ON FROBENIUS EXTENSIONS II

TADASI NAKAYAMA and TOSIRO TSUZUKU

In Part I" we introduced the notion of 2. Frobenius extensions of a ring,
as a generalization of Kasch’s [10] Frobenius extensions and hence of classical
Frobenius algebras. We proved, in I, bilinear (or sesqui-linear, rather, to follow
Bourbaki’s terminology) form and scalar product characterizations of Frobenius
extensions in such extended sense, generalizing Kasch’s and classical case, and
then studied homological dimensions in them, generalizing and refining the
results in Eilenberg-Nakayama [4] and Hirata [6]. Dual bases were considered
in case of quasi-free (2.) Frobenius extensions Also the case of a semi-primary
or S-ring ground ring was studied.

In the present Part II we continue our study of Frobenius extensions in
such generalized sense. Thus we first study relative homological dimensions
in them, generalizing the Maschke-Ikeda-Kasch characterization of relatively
projective and relatively injective modules as well as Hirata's [6] results. Then
in §7 we establish Kasch’'s [10] theorem on the endomorphism ring of a
Frobenius ring {or our generalized case. Here the removal of Kasch's S-ring
assumption (which we have already discussed in our previous note [13]) and
the replacement of free module property with projective or quasi-free ones
make our proof more complicated, respectively in substance and in computa-
tion, than Kasch’s case.

Then, in §8, we transfer to the present case the annihilator relations given
in [17] for classical Frobenius algebras, on restricting ourselves to d-ideals
tsimilar to (but slightly more general than) v-ideals in Kasch [10]). Further,
in §9 we consider residue-rings of a Frobenius extension, in order to study
when they are also Frobenius extensions. In these considerations Frobenius
extensions are naturally taken in our generalized sense and thus deviations,

some rather essential and some rather formal, from (the classical case and)
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Kasch’s [10] case are needed. In §10 the case of a quasi-Frobenius ground
ring is considered. Thus, Hall’s [15] theorem (on the ordinary scalar product
in vector-modules over a quasi-Frobenius ring) is observed to be transferable
to the case of a regular sesqui-linear scalar product in projective modules, and
this is combined with §9 to consider residue-rings of (quasi-Frobenius) Fro-

benius extensions of a quasi-Frobenius ring.

§ 6. Relative homological dimensions in Frobenius dimensions.
First we proceed in parallel with I, §3, generalizing Hirata [6]. Let A be
a ring (with unit element) and B a subring of A (containing the unit element

of A).
Lemma 17. Let Q be an A-left-module and m a B-left-module. Then
0 q>0,
(1) Extl, » (2, A® m):{
o ? Homs(g, (87, m))  g=0,

q>0

(2) Ext‘(’A,g)(HomB(A, m), Q)= % —1
Hompz ((87, m), Q) q=0,

Let further N be an A-right-module. Then
0 >0
(3) Torls, » (N, Homz(A, m)) = { a
NP (B, m) qg=0.

Proof of (1), for instance, runs similarly as in Lemma 7. Thus we recall

the isomorphism
(4) Hom, (2, A®zm)=Homz(g, (87, m))

derived there from the isomorphism I, (18), i.e. A® zm<Hompg s-:(s4, m). (4)
proves (1) for g=0. On replacing ¢ with its (A, B)-projective resolution ¥

and passing to homology we obtain
Extls, 5 (8, A®sm) < HYHoms (X, (87, m)))

and the right-hand side is 0 for ¢>0, since ¥ B-splits.
Analogously, (2), (3) may be proved similarly as Lemmas 7/, 7", again

using I, (18).

TueoreM 18. Let A be a B-Frobenius extension of B. If Q is an A-left-
module and if l.dimwu,58< ©, then 1.dimy,,5nQ=0. The same holds with
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L.dima, 5 replaced either by linj.dim, p, or L.w-dimu, »,.

Proof. Let Ldimu,rnQ=n<w. Let M be an A-left-module such that
Ext(nA,}g) (8, 932)#0 al’ld

0->N>F->M-0

be exact with § A-left-free. Since Ext{{'s (2, M) =0 it follows that the induced
homomorphism Extfy, (¢, §) - Exts, 5 (2, M) is epimorphic. Since here 7 has
a form §F = A® s with a B-left(-free) module m, Extts, » (g, §) =0 if #>0,
by our lemma. Hence Extly, 5 (2, M) =0 too if #>0. This implies that =
must be 0.

The other parts of the theorem can be seen analogously.
CoroLLARrY 19. Let A be a 2. Frobenius extension of B. Then

1.(resp.r)gl.dirﬁ(A, B)=0 or o,
w.gl.dim(A4, B)=0 or "o,

Remark. In analogy to this corollary, we could state the following coral-

lary to Theorems 8, &, 8/, 9, 9, 9" in 1, §3:

CoroLLARY 9a. Let A be 2.Frobenius over B and assume that B is y-1-

isomorphic to a dirvect summand of the B-B-module A. Then

l.(resp.r.)gl.dim A =1.(resp.r.)gl.dim B or o
w.gl.dim A =w.gl.dim B or .,

The equation 1.dim 4, 2 =0 (which we have, in case A is 2.Frobenius over
B, seen to be the case whenever l.dim (4,5 2< ) means that € is (relatively)
(A, B)-projective. It is well known (cf. Hoéhschild [71) that with any B-left-
module m the A-left-module A®zm is (A, B)-projective and conversely any
(A, B)-projective A-left-module Q is a direct summand of an A-left-module of
form AQ g1, for example A® 52 On the other hand, in case A is 2.Frobenius
over B, Lemma 17, (1) shows that A® sm is (A, B)-injective and hence any
(A, B)-projective A-left-module is (A, B)-injective too. The converse is seen
from (a well known general fact on (A, B)-injective modules and) Lemma 17,
(2). Thus

TueoreMm 20. A left-module Q over a 2.Frobenius extension A of B is (A4,

B)-projective if and only if it is (A, B)-injective,
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The above mentioned fact, that an (A, B)-projective A-left-module € is a
direct summand of A® %, is seen by considering the A-epimorphism p of
A®rY¥ to € defined in

(5) o Dai®L) = X ail; (a;e A, ;= Q)

and observing that Ker p is a direct summand of A®x< as a B-left-module
(as we see by the B-monomorphism /-»>1®17 of ¢ into A®zL). The last is
the case generally, and ¢ is (A, B)-projective if and only if Ker p is a direct
summand of the A-left-module A® zQ. Similarly the (A, B)-injectivity of an
A-left-module € is reduced to the image of a certain canonical A-monomorphism
Q- Homz(A, ) being a direct summand of the A-left-module Homz (A4, Q).

In case A is g-Frobenius over B, we have an A-isomorphism AQ® (B, Q)
T Homg, - (A4, (B, ) =Homz(A, @), by I, (18) (used above repeatedly). In
combination with the above remark it follows that the (A, B)-injectivity too
can then be characterized by means of a tensor product, A ® (8, Q), and indeed
by that the image of a certain canonical A-monomorphism - A® (B, Q) is
a direct summand of AQ (B, ¥) as A-module.

This last we have seen without making use of Theorem 20 (If we use it,
it is clear that the (A, B)-injectivity of Q is, in case A is 2.Frobenius over B,
characterized by means of the tensor product A® » g, indeed by that the kernel
of a canonical A-epimorphism A® ¢—>Q is a direct summand of A®Q:Q as
A-module.) In fact Theorem 20 may be derived directly from the above remark
(and its dual) readily. For, an (A, B)-injective module ¢ is a direct summand
of AQ (B, ) as A-module, by the above remark. The last module is, being
of form A® m,(A, B)-projective, and hence its direct summand ¢ is so too.
This proves one half of Th.20, and the other half is seen dually.

Now, if A is further quasi-free over B, Theorem 20 can be made more
explicit in

TuroreM 21. Let A be quasi-free [-Frobenius over B and let u., v, be as
in Frop. 10. Then an A-left-module € is (A, B)-projective if and only if there

is a (B, B)-epimorphism ¢ of Q such that on ¢ we have
(6) 22)\, tuy =1

The same condition is necessary and sufficient for the \ A, Bj-injectivity too.
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Proof. Suppose that ¢ is (A, B)-projective, i.e. that Ker p (which is always
a direct summand of A® 5 as B-module) is a direct summand of A®;¢
as A-module. - Then there is a direct summand A-submodule ¢ of A® %
which is A-isomorphic to € (in fact AR Q=2 @ Ker p). Let A be the pro-
jection of A® »Q onto L. with respect to a direct decomposition of AR,¢
into Q and a second A-submodule (which may be Ker p, but not necessarily).
Let, on the other hand, « be the (B, 87')-endomorphism of A® 5{ defined by

(7) (R =13 B nx)l; (e A, ;)

(ie. r=8"'7®1). As an operator on A® ¢ we have
Evyklly:‘—]..
v

For, (vauv)(x 1= Zv\,@(ﬁ T, 0] = Ev‘,ﬁ lru,x®1=
}_vvﬁ*lrz(ﬁym)uu@l— ZJEva (Bv“)ruu@)l—- 221} VB lru, @1 =
;xvuﬂ nu“®l i1

I;y I, (42), (41) and (40). Since 1 is A-homomorphic, it follows that gv,lxuu
= /Ivacuy =2 and induces the identity map on &. On denoting by ¢ the
(B, B) -endomorphism of € which corresponds to ix on @y, by an A-isomorphism
of € and Q, we odtain (6).

Now, let (6) be the case. Let M be an A-left-module having  as an A-
submodule such that Mt is the direct sum of € and a B-submodule. Let Z; be
the projection of M onto ¢, with respect to this direct decomposition of M,
and let i; be the map Zvullu\, on M. 2, maps M A-homomorphically into &,
as the relations 1, (41),J(42) and the (B, 38)-homomorphic feature of : show.
Further, i, induces the identity map on €, as the relation (6) entails. Thus
M =LPKer i is a direct A-decomposition and this shows that ¢ is (A4, B)-
injective.

Lastly, assume that ¢ is (A, B)-injective. Then ¢ is (A, B)-projective, by
Theorem 20.

This closes a circuit and proves our Theorem 21. (The last step in the
above circuit, concluding the (A, B)-projectivity from the (A, B)-injectivity,
is seen also by means of A® (B3, ), as was remarked above. An A-mono-
morphism of ¢ into A® (B, ), used in that argument, may be given, in case

A is quasi-free §-Frobenius over B, by
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(2) g1 1-20. (. N e A5, Q) (1 9),

where /' denotes the element of (B, Q) corresponding to an element [ of €.

For, the A-homomorphic feature of ¢ may be seen in

axl = }:‘_.v,,® (uxD)' = S0, @ ((By,)m,)!

y v
S @vuu(w ) = Doy, @ (u, 1)
Wy v w, v

M av, @ (u,1) = x4l,
m

»w being as in I, (41), (42). That Im o is a direct summand of A® (B3, Q) as
mere B-module, is seen by means of the B-homomorphism ¢; of A®z (B, Q)
to ¢ defined by o(>a:®1) = >(ra)l; (observe that = is (B, 1)-(B, 8-
homomorphic) and by observing that o0l = o (>0, @ (u,0)!) = (zrv,)u =1 (by
1, (40)), i.e. that 410 is identity on €. This explicit way and the similarly
explicit construction in the proof of Theorem 21 form the generalization of the
Maschke-Ikeda-Kasch [10] argument to our present case of a quasi-free 2.Fro-
benius extension.)

$7. Endomorphism ring.

With a ring A having a subring B, consider the B-rightendomorphism ring
€ of A; the elements of € are considered as left-operators on A. The ring
A; of left-multiplications of elements of A, on A, is a subring; with a subset
S of A we denote by S; the set of left-multiplications of elements of S on A.

We prove the following refinement of Kasch [10], Satz 5 and Nakayama-
Tsuzuku [13], Theorem:

TueoreM 22. Let A be an extension ring of a ring B. Let B be an auto-
morphism of B which can be extended to an automorphism, say «, of A, and
denote by a' the automorphism of the left-multiplication ring A; of A correspond-

1

ing to a”'. If A is quasi-free B-Frobenius over B, then the ring € of B-right-

endomorphisms of A is quasi-free o'-Frobenius over A;. Conversely, if € is a'-
Frobenius over Ai, then A is quasi-free B3-Frobenius over B, provided that A is

finitely generated B-left-quasi-free.
Proof. We first prove the second half of the theorem. Thus, let

(9) A=vB+ -+ +u.B
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be, as in I, (33), a direct decomposition of A into B-right-submodules », B such
that v, B < e, B (B-right}), v,e, = v,, where e, are idempotents in B. Let E,
be, for each v =1, ..., n, the B-right-endomorphism of A such that

(10) E,v,=e(sBCA), Ev.=0 (nxv).

As v, is mapped by any B-right-endomorphism of A onto an element in Ae,,
we readily see the direct decomposition

(11) C=(AehEi+ - - - + (Aen)iEn.

By the assumption that € is a'-Frobenius over A; there exists, according to
Prop. 4, an (A;, 1)-(A;, a')-homomorphism A of & to A; such that .4€¢=0
(¢ =€) implies ¢ = 0.

Set wy = AE,(w, € A, in fact e, A). We contend that a relation

(12) yuwi+ 0 FI¥mwa=0 (3 € Be,)
can hold only when y;= - -+ =y,=0. To prove this, set
Xy =0V1Yv+ " +'I)nyv=(111+ +v,,)y»EAe-,

and consider the elements
Xo=Ex11E1+ -+ +%uEn)
of €. For each u, » and b= B we have

Xuvvb:Ey.(xllEl‘f‘ st +xnlEn)U\.b
=E,;x\,e\,b=Euva=Eu(v1+ st Un)yvb-_-"euy~«l)-

Since this is the case for every =1, ..., n, we see

X.=(euy iEi+ -+ +(euyn)iEn=eu(yuEi+ * - +3uEn).
Hence

AX, = MyuEi+ ¢+ +yuEa)ea = (yywe+ - - +Fyowu)aeu

and this is 0 by the assumed relation (12). Then Ax X, =x4X,=0 for any

xe A, ie.
AR E, (xuEi+ -+« +xmEy) =0
for any x A. As this holds for every =1, ..., n, we have, in view of (11),
AC(xyEi+ -+ +xmyE) =0
and hence
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xuEi+ - +x%uE,=0.

As x,= Ae,, we have then x,=0, for each v=1,..., n Then »,=0, v=1,
., m, as was asserted.

So we obtain a direct sum submodule
(Be:)ywyu+ - - - + (Ben)itwm

of A;, where each summand (Be.,);w. is Br-left-isomorphic to Bie,;; remember
that B; is the set of the left-multiplications of the elements of B onto A (not
onto B).

Next we prove that the sum
(13) B/Ei+ -+ - +BiEn

is a right-ideal in € = A;E + - - - + A;E,((11)). Namely, with x=v,9:4+ - - -
+vayn s Aly,€e.B) and y = B we have

NEXxE.v,b =051 Exe.b=00yE 11+ - +0syn)evh

= 0wyl Vel b =8 yvceb
for any b B and &, which means
ylExxlE» = (yyx)lEv S5 BIEv-

This shows B,E.CGc B/Ey+ - - - + BiE,, for any &, and therefore (13) is a
right-ideal of €.

As 4 is (A;, a')-right-homomorphic, it follows that A(B/Ei+ - - - + BiEx)
=Biwu+ - - + Biww is a right-ideal of A; and indeed an Byleft, A,right-
submodule of A;.

Another consequence of the right-ideal property of BiEi+ - - + BiEn is,
as we see by virtue of Prop. 4, ii) (with A, B, § replaced by € A;, «'), that
by any (A4;, a'')-left-homomorphism of € into A; every element in B E;+

- + B/E, is mapped into a' 'A(BEy+ -+ +BiE,) =" (Biwu+ -+ - +
Bywy). Buat, on the other hand, we see by (11) the existence of an (A, a'™h-
left-homomorphism of € into A; mapping E, onto an arbitrarily given element
of a''(Ae,);. Hence we have o' Bywu+ *-- +Bww)2a' (Ae), or

equivalently,

Biwu+ - +Biw,y 2 (Ae).

Since the left-hand side is a right-ideal of A; as observed above, we have
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Biwyt* - -+ + By = (Ae, A), or, what is the same
Buwi+ -+ + Bw, 2 Ae, A.
As this holds for every p=1,..., n and as Ae;A+ - -+ +Ae, A=A by (9)

(and v,e. =v.), we obtain
(14) A=Bw+ - - + Bw,

where, as we proved above with respect to A; in stead of A itself, the sum is
direct and each Bw, is B-left-isomorphic to Be,.
Now we wish to show that the elements #,=aw,, v, are in the dual

relationship as in Prop. 11. Thus, if, with an element x of A, we have 7, (41), i.e.
X0, = 11:-21 VuYuy (y.v € e, Be,)
then we have E,x = Eym E, as is seen from
E.xv,b=E,xv.b= E»L%?vuyﬂb =€,y b = Vb (be B).

Applying 4 we have wwa'xi= 2 y,uwy or (@ ‘wu)xr= 2 (a' v .

Setting %, = aw.(u=1, ..., n) we obtain
u,x = 23 (Byn)u.,
v=1

ie. I, (42); observe that 8 is the restriction to B of the automorphism « of
A which in turn corresponds to the automorphism a'™* of A;. Here (3e))u,
= (ae,)u, = 1, and By, is B-left-isomorphic to BRe., since e,w, =w, and Buw,

is B-left-isomorphic to Be,. Further we have

A:Bu;—}- «++ + Bua

' reduces the case to that

and the sum is direct, as again the application of a”
of w,.

So A is 3-Frobenius over B, and the second half of our theorem is proved.
The verification of the first half is rather straight-forward. Thus, assume that
A is quasi-free §8-Frobenius over B. We have I, (33), (33), in notations described
in Prop 10, and I, (41}, (42) entailing each other as in Prop. 11. Writing I,
(33) in the form (9) (as Prop. 10 tells) and defining E.,= € as in (10), we

obtain the direct decomposition (11). By the assumption of our theorem j is
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extended to an automorphism a of A, and we denote also by « the automor-
phism of A; naturally induced by it. To each element X of € we associate an

element ¢x of Homg, , (4,C, 4A:) defined by
(15) exY =Y Xo s (YEE),
v=1

with our “dual basic elements” #,, »,. Then the map X- ¢y is an A;right-
homomorphism as we see from the relations [, (41), (42). The map is evidently
G-left-homomorphic too.

We wish to show that the map is an isomorphism. Let, for this purpose,
X=xuE+ * - +xmEs(x, € Ae,) be a non-zero element of €. There exists
an index, say »,, with x,,%0. If we write x, = i:?l.vuzw(zweeuB) for each yp,

[
then z,,,,% 0 for some . We have

n n n
(FXE\/(, = Z(QEWX?)V)IM\,I = Z(aE.,oxu)zuvl = E(QZ»ov)uvl
v=1 v=1 vy

= 2} (B2, uw )1 % 0.

Hence ¢x=0, and this proves that our map is monomorphic.

Further, for arbitrarily given elements b, € Bey,(pv =1, . .., n), set

X= i (1)1by)'Ev-
v=1
Then

(“EuXvu)lu;l = E(CYEuvjbv)luvl =

v=1

(et = ((8e)) S)(@b)w)  for u=1,
v=1

Ms=

(16) oyE, =

v

i

v

0 for ux1

Similarly, for each » and for every element x of A there exists an X in €
such that ¢xE, = ((8e,)x); or 0 according as #=» or ux». This proves that
our map X- ¢y is epimorphic too.

Thus €4, 3 Homy,, (46, 4A;) and € is (quasi-free) a'-Frobenius over A,
where a' denotes, as in our theorem, the inverse of the automorphism « of A;.

The first half of our theorem is thus proved too.

Remark. The necessity of the rather strong assumption on the extend-

ability (to «) of the automorphism B, in our theorem, seems to come from
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the midway feature of our definition of 2.Frobenius extensions mentioned already
in a Remark at the end of [, §1. We intends to come to this point in a sub-

sequent -paper.

Remark. Kasch [10] uses his Satz 5 (which we have generalized to our
Theorem 22) to prove that if & is a semiregular automorphism group (in the
sense of [18]) of a simple ring with minimum condition A (which means that
the totality of inner automorphisms of A contained in ® forms an (invariant)
subgroup ®, of finite index in & and is indeed the set of inner automorphisms
of A induced by (all) the regular elements of a semisimple subring T of A
having finite rank over the center C of A) then A is a Frobenius extension
of the fixed subring B of &. As Kasch [10] briefly remarks, the same holds
with a complete automorphism group of (a simple ring with minimum condi-
tion) A whose subgroup of inner automorphisms is of finite index and is
induced by (all) the regular elements of a subring T of A Frobenius over C,
the center of A, provided that the product of T, and A; is a tensor product
over C,( =Cj) and A is projective with respective to the endomorphism ring
of A generated by & and A;; Curtis [14] discusses when this last is the case.

One might try to make a further generalization by replacing here “Fro-
benius”. with our “2.Frobenius”. But this would be rather meaningless. For,
firstly, since C is a field, every 2.Frobenius extension T of C is free and,
moreover, since C should naturally be in the center of 7, T must be 1.Frobenius.
Namely, if A is a B-Frobenius extension of a ring B and if B is contained in
the center of A, then necessarily 8 =1. For, there is, by Prop. 4, a (B, 1)-
(B, B)-homomorphism = of A into B such that neA =0 (g A) entails a=0.
So, with b€ B, x= A, we have, since b, §5 lie in the center of A, nbx=rnxb
= (nx)Bb = (Bb)ax =n(Bh)x, n(b—Bb)x =0. As x is arbitrary in A, n(b—pb)A
=0 and this entails b — 86 =0. It follows that g =1.

(If we should consider a Galois theory of non-simple, and perhaps non-
semisimple, rings, then it would probably be useful to consider “non-free
1.Frobenius” case. However, as the developement of Galois theory for such
general rings seems still to be at an unsatisfactory stage (except with the
outer Galois theory), we shall not go into such a consideration here).

In this coutext we want to remark, however, that the field property makes

no hindrance for having a non-1.Frobenius 2Frobenius extension. As the
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examples given in I, §2 were with respect to non-field subrings, we thus give
here

Example 3. Let K be a field having an involutive automorphism (1)

&-¢, and let A be the ring of all matrices of form

¢ 0
e (&, € K)

in K. Let B be the subring of A consisting of all x with {=0. Clearly B is

a field isomorphic to K, and has an (involutive) automorphism [ mapping

(5 9) to (5 0)- Now, set
( ) (e B).

0¢ 0 ¢
£ 70: ) and hence
(s}

C&i+ &G

(E§1+$51 0 )
TXX1 = _ .
0 G5+ £

From this relation we see readily that = is a (B, 1)-(B, 8)-homomorphism

If ;= (i‘ E?)’ then xx; = (

of A to B. From the same relation we see also immediately that the condition
) of Prop. 4 holds. On the other hand, 1 and # = (? (0)) form a free B-right-
basis of A. Hence Homp (A5, Bs) is a free B-left-module of rank 2. Hence
we have a B-A-monomorphism a- ¢, =z" of pA4 into Homp s (Ax, Bz). Since
(1, #) is also a {ree B-left-basis of A, the map a~¢.==r" is epimorphic too.
A is thus a 2.Frobenius extension of the field B with respect to A5. (In fact,
(1, #) and (#, 1) are B-right and B-left free bases of A dual in the sense of
Prop. 10, 12). Since the automorphism # of B can not be induced by a trans-
formation by a regular element in A, A is not l.Frobenius over B. (This
example is closely related to Example 2 in I, §2. Indeed, if we consider our
A as an algebra over the fixed subfield L of the automorphism ¢- £ in K and
pass to the tensor product A& , K, then we come back to the case of Example 2).

§ 8. Annihilators of ideals.
Let A be 3-Frobenius over B. By means of the (B, 1)-(B, 3)-homomorphism
m =01, as in Prop. 4, we defined in §2
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17) R.X={xc AlrXx=0j},
(18) L.X={xc A|rxX =0}
for a subset X of A.

Lemma 24. L.AX is a right ideal of A and is indeed the largest right
ideal of A contained in L.X.

Proof. As AX is a left ideal, we see readily that L.AX is a right ideal
in A. Clearly L,AXc L.X. Further, if v is a right ideal of A contained in
L. X, then

rtAX=nrX=0
whence t< L.AX. (The lemma will be made use of in the next section).

LemMA 25. L. XA is a left ideal of A and is indeed the largest left ideal
of A contained in L.X. Moreover, L.XA conicides with the left annihilator
(z.e. the set of all left annihilators, to be more precise) I1XA of XA in A.

Proof. Denote the right ideal XA by r. As (It)r=0 we have clearly
Irc L.r. Conversely, from n(L.t)r( =z(L.1t)tA) =0 we obtain (L.t)r=0 (ie.
It2 L.r) by virtue of Prop. 4, i;). Thus L.t =1Ir, proving the second half of
the lemma. Further, clearly L.t =L.XAcC L.X. If [ is a left ideal of A con-
tained in L. X, then z/{X=0, wAIX =0, whence [X=0, by Prop. 4, #), and
therefore, (XA =0, nlXA =0, IS L. XA. This shows that L.XA =Lt is the
largest left ideal contained in L.X. Now, we call 7ight d-ideals those right
ideals of A which are direct B-right-summands of A; they are similar to, but
somewhat more general than, what are called right »-ideals in Kasch [10].
Left d-ideals are defined similarly.

TreEOREM 26. Let A be a 2.Frobenius extension of B. For every right d-
ideal v of A the left annihilator It is a left d-ideal of A and its right annihilator

is t, that 1s,

(19) rlt =1,
(Stmilarly
(20) Irl=1

for every left d-ideal | of A).
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Proof. This follows immediately from Prop. 6 and Lemma 25 (and its
right-left symmetry).

Assume now that B is semi-primary. For a finitely generated projective
(whence quasi-free) B-right (resp. left) module  (resp. ) we denote by (R:
B), (resp. (£: B);) the number of components in a direct decomposition of )t
(resp. Q) into directly indecomposable B-right (resp. left) modules. We have
(R: B)r=(Homg,;(Rs, B): B); for any automorphism B of B. In particular,
we have (A: B)r=(A: B); for a (necessarily quasi-free) 2.Frobenius algebra

A, and this common value is denoted by (A: B).

Tueorem 27. Let B be semi-primary and A be 2.Frobenius over B. For

every right d-ideal t of A we have
(21) (t: B)y+(t: By=(A: B).

Proof. Let, generally, A=RDR' be a direct B-right decomposition of A.
Decomposing R, R’ further into directly indecomposable B-right modules and

applying Prop. 6 to the thus obtained direct decomposition of A, we readily find
(R: B)r+(L:N: By=(A: B).

If in particular R =t is a right d-ideal of A, we obtain (21), by virtue of

Lemma 25.

TueoreM 28. Let B be semi-primary and A be 2.Frobenius over B. For
every element a in A such that aA is a right d-ideal of A, the left ideal Aa
of A is B-left projective and we have

(22) (Aa: B)i=(aA: B),.

Proof. We have A=aA® N with a B-right module R’ and hence, by Prop.
6, A=L.aADL. W =1aAQL,N. But A/laA<Aa (A-left). Hence Aa=L,}'
(B-left). Thus Aa is B-left projective and (Aa: B)i=(LR': B);=(aA: B),
proving (22).

In Theorem 28 aA is contended merely to be B-left-projective. If B is an
S-ring (cf. I, §5), it is a left d-ideal. Thus

ProrosiTION 29. Let B be an S-ring and A be 2.Frobenius over B. Every
B-right projective right ideal of A is a right d-ideal.

Proof. By Piop. 15.
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§9. Residue-rings.
With a (two-sided) ideal 3 of an extension A of B satisfying 3N B =0, the
residue-ring A/3 can naturally be looked upon as an extension of B.

ProrosiTioN 30. Let be B-Frobenius over B, and 3 be a (two-sided) ideal of
A which is a left d-ideal and satisfies 3N B =0. If there is an element a in A
such that

a) R.3=Aa=aA, and
b) n(xya—xay) =0  for any x< A, yE B,

where m = @1 as in Prop. 4, then the residue-ring A/3 is 3-Frobenius over B.

Proof. Consider the map n': x—>nxa of A into B. As rn is (B, 1)-(B, #)-
homomorphic and n(xye — xay) =0 for any x € A, y € B, we see that ' is also
(B, 1)-(B, B)-homomorphic. Since 3i=L.R.3=L.aAcL,a, the kernel of
z', o' induces a (B, 1)-(B, B)-homomorphism of A’=A/3 into B, which we
denote also by n’. The kernel of the last is L.a/3 and this contains no non-
zero left-ideal in A, since 3( =L.R.3) =L,.aA is, by Lemma 25, the largest
left-ideal of A contained in L.a. Thus the map =’ of A’ into B has the pro-
perty i;) of Prop. 4 for A’ instead of A. For every ¢' in Homy, ;-1 (3A', zB)
there is, by Prop. 4, ii;), an element a; in A such that ¢/ (x mod 3) =8 'nxa.
We have § 'nxva; =0 for every x<3, and therefore a,€R.3=Aa. Set thus
ai=ama, ez A. Then ¢' (x mod 3) =8 'nxa,a = '7'xa: and this means that
the map =’ of A' into B satisfies Prop. 4, ii;) for A’ too, besides i;). Further,
since 3 is a left d-ideal, A’ = A/3 is evidently (finite generated) B-left projective.
Hence A’ is -Frobenius over B by Prop. 4.

ProrosiTioN 31. Let A be a B-Frobenius extension of an S-ring B, and 3
be a (two-sided) ideal of A which is a left (or right) d-ideal and satisfies 3N B = 0.
If there is an element a in A such that

a') 3=LpAa=L.adA and b) of Prop. 30 hold,
where = =01 as in Prop. 4, then the residue-ring A/3 is B-Frobenius over B.

Proof. As in our proof to the preceding proposition, we see that the map
7' x>nxa of A into B is (B, 1)-(B, f)-homomorphic and its kernel is L:a
and contains i =L,aA C L.a). By i=L,Aa=L.aA and by Lemmas 24, 25,

3 is both the largest right-ideal and the largest left-ideal of A contained in the
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kernel L.a of »'. Hence the kernel L.a/# of the induced map of A' = A/3 into
B, denoted again by the same letter #/, contains neither a non-zero right-ideal
nor a non-zero left-ideal in A’. The map =', of A’ into B, satisfies Prop. 16,
a) (ie. Prop. 4, i) and i;)) for A'. A’=A/3is again (finitely generated) B-
left (or right) projective, since 3 is a left (or right, resp.) d-ideal. Hence A’
is B-Frobenius over B by Prop. 16. (We wish to correct an error in Prop. 16:
“B-left” in the second line in Prop. 16 should read “B-right” (in order to be in
accord with “1,)” in the third line.l However, if we replace this “1,)” by “1,)”,

then “B-left” goes well (without injuring the validity of the proposition)).

Remark. The application of L, shows that the condition a') for a left d-

ideal 3 is weaker than the condition a).

LemMma 32. Let be 2.Frobenius over B. Assume that the B-right-module A
has a direct summand, say R, which can be (B-right) homomorphically mapped
upon B this is automatically the case with ‘R = B if B is an S-ring. For =01
as in Prop. 4 we have then AN =B and so ©A = B.

Proof. There exists, by assumption, a direct B-right decomposition
A=R®dR: of A and N has a B-right epimorphism ¢ onto B. Mapping x + x;
(xeR, xreR) to f¢x = B, where B is an automorphism of B belonging to the
2.Frobenius extension A over B, we obtain an element ¢ of Homp,;(Ag, Bs).
Since ¢ is epimorphic, ¢ is epimorphic and indeed ¢R=B. By Prop. 4
¢E0A. So B=(0A)R = (01)AR = =AW, proving the lemma.

TuEOREM 33. Let A be a B-Frobenius extension of an S-ring B and 3 be a
(two-sided) ideal of A which is a left d-ideal of A and satisfies 3N B=0. The
residue-ring A(3 is B-Frobenius over B if and only if there is an element a in
A such that a') of Prop. 31 and b) of Prop. 30 hold, ie. i=L.Aa=L.aA and
n(xya— xay) =0 for all x€ A, y € B, where n is as in Prop. 4.

Proof. The “if” was proved in Proposition 81. To prove “only if”, assume
that the residue-ring A’ = A/3 is B-Frobenius over B. There exists then a (B,
1)-(B, 8)-homomorphism =’ of A’ into B which has the properties i,), i), ii,),
ii)) of Prop. 4 with respect to A’ in place of A. Let & be the kernel of 7, i.e.

&' =L.1'=R1

(where 1’ is the unit element (1 mod 3) of A'). As the risidue-module A'/&'
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is (B, 1)-(B, B)-, whence B-left-, isomorphic to B, by Lemma 32, (and B is
B-left projective), there is a B-left submodule ' of A' with A'=8'9¢. =
induces a B-left isomorphism of ' and B.

Now, since 3 is a left d-ideal, we have A =3®{ with a B-left submodule
{ of A. By the canonical map A- A'= A/3, Q is mapped B-left isomorphically
onto A’ (=R'®Y"). Denoting by £, €' the counter-images in g of &, ', we
obtain the direct B-left decomposition A =3H&"SL"; 3G K" is the counter-
image, in A, of & by the map A-» A'=A/s. By Prop. 6 we have the direct

B-right decomposition
A=R(R"SYL)DOR.(3DL") D R.GDKR").

As R.(3® &") THomp, s (2", zB) (B-right) and as "= ' < B (B-left), we see
R.(3® &) = Homp, 3-: (B, xB) ~B (B-right). Hence there is an element a in
A with R.(3®8&") =aB. Hence i®®" = L.aB = L.a, again by Prop. 6. Now, 3
is the largest right-ideal of A contained in 35 &, since otherwise the kernel
&' of 7' would contain a non-zero right-ideal of A’. So,as 3@ &" =L aB=1-a,
we obtain 3 = L, Aa=L.AaB by Lemma 24. Similarly 3 is the largest left-ideal
of A contained in 3§ & and hence, by Lemma 25, 3= L.aA.

The map x- nxa is a B-left-homomorphism of A into B. Its kernel is the

module L.a which we have just seen to be 3 &'. It follows that the map

(xmod iR € A/BR")>rxasB

is a B-left-isomorphism of A/(3® 8&") onto B. On the other hand, A/G®&")
=A'/®" and we have a B-left (and even (B, 1)-(B, 8)-) isomorphism of A'/&’
onto B given by

(x' mod &) »='x' € B.
(which we have made use of before). So the composite

nxa~ (x mod 3® K") —» ((x mod 3) mod &) - ='(x mod 3)

is a B-left isomorphism of nAa(< B) onto B. Considering B-left lengths, we
see that 7da =B and =nxe- n'(x mod 3) is a B-left automorphism of B. Hence

there is a regular element b in B such that

(rxa)b = 7'(x mod 3) for all x€ A.
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Since x - n'(x mod 3) is (B, 1)-(B, B)-homomorphic, we have hence (nxya)b
= (nxa)bBy, i.e. nxyaf™'b = nxa(f~'b)y, for all ye B (and for all x= A). Put-
ting @, = af™'b, we have

XYy = XAy

for all yeB, x<A. As L.Aay=L,.AaB=L.AaB=LrAa(=3), LaA
= L,aA( =13), we have the “only if” part of the proposition on denoting a, by

a anew.

Remark. As our proof shows, the “only if” part of Prop. 33 remains valid
when we replace the S-ring condition on B by that B satisfies the minimum
condition for left -ideals and A’ = A/3 has a B-right direct summand (B-right)
isomorphic to B.

§ 10. Frobenius extension of a quasi-Frobenius ring.

By homological means we have seen already in Corollary 11 that @ 2.Fro-
benius extension of a quasi-Frobenius ring B is a quasi-Frobenius ring. Using
the annihilator characterization of quasi-Frobenius rings, instead of homologi-
cal characterization, we may derive this theorem also from the following

generalized formulation of Hall’s [15] theorem:

ProrosiTiON 34. Let B be a quasi-Frobenius ring and (3 be an automorphism
of B. Let { be a finitely generated projective B-left-module, R a B-right-module,
and let there be given a regular 1-B-scalar product <, > of & N in B, then R
is finitely generated B-right projective, by Prop. 15. For every B-left submodule
Qo of & (resp. B-right submodule Ry of R) we have

(23) LRy =L (resp. RLJ = No),
where L, R are the same as in Proposition 15, 2).

Proof. For the sake of completeness and convenience we briefly reproduce
Hall’s proof in the form adapted to our present generalized formation. Express-
ing N as a direct sum of submodules isomorphic to right-ideals generated by

an idempotent and applying Prop. 15 repeatedly, we may express R, ¢ as direct
sums

R=vBD -+ - Du,B,
L=Bu;® - - - ®Bu,
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with »., #. such that v.B=e,B (B-right), Bu, = Bpe, (B-left) by v,ve,,

u. < (e, e. being idempotents in B, and furthermore
<u,,n v‘,>=6yyﬁe\,.

Denote by R, € the submodules v:BS + + - ®v.B, Bus® - - - © Bu, of %, L.
The scalar product <, > on N, € induces an (also (1, $)-) scalar product on
R*, €%, which is also regular and which we denote also by <, >. For a sub-
module N, of ® we denote by 3, the intersection My N R*. Similarly we set
& =2 NL* for a submodule € of 8. Now, in order to prove our proposition by
induction, with respect to #, we assume that the assertion for ®* 2* (and
their scalar product <, >), in place of R, Q, (and <, »), is valid. Then our
induction argument is divided into several steps.

1) Let u=byuy+ -+ +bsuy (b,< BBe,) be an arbitrary element of Q.

Then (23) holds for €, = Bw, i.e.
LRBu = Bu.

To prove this, let s+ -+ +spun<s LRBu (s, BBe,). Then 0=<sju+

© + Snttn, U1% =s:18x, for every x;€B with b fx1=0. Hence s, lrb;
= Bb,, where I, 7 are left and right annihilator operations in the quasi-Fro-
benius ring B. So s;=tb, with t=B. We may write

Sit+ 0+ Snthn—tbruy+ 0 Fbpun) =Sp2i+ v 0 St

(s. e B). Since this element belongs to (LRBu)*, it belongs to L* R* B(b.u +

<+ +byu,), as we readily see, and we can write
S;u~1+ st +3;1un=tl(b2u2+ tet +bnun) (' B)

in virtue of our induction assumption.

Now, for any element w =021 = — (b2z2+ * -+ +bazs) (2, € B) common to
b B and the (not necessarily direct) sum sz+ -+ - +b,B, we have evidently
bizi+ -+ +buza=0 and thus 2,872+ -+ + 0.3 2. RBu. Since t'(bue
4 o dbattn) =St + - - - -+ shun = LRBu, this entails tw= —t'(brz+ - - -
dbuzn) =SSt + - - © 4+ Snthn, 1121+ + ¢+ +vaB 2> =0. This shows
el BN (b:B+ « - +by,B)).

The right-hand side is equal to 16,B+[(5;B+ - -+ +b,B) and hence t'=p+g¢
with p<= 1B, g l(byB+ - - - +b,B). Therefore
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P(botto+ « =+ +bnthn) =p(brots + botha+ -+ + buthn) = pu,

S+ ccc FSatn=tu-+ (shte+ * - + Shtn)
=tu+t' (bt + ¢+ -+ +bpttn) =tu-+pu
= (¢+ p)u < Bu.

This proves LRBu(< whence) = Bu.

2) Next we show that if « is an element of & then R*(Bu)* = (RBu + v, B)*.
For, L*(RBu+ v, B)* € LRBu as we readily see. The right-hand side is Bux
by the step 1). Thus (Bu)*2 L*(RBu+ v:B)* and therefore R*(Bu)* is
contained in R*L*(RBu+ v B)* which is in turn (RBu+ v: B)* by our induction
assumption. This proves a half of our contension, and the other half, i.e. the
inclusion of the other direction, is evident.

3) Let Q be a B-left submodule of 8 Then we wish to prove R*Qs
= (RQ + v:B)*.

Again the inclusion Cis evident, and so we have to prove 2, i.e. that for
any element v* of R there exists an element %, of e; B such that

V1% + v* € RQ.
For this purpose, let

(24) WP =P+ - +0P U (WP EBBe) (p=1,...,7)

be a (finite) system of B-left generators of Q. Let s=<# and assume that
there is an x| € e, B satisfying

(25) W, v+ D=0 for p=1,...,s—-1

By the above step 1) there is xi’ < e; B satisfying

(26) &, via' + 0™ =0.
Now, let w=y"b" 4+ - -+ 4y Vpi~V = 39p (5 = B) be an element of
(Bb{" + - - - + Bb° )N Bb®. Then

y(l) um TN _I_y(s—x)u(s—l) _y(s) u(s) = 836
Hence
<y(1)uu) 4o +y(s—1) PSRty __y(s)u(S)’ v =0.

In combination with (25), (26) this entails
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§—1. .
S0 x> = < U, x> =0, ie.

<y(1)u(1)+ . +y(s-1)u
wBx1 — wpx' = wp(x] — ') =0.
We have thus seen

Blxi—x") € r((Bb" + - - - +Bb") N Bb{") =
7(BbY + - - - + BB V) 4+ 7BbY.

Hence B(x] — x') =p + g with

(27) per(BbY + - -+ + BV, g < rBb".
Put #"' =% — p7'p( =x{ + "q). Then by (25), (26) and (27)
(28) <, vix" +0*> =0 for p=1,..., s

(25) - (28) makes s—1-s and we reach to our contension by recursion of this
argument.

4) Let (24) be as in the preceding step, and w=3y 1w+ *+* + vt (3,
€ BRe,) be any element of LRQ,.. If x, is an element of B such that 5!"Bx;
=0 for p=1,---, 7, then vx, € R and hence y18x:=0. Thus y,llrbi’ N

- Nrb”) = b + - - - +Irb{” = Bbi® + - - - + Bb{"”, whence

Y= pDHV 4 e 4 pT B (p®” e B).
The element ' =p"u™ + + - + 74" of Q has a form
Yt Yrte+ 0+ Yuthn (y,eBBe,;, v=2,...,n).
We have # — «' € (LRR,)™ and hence
lu—u, v =0

for every v*e (RQ+v:B)", whence, by the preceding step 3), for every

v e R*Q*. So u—u'e€ L*R*QS and € g by our induction assumption. Hence
u=ou+(u—u')E QW+ = Q.

This completes our final step, proving thus Proposition 34. Now, as a
second application of Prop 34, Hall’s theorem (in generalized formulation), we

combine it with Prop. 30 and Theorem 33 to obtain

TrEOREM 35. Let A be a (B-Frobenius extension of a quasi-Froebenius ring
B and 3 be a (two-sided) ideal of A which is a left d-ideal of A and satisfies
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iNB=0. The residue-ring A/3 is B-Frobenius over B if and only if there is
an element a in A such that r3 = AaB = aA and =(xya — xay) =0 for all x € A,

y &€ B, where = is as in Prop. 4.

Proof. If ri=AaB = aA, then, since 73 = R:3, 3( = LxRA3) = L.AaB( = L.Aa)
=L.aA. Hence the “if” part of our theorem follows from Prop. 30. To
prove the “only if”, we have merely to note that the condition 3= L.Aa=L.aA
of Theorem 33 entails R.3( =73) = R.L.aB=R.L.aA and to observe that
here R.L.AaB = AaB, R.L.aA =aA in virtue of Prop. 34.

Remark. Our theorem fails to cover Satz 9 of Kasch [10]; particulary,
our by-condition =(xya — xay) =0 is very strong. However, the writers fail to
convince themselves of the validity of the proof of [10], Satz 9.
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