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The most important cosmological observation in the last forty years has undoubtedly 
been the discovery of the microwave background. As well as confirming the existence 
of a hot early phase of the Universe, by its spectrum, its remarkable isotropy indicates 
that the Universe must be very nearly spherically symmetric about us. Because of the 
revolution of thought brought about by Copernicus, we are no longer vain enough 
to believe that we occupy any special position in the Universe. We must assume, 
therefore, that the radiation would appear similarly isotropic in any other place. One 
can show that the microwave radiation can be exactly isotropic at every point only 
if the Universe is exactly spatially homogeneous and isotropic, that is to say, it is 
described by one of the Friedmann models. (Ehlers et al, 1968). Of course, the Uni­
verse is neither homogeneous nor isotropic locally. This must mean that the back­
ground radiation is not exactly isotropic, but only isotropic to within the very good 
limits set by the observations (about 0.1%). One would like to know, however, what 
limits the observations place on the large-scale anisotropics and inhomogeneities of 
the Universe. One would also like to know why it is that the Universe is so nearly, 
but not exactly, isotropic. 

Because the large-scale structure of the Universe must be so close to that of a 
Friedmann model, it seems reasonable to study the above questions by analysing the 
behaviour of small perturbations from a Friedmann model and calculating what 
anisotropy they would produce in the background radiation. The perturbations can 
be divided into two classes: the inhomogeneous perturbations and the homogeneous 
anisotropic ones. The former kind have been considered by Sachs and Wolfe (1967), 
Rees and Sciama (1968) and other authors. Such inhomogeneous perturbations would 
produce small-scale anisotropy in the background radiation. From the fact that no 
such anisotropy has been detected, one can place limits of about one part in 100 on 
the relative size of density inhomogeneities of mass greater than 1 0 1 5 M© at the time 
of decoupling. What Collins and I have done, on the other hand, is to consider the 
behaviour of homogeneous but anisotropic perturbations from a Friedmann model 
and consider what limits can be set from the observations on large-scale anisotropics 
such as rotation or shear of the Universe. One can divide spatially homogeneous an­
isotropic perturbations into various classes according to the types of symmetry that 
they possess. This classification scheme was first developed by Bianchi and has been 
extended by Estabrook et al (1968) and by Ellis and McCallum (1969). In the case 
of the k = 1 (closed) Friedmann model, the perturbations have to be of type IX. For 
this model the observational upper limits on the microwave anisotropy places limits 
on the rotation of 3 x 1 0 " 1 1 s of arc per century, if the radiation was last scattered 
at a redshift z of about 7, and 2 x 1 0 " 1 4 s of arc per century if the radiation has not 
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been scattered since a redshift z of 1000. In other words, a set of axes fixed to distant 
galaxies would not be rotating with respect to a set of inertial axes defined by gyro­
scopes to within this accuracy. These remarkable results could be regarded as an ob­
servational vindication of Mach's principle which states the local inertial frame 
should be determined by some sort of average over all the matter in the Universe. 
One can also place an upper limit of one part in 1000 on the shear or anisotropy in 
the rate of expansion of the Universe. From this one can deduce that the Universe 
must have been nearly isotropic back to a redshift of at least 600 (if the radiation 
was last scattered at a redshift z of 7) and isotropic back to a redshift of 100000 (if 
the radiation was last scattered at a redshift z of 1000). 

The results for the k = 0 (parabolic) Friedmann model are somewhat similar, though 
not so spectacular. In this case the perturbations have to be of Bianchi types I or VII 0. 
The type I perturbations are the simplest and correspond to the Universe expanding 
at different rates in the three orthogonal directions in the Euclidean space sections. 
However the type VIIC perturbations are a more general class in which the direction 
of the rotation and the principal axes of shear have a sort of spiral behaviour. 

The ratio of the length-scale of this spiral to the present Hubble radius is an ar­
bitrary parameter and will be denoted by x. It does not make much sense to consider 
homogeneous perturbations whose length-scales are less than the length-scales of 
local inhomogeneities such as clusters and superclusters of galaxies. We therefore 
took 1/25 as a lower limit for x though 1 might seem a more natural value. With 
x = 1/25 the upper limit on the rotation is about 2.5 x 1 0 " 5 s of arc per century (for 
z = 7) and 1.5 x 10" 7 (for z = 1000). With this extreme value of x the limit one can 
place on the anisotropy of the Hubble constant is only one part in 10 (for z = 7) or 
one part in 25 000 (for z = 1000). These limits imply that the Universe could have been 
highly anisotropic at redshifts greater than 12 or 25000 respectively. 

For the k= — 1 (hyperbolic) Friedmann model, the perturbations can be of Bianchi 
types V or VII h . Type V is the simpler but type VII h is the more general class. Like 
type VIIC it has an arbitrary parameter x which is the ratio of the length-scale of the 
spiral behaviour of the perturbations to the present Hubble radius. With the extreme 
value of 1/25 for x, one obtains an upper limit to the rotation of 8 x 1 0 " 5 s of arc per 
century and to the anisotropy of the Hubble constant of one part in 8. 

From the above one can see that the observed isotropy of the microwave back­
ground implies that, on a large scale the Universe must be nearly isotropic at the 
present time. The question then arises: why should the Universe be so isotropic in 
the large scale, even though it is certainly not isotropic locally? In attempts to answer 
this various dissipative processes have been suggested, such as neutrino viscosity 
(Misner, 1968a, b) and particle creation (Zel'dovich, 1970), which could reduce the 
anisotropy in the early stages of the Universe. However such processes could not 
remove the anisotropy completely, so the Universe would remain isotropic at later 
times only if the Universe were stable against small anisotropic perturbations. Collins 
and I have therefore analysed the stability of Friedmann models to homogeneous 
anisotropy perturbations. For the k = — 1 (hyperbolic) model, the type V perturba-
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tions all die away with time but some of the type VII h perturbations grow in the later 
stages of the expansion when the matter density becomes so low that it is no longer 
dynamically important. This result holds regardless of the exact nature of the matter 
content of the universe, providing only that it satisfies certain physically reasonable 
conditions. For the /c=0 (parabolic) model, both the type I and VII 0 perturbations 
die away while for the k = 1 (closed) model, the perturbations decrease in amplitude 
until the model reaches its maximum radius and starts to recollapse. 

In view of these results, one might expect that the Universe would be nearly iso­
tropic at late times if and only if it was expanding with nearly the minimum velocity 
required to avoid recollapse, i.e. if it were nearly a fc = 0 Friedmann model. If it was 
expanding much faster, the matter would have become dynamically unimportant at 
an early stage and there would have been time for anisotropic perturbations to grow 
large. If it was expanding much slower, it would have recollapsed before reaching 
the present radius and there would not have been time for the anisotropy to be damped 
out. Thus the explanation of the present isotropy of the Universe is that the present 
rate of expansion or Hubble constant H is nearly equal to the critical value 
(8nGQ/3c2)1/2 required to avoid recollapse (Q is the density of the Universe). In other 
words, Q is nearly equal to 3c2H2/8nG. The density of observed luminous matter 
satisfies this relation to within a factor of 100 and most if not all the discrepancy 
may be made up by forms of matter such as intergalactic gas, neutrinos or black holes 
that have not been observed yet. 

One now has to face the question of why the Universe should be expanding at so 
nearly the critical rate to avoid recollapse. It seems difficult to explain this in terms of 
processes in the early stages of the Universe because the differences would be so small 
at these epochs: a reduction of the rate of expansion by one part in 1 0 1 2 at the time 
when the temperature of the Universe was 1 0 1 0 K would have resulted in the Universe 
starting to recollapse when its radius was only 1/3000 of the present value and the 
temperature was still 10000 deg. The only 'explanation' we can offer is one based 
on a suggestion of Dicke (1961) and Carter (1970). The idea is that there are certain 
conditions which are necessary for the development of intelligent life: out of all con­
ceivable universes, only in those in which these conditions occur will there be beings 
to observe the Universe. Thus our existence requires the Universe to have certain 
properties. Among these properties would seem to be the existence of gravitationally 
bound systems such as stars and galaxies and a long enough time-scale for biological 
evolution to occur. If the Universe were expanding too slowly, it would not have this 
second property for it would recollapse too soon. If it were expanding too fast, regions 
which had slightly higher densities than the average or slightly lower rates of ex­
pansion would still continue expanding indefinitely and would not form bound 
systems. Thus it would seem that life is possible only because the Universe is ex­
panding at just the rate required to avoid recollapse. 

The conclusion is, therefore, that the isotropy of the Universe and our existence 
are both results of the fact that the Universe is expanding at just about the critical 
rate. Since we could not observe the Universe to be different if we were not here, one 
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can say, in a sense, that the isotropy of the Universe is a consequence of our existence. 
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D I S C U S S I O N 

Heller: D o you intend to extend your results to models with non-vanishing cosmological constant ? I think 
the situation will be much more complicated. Will the results be quantitatively different? 

Hawking: If A is large and negative, anisotropy does not damp out in the course of time. The universe 
collapses much sooner than in models without the A term and there would not be time for life to develop. If 
A is large and positive anisotropy does damp out but galaxies do not form in the late stages of evolution. 
Therefore the only universes which contain human beings are those in which A is very small or zero. 

Grishchuk: Anisotropic homogeneous cosmological models constitute a rather narrow class. I think 
that all the homogeneous models are the sum of a symmetric background model and some simple perturba­
tion modes. For example, the Bianchi type IX model is identical to the sum of a closed Friedmann back­
ground and the longest gravitational wave corresponding to wave number n = 3 in the Lifshitz classification. 
The Bianchi type V model contains gravitational waves and rotation and so on. I believe that to get a 
homogeneous model one can proceed in the following way: start with a symmetric background (e.g. a 
3-space of constant curvature or a product of S2 and IR 1 ) and perturb it in such a way that one does not 
destroy homogeneity. Therefore I do not think that it is possible to get out of these models reliable in­
formation about some important physical quantities like the time of isotropisation because when in-
homogeneous perturbations are included these answers may be drastically changed. 

Hawking: I agree that the homogeneous modes are only a subset of all possible modes but they have the 
advantage that they are simple to analyse. Inhomogeneous modes could have had greater amplitudes at 
redshifts smaller than those considered above. For all models it is sufficient to show that only one homoge­
neous mode is unstable in order to show that the isotropy of the Friedmann universe is unstable. The 
homogeneous modes in the k = 0 and — 1 models contain all possible perturbations due to gravitational 
waves. 
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