 
views are shown in Figure 7. If the cavity does not contain water the pressure p* of ice against 
rock at the periphery of the cavity will be smaller than the pressure P at the ice- rock interface 
a distance away from the cavity. This conclusion can be demonstrated qua ntitatively from 
Nye's theory (1953) of the closing of tunnels for the case when n of Glen 's creep equation is 
equal to 3. (If n were smaller than about 2 , p* would be la rger than P according to Nye's 
theory. ) The water at the bottom ofa glacier which exists in the ice- rock interface will always 
flow down a pressure gradient. Since the pressure gradient is towards the cavity a water-free 
cavity will become filled with watet". 

P ICE p. P 

~ 
ROCK 

(0) 

P 

P 

P 

(b) 
Fig. 7. Water:!;-ee cavity behind an obstacle (a) cross-sectional view, (b) looking dowl/from a /Joillt directly above the cavity. The 

/Jress7lre P is the average hydrostatic pressure at the bed and the pressure p. is that exerted lIear the cavi~y (p* < P ) 

Su ppose that an isolated cavity is filled with water. Assume that for a constant sliding 
velocity the cavity is in a steady-state condition. It is growing neither smaller nor larger . The 
water pressure at the bottom of the cavity must be identical with that under the ice. Otherwise 
water would flow into or out of the cavity. At the top of the cavity the water pressure could 
differ from the pressure in the ice by an amount which at most is of the order of (pw- p) gA, 
where Pw and p are the densities of water and ice respectively. For an obstacle I cm. in size this 
pressure difference is of the order of 10- 4 bar. Therefore only a negligibly small pressure 
difference is available for causing the closure of the cavity. (In a steady-state condition th e 
closure is exactly ba lanced by the sliding process which opens up the cavity.) Contrary to our 
assumption the iso lated cavity cannot be in a steady-state condition. If the cavity remains 
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completely filled with water it must become longer and longer since there is insufficient 
pressure available to close it off. Eventually it will connect with other cavities. When enough 
cavities interconnect the water within them can drain off. Once this happens the average 
diameter of a cavity will decrease through the creep flow of ice until the flow of water is so 
restricted that the cavity again can be completely filled with water. The cavity would have a 
tapered profile in the direction of ice flow similar to Figure 7 except that it would not be 
completely closed off at its down-stream end. The length of the tapered cavity would depend 
not only on the size of the obstacle, the roughness, and the shear stress acting across the bed, 
but a lso on the amount of water flowing at the bottom of a glacier. If the amount of water flow 
is large the average diameter of interconnecting cavities must be large in order to accommo
date it. Ifit is small the average diameter will be small. In the latter situation the total area of 
the water-filled cavities at the glacier bed would be about the same as for the case in which the 
cavities were assumed to be water free. The velocity of sliding in this situation would be the 
same regardless of whether the cavities were water-free or water-filled. 

If the average diameter of a cavity remains large because of an abundance of melt-water 
supply the interconnecting water-filled cavities can be approximated in a limiting case by a 
sheet of water of uniform thickness at the bed of a glacier. The thickness of such a sheet of 
water was shown (Weertman, r 962 ) to be determined by the amount of water flowing through 
any section of the bed. We consider the effect of a water layer on the sliding velocity in the 
following section. 

Effect of the water layer at the bed !{f a glacier 
The field observations of E lliston ([Union Geodesique et Geophysique InternationaleJ , 

1963, p. 65- 66) on the Gornergletscher show convincingly that water at the bottom of a 
g lacier can change markedly the velocity of glacier movement. He finds that in the winter the 
glacier velocity is 20- 50 per cent slower than the annual mean velocity, and the summer 
velocity exceeds the average by 20- 80 per cent. These changes can be understood if melt 
water acts as a lubricant at the bottom of a glacier. I have shown (Weertman , 1962 ) that if the 
water layer at the bottom of a glacier is thicker than the height of the controlling obstacles an 
increase in the sliding velocity will occur. 

In our previous treatment it was found that the water layer has no effect on the sliding 
rate until the thickness of the water layer is as great as the height of the controlling obstacles. 
We should like to point out now that a water layer with a thickness an order of magnitude 
smaller than the controlling obstacle size can cause an appreciable increase in the sliding 
velocity. The reason that in the present theory a water layer of such small thickness can affect 
the sliding rate may be seen £I'om equations (5) and (6). 0 obstacles smaller than the thickness 
of the water layer can cause a hindrance to the sliding motion. Thus the effective shear stress 
Ti in equation (5) acting on these obstacles is zero. As a result the effective stress on the larger 
obstacles is raised and the sliding velocity is increased. 

When the thickness d of the water layer is smaller than A, equation (7a) for T 11 becomes 

T = TII [r + 2 J/n {( ro ) ,/n- 1 }+ Hr + +O- +( +O-)2+ .. ' ( l~ ) m}]. (JI ) 
The number of terms in the series 1+ l~ + ... depends on the thickness of the water layer. 
If the water layer is equal to or larger than .11 / 10 no term is retained in the series. If the water 
layer is equal to or larger than A / l oo but smaller than .11 / 10 the first term only is retained; if 
the layer is larger than or equal to 11 / 1000 but smaller than A/ roo the first two terms are 
retained ; and so on. If the water layer is somewhat thicker than A / ro but not so thick as A, 
eq ua tion (I I) red uces to 

or k = 2' 092. This value of k is a lmost 10 per cent smaller than the previous value of 2' 3 r 4. 
Thus the sliding velocity, which is inversely proportional to the square of k, is approximately 
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20 per cent la rger than it would be if the water layer thickness were very much smaller. This 
is an a ppreciable increase in the sliding velocity. If the water layer thickness were of the order 
of A/ lOO, k would be I per cent smaller and the sliding rate 2 per cent faster, and so on for still 
smaller thicknesses of the water layer. 

If the water layer is thicker tha n the height of the controlling obstacles, equations (5) and 
(6) predict tha t the sliding velocity S* will be 

S* = bByA ' (Ty /{3'k )nr21! 

where f3' is the value of {3 for the obstacles which are just bigger than the thickness of the water 
layer and A' is the size of these obstacles. The term k is equal to I ·82 if the value of {3 is the 
same for a ll obs tacles larger than the thickness of the water layer, a nd k = 2 ' 04 if {3' = I for 
obstacles of size A' and {3 = 2 for a ll larger obstacles. 

Figure 8 shows a plot of the ratio of the sliding velocity S* when an appreciable water layer 
is p resent to the ordinary sliding velocity S versus the thickness of the water layer. (I t is assumed 
that (3 = 2 for a ll obstacles. ) The p lot is a step fun ction because we have employed a discrete 
rather tha n continuous distribution fun ction for obstacle sizes. It is expected that the curve of 
S* IS versus water layer thickness for a continuous distribution function approximates the 
dashed curve drawn in this figure. 
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TABLE 1. CONTROLLING OBSTACLE S I ZE AND R O UGH NESS FACTOR FOR A SLIDING VELOCITY OF 80 M./ YR. UNDER A 

I BAR SHEAR STRESS 

Contro lling size A mm. 
R o ughness factor r 

Older Theory 
(W eertman, 1962) 

1·8 
16·6 

f3 = I 

k = 2 ' 3 
3'5 

14 '2 

f3 = 2 

k = 2'3 
6'0 

18'4 

f3A = I 

k = 3'4 
3 ' 55 

I7' 2 
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DISCUSSION AND SUMMARY 

In its essentia l features the sliding theory just presented is the same as the simpler theory 
developed in earlier papers (Weertman, 1957, 1958, 1962) . The new values for the sliding 
velocity and the controlling obstacle size are approximately the same as those found previously. 
Table I shows that controlling obstacle sizes and roughness factors required for a sliding 
velocity of 80 m. a year under a shear stress T of I bar. The new roughness factors are about 
the same as the old. The controlling obstacle size is a factor of 2 to 3 larger than that previously 
calculated. It can be seen that the more refined calculation does not lead to any significant 
difference in the sliding velocity or the obstacle size. It is assumed in the new calculated values 
that the constant factors a and b appearing in the sliding equations for SI and S2 (equations 
(I b) and (3b)) are unity. These constant factors can be determined only by experimental tests. 
I t seems unlikely that laboratory tests will give values for these terms which differ much from 
one. 

Although the actual values for the sliding velocity and the controlling obstacle size have 
not been changed much by the new calculations several interesting results not contained in the 
older theory have come to light. The most interesting of these (see dashed curve of Figure 8) 
is the fact that a water layer smaller in thickness than the height of the controlling obstacles 
can change the sliding velocity by an amount of the order of 40 per cent to 100 per cent. Thus 
if the obstacle sizes listed in T a ble I are representative the changes in the flow rate observed 
by Elliston on the Gornergletscher could have been produced by a water layer of only 
o· 35 mm. to 0·60 mm. in thickness . This new result means that melt water may influence the 
flow rate of glaciers much more than had been suspected previously. 

The relaxation of the implicit assumption in the earlier version of the theory that Glen's 
condition always holds leads to the existence of a double-valued sliding velocity in a certain 
range of values of the thickness of a glacier. The two velocities in this double-valued range 
differ by a factor which is approximately equal to 2 or 3. 

When Glen's condition does not hold cavity formation occurs behind obstacles at the 
bed. Such cavities were predicted previously by Lliboutry. In Lliboutry's theory the cavity 
formation is so extensive that the glacier only sits on the tops of obstacles. I had previously 
shown (Weertman, 1962) that for a glacier ofa typical thickness this condition can occur only 
if the glacier is sliding at velocities which are IOi to 108 larger than those actuall y observed. 
(Lliboutry also considered the situation in which the glacier rested on top of obstacles as well 
as on top of the water trapped in the hollows of his washboard model of a glacier bed. This 
situation of his would correspond to the case considered in this paper in which the water layer 
at the bed of a glacier is sufficiently thick to have an influence on the rate of sliding. Contrary 
to what Lliboutry concluded we do not find that the pressure of water in the water layer has. 
any influence on the sliding velocity.) 

Lliboutry's theory ac tually represents an extreme limiting case of the analysis of cavity 
formation developed in this paper. This extreme case is not likely to occur in nature unless 
the ice thickness is small (less than 10 m. ), or the ice velocity is extremely large, as wou ld occur 
in avalanching ice slabs, or the shear stress at the bottom of an ice mass is considerably larger 
than I bar. (Lliboutry's theory probably is valid at the snout of a glacier where the ice thick
ness becomes less than 10 m. ) Under the thinner parts ofa glacier (less than 100 m. in thick
ness) cavities should form and of course have been observed to exist. 

The theory of the sliding of glaciers that has been developed in this paper is more general 
than that wh ich I presented in the past. Tha t earlier theory as well as Lliboutry's theory are 
contained as special cases in this more general theory. 
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