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ON THE LIMITATIONS OF SKETCHES 

Dedicated to the memory of 
Evelyn Nelson and Alan Day 

MICHAEL BARR AND CHARLES WELLS 

ABSTRACT. Call a category "sketchable" if it is the category of models in sets of 
some sketch. This paper explores the subtle boundary between sketchable and non-
sketchable categories. We show that the category of small categories that have at least 
one initial object and functors that take an initial object to an initial object is sketchable. 
The same is true for weak initial objects, but is false for subinitial objects (that every 
object has at most one arrow to). Analogous results hold if we substitute finite limits 
for terminal object. We also show that the category of groups and center-preserving 
homomorphisms is not sketchable. We describe briefly how "higher-order" sketches 
can fill these gaps. 

Introduction Sketches, as described for example in [Barr and Wells, 1985], can 
be used to describe many, but not all, kinds of mathematical structure. Recently Wells 
[1990] has described an extension of the notion to allow more powerful constructors 
than those given by limits and colimits to be used to describe structures. This raises the 
question of exactly what can be sketched with an ordinary sketch. 

A theorem of Lair [1981] (rediscovered by Makkai and Paré [1990]) says that a 
category is sketchable if and only if it is accessible. This means that for some cardinal K 
the category has colimits of all K filtered diagrams and that every object is a K filtered 
colimit of K presentable objects. An object C of a category is n presentable if the functor 
Hom(C, —) preserves the colimits of K filtered diagrams. Since in practice one can 
usually decide quite easily whether a category is accessible, this gives a usable criterion 
for sketchability, without, unfortunately, giving any idea how to sketch certain theories. 

Consider the category of categories with finite limits and functors that preserve them. 
We are not supposing canonical finite limits; the functors are merely required to take a 
finite limit diagram in the source to some finite limit diagram over the same base in the 
target. At first, it would seem that a theory to describe the set of all finite limit cones 
in a category would require a universal quantifier, and thus would not be sketchable. 
On the other hand, it is easy to see that the category of these categories with finite 
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limits and functors that preserve them is Ko accessible and therefore from the theorem 
mentioned previously is sketchable. In this paper we actually exhibit a simple sketch for 
that category. 

A similar argument works for the category of categories with weak finite limits (a 
cone is a weak limit if every other cone has at least one arrow to it). We indicate the 
minor change needed in the argument for the case of weak terminal objects. 

On the other hand, the related category of categories with sublimits (a cone is a 
sublimit if every other cone has at most one arrow to it) is not accessible and hence not 
sketchable. In this case, a universal quantifier or some higher order construct is needed. 
We show that a universal quantifier suffices. Among other things this shows that there 
is a class of first order sketches that has more expressive power than that of ordinary 
sketches. 

One comment we should make concerns the use of the word "formal". A sketch is not 
a category. No diagram can commute nor can any object be the product of two others, 
a limit of a diagram or even a terminal object. When we say that a diagram formally 
commutes or that something is a formal limit or formal colimit, we mean that there is 
a diagram or cone or cocone in the sketch that will have the effect that the diagram 
becomes commutative or becomes a limit or colimit in any model. 

1. The sketch for categories with finite limits 

1.1. Categories with a terminal object We construct a sketch by beginning with a 
graph Q with two ground sorts, called o (for objects) and a (for arrows). There will 
be other sorts, constructed as formal finite limits of these. We need a sort a2 of formal 
composable pairs of arrows and a sort ^ of formal composable triplets of arrows. As 
well, we need a sort 1, the formal terminal object of the sketch. We begin with the usual 
operations that give a category: u: o —• a that assigns identity arrows to objects, d°, 
d1: a —• o that assigns the domain and codomain to an arrow, and c: a XQ a —» a that 
composes composable pairs of arrows. We add the usual associative and left and right 
unit laws. This is the familiar sketch whose models in any category with finite limits are 
the category objects in that category. 

To build a sketch for categories with a terminal object and functors that preserve 
them, we need two more sorts t (for terminal objects) and t' (which will also be for 
terminal objects), each formally subsorts of o. We let there be a sort b which is formally 
the subsort of a consisting of all arrows x for which ûl(x) G t. We suppose an operation 
v: b —• o x t such that the diagram 

b - o x t 
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commutes. The arrows b —• a and t —•> o are the formal inclusions. If we suppose that v 
is a formal isomorphism, then, in a model, each object has a unique arrow to each object 
of t, which means that the objects of t are terminal. 

In order to force there actually to be a terminal object in a model, we suppose that 
the arrow t —> 1 is formally a regular epimorphism. We suppose of t' that it is defined 
formally as 

X' = {x<E o | 3(y Et, f:x-+y, g:y ^ x).f o g = uy and g of = ux}. 

This is easily instantiated as the formal regular image in o of the first projection on the 
set of quadruples (x, y,f, g) that satisfy the equations described above. Formally, this 
condition makes t' into the set of all objects that are isomorphic to a terminal object. 
Finally, we map t —> t' by the operation that takes an x G t to the image of (JC, JC, MJC, UX) 
and then put in an inverse operation and equations to make this operation a formal 
isomorphism. The result of all this is that in a model Af, MX = MX' is non-empty and 
is actually the set of all terminal objects, so that a homomorphism between models is 
simply a functor that takes a terminal object in the one category to some terminal object 
in the second. 

It is thus clear that the category of models in sets of this sketch is the category of 
small categories that have terminal objects and functors that preserve them. 

What about models in other categories? In a regular category in which supports split, 
the same claim is true. In general in a regular category, it is less clear what a model 
of this sketch is. A model is a category object for which the internal object of terminal 
objects has global support, but not necessarily a global section. It does not seem possible 
to build a sketch in which this object is guaranteed to have a global section without at 
the same time forcing that global section to be preserved by morphisms. One way of 
describing this is that this is a sketch for small categories in which terminal objects exist 
internally. We will ignore this point for the rest of the paper. 

1.2. Categories with finite limits It is not hard to extend the above argument to finite 
limits or, indeed, the limits of any fixed set of shapes. Not surprisingly, it will require a 
sketch with limits of size greater than K to sketch categories with limits of cardinality n. 
We do the case of finite limits as an example, leaving other cases to the reader. 

Begin with the sketch for categories with terminal objects. Add a sort s of all commu
tative squares. This is an equationally defined subsort of the sort of quadruples of arrows. 
Let p and p' be subsorts of s which are intended to be the set of pullback squares. There 
is a sort r Ç s x p which formally consists of all 6-tuples (x\1 xi, *3, *4, yx^yi) of arrows 
such that (JCI , *2, X3, X4) is in s and (vi, V2, *3, M) is in p and another sort q Ç s x p which 
consists of all 7-tuples (x\, jt2, X3, *4, y\, yi, z) of arrows such that (*i, X2, *3? *4? yi ? yi) is 
in r and z: d°(x\) —> d°(y\) is such that the following cube commutes: 
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To force the existence of all pullbacks, we need a sort h of pairs of arrows (^3,^4) with 

common codomain and a formal regular epi p —> h. Finally, using the same technique 

as with terminal objects, we must force p ' to consists of all pullback squares. Doing 

this is a bit more complicated than for terminal objects. We define a subsort w which 

is a subsort o f p x s x a x a consisting of 8-tuples (jti,JC2,X3,X4,yi,y2,/, g) in which 

(JCI , X2, *3, X4) E p, (y 1, y2, *3, X4) E S a n d / and g are morphisms for which the cubes 

X3 yi 

commute. In addition we need equations that make / and g formal inverse arrows to 

each other. Now p' must be required to be the formal regular image of the projection that 

takes such an 8-tuple onto ( j i , y2, ^3,^4). This forces p and p' to be the formal object of 

all pullback squares. 

2. Weak limits A weak limit of a diagram is a cone over that diagram that satisfies 

the existence, but not the uniqueness, part of the definition. For example, an object of a 

category that every other object has at least one morphism to is called a weak terminal 

object. Just as with limits, one may ask for the category of categories that have weak 

limits over a set of diagram shapes and for functors that preserve them. As well, one 

might ask not for a chosen family of weak limits, but for simple existence and for functors 

that take all weak limits of those shapes to a weak limit. In fact, it is more appropriate in 

this case, since two weak limits of the same diagram will not generally be isomorphic, 

although they will have maps to each other. 
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The sketch for categories with weak terminal objects is just like the sketch for cate
gories with a terminal object, with just one change: the operation v that was assumed to 
be an isomorphism is assumed only to be a formal regular epimorphism. If we modify 
the sketch for categories with finite limits by supposing only that both v and w are formal 
regular epimorphisms, then we get a sketch for categories with weak finite limits. 

3. Sublimits A sublimit of a diagram is a cone with the property that every cone 
over that diagram has at most one arrow to that cone. For example, a subterminal object 
is an object that every object has at most arrow to. If the diagram has a limit, then a 
sublimit is any subobject of the limit. After seeing that both categories with limits and 
those with weak limits (of a certain shape or set of shapes) can be sketched, it comes as 
some surprise that the category of categories with subterminal objects and functors that 
preserve them cannot be sketched. We denote this category SbTrm. 

We will show that SbTrm is not accessible, hence cannot be sketched. Since an 
accessible category must have all K filtered colimits for some sufficiently large cardinal 
AC, it is sufficient to show that there are arbitrarily highly filtered diagrams in SbTrm that 
lack a colimit. 

Fix a regular cardinal /c. Then the set of ordinals less than K is K filtered. We will 
construct a chain C\, for À < «, of categories with subterminal objects and functors 
that preserve them that does not have a colimit in SbTrm. Each of the C\ has the same 
set of objects: a set {A^}, \i < K, and one more object A. In Co, there are two arrows 
fin 8n'- Ap —• A for each \x < «. The category C\ is the quotient of Co gotten by identifying 
f^ with g^ for each \x < A. Let C be the category with the same set of objects and with 
just one arrow A^—^A for each \i < K. 

In each C\, all the objects A^ are subterminal. In addition A is subterminal in C, but 
not in any of the C\. There is a quotient mapping Cp —• C\ for each /x < À < K and also 
C\ —• C for A < K and these clearly preserve the set of subterminals. It is clear that the 
colimit of the chain in the category of small categories exists and is C. It cannot be the 
colimit in the category of categories with subterminal objects. For consider the category 
C' which is C together with another object B that has two arrows to A. The inclusion 
C —• C' does not preserve subterminal objects since A is subterminal in C, but not in 
C'. On the other hand the composite C\ —> C —• C' does preserve subterminal objects 
since A is not subterminal in C\. But the only map C —> C' consistent with that chain of 
functors is the inclusion that we have just seen does not preserve subterminals. Thus C 
is not the colimit. 

Now suppose that the chain has a colimit £> in SbTrm. *D must include objects we 
will call B^ for /z < K and B to be the images of the A^ and A. They must all be distinct 
because there has to be a functor Tf—^C compatible with the quotient mappings. There 
are arrows h^ k^: B^ —-»• B to be the images of/M and g^. Since/M = gM for \i > A, we 
must have h^ = k^. On the other hand, there has to be a functor 1) —• c' so that B must 
not be subterminal in <D. Thus there must be at least one witness to the fact that B is not 
subterminal. This can either be another object B' that has at least two arrows to B or an 
arrow k^h^.B^—^B for some \L<K. 
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In the first case, let <Bl be the category constructed from CD by adding an object 
B" = B'. There are now two functors CD —• 2/ that agree on all the C\. The first is the 
inclusion and the second differs only in that it takes B' to B". This takes care of the first 
case. 

Suppose now that there is some cardinal n such that in CD there is a second arrow 
l\Ap —• A. Let ay be the subcategory of <D consisting of the objects and arrows of C 
together with /. This is a subcategory since there are no composable pairs (except those 
involving an identity arrow) in any of these categories. The inclusion CD/ —• CD preserves 
subterminals and also includes the image of each C\ —• CD. The resultant arrows Ç\ —• & 
also preserve subterminals. But it is a familiar fact of category theory that you cannot 
have a proper subobject of a colimit that factors all the arrows of the cocone, so it 
must be that CÛ = CD. Now let ctf' be the category consisting of CD together with a third 
arrow V\A^ —> A. Then it is clear that there are two functors CD —• ctf' that preserve 
subterminals and agree on every C\, which contradicts the uniqueness of maps from a 
colimit. This shows that there cannot be a colimit in this category. Thus SbTrm is not 
accessible. 

4. The category of groups with centers By the category of groups with centers, 
we mean the category GpCen whose objects are groups and whose morphisms are those 
that preserve the center. Using an argument similar to that for SbTrm we will show 
that the free group on two generators does not have a rank by showing that the square 
of the underlying functor—which is represented by that free group—does not preserve 
colimits of all K filtered diagrams for any regular K. It will be sufficient to show that the 
underlying functor does not preserve such colimits. 

Let X = {;cM | [i < K} be a set of variables in one-one correspondence with the 
cardinals less than K. For À < «, let G\ be the free group generated by X modulo the 
relations x^ = JC„ for all"//, v < X. The colimit G in the category of groups is free on 
one generator, which is commutative. If H is the free group on two generators x and v, 
the family of maps G\ —• H that take all the generators to JC does not extend to a map 
G—+H'm the category. Thus the free group on one generator is not the colimit. 

If there were a limit H' that commuted with the underlying functor, then there would 
have to be a map H' —> G that becomes an isomorphism when the underlying set functor 
is applied, which means it is already an isomorphism. This contradicts the fact that G is 
not the colimit. 

5. A higher-order sketch for SbTrm and GpCen Although SbTrm and GpCen 
are not accessible, we give in this section constructions of higher order sketches of the 
type defined in [Wells, 1990] whose models in Set are those categories. 

5.7. Higher order sketches A higher order sketch has a graph and may have diagrams, 
cones and cocones just like an ordinary sketch. In addition it may have other types of 
constructors. You specify the type of category the sketch is to have models in and then 
you can list as part of the data of the sketch a diagram D in the graph of the sketch that in 
a model must be a construction possible in such categories. Such a sketch has a theory 
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and a generic model just like an ordinary sketch. These sketches are called "forms" in 
[Wells, 1990]. The exposition in [Power and Wells, 1990] gives a much more explicit 
description of higher order sketches, and generalizes them to allow the specification of 
2-cells. 

In the present case, the type of category that can have models of our sketch is a 
category C with finite limits and coequalizers of parallel pairs, for which, for each arrow 
/ : A —» B, the subobject functor Sub(f) has a right adjoint. The reason for asking for 
coequalizers is so we can specify that an arrow be a regular epimorphism. 

A topos has these properties, and so does any locally cartesian closed category with 
coequalizers and a terminal object. For iff: A —» B in a locally cartesian closed category 
C, then by definition the pullback functor/*: C/B —•> C/A has a right adjoint. Being a 
right adjoint, this functor must take monies to monies, so restricting it to Sub(Z?) gives 
the required right adjoint. 

We will allow our higher order sketch to have a universal quantifier constructor ("UQ 
constructor"), a diagram shaped like this 

s t 

(1) 

a T — - b 

In a model M, M(u): M(s) ^-> M(a) must be monic and M(v): M(t) >—• M(b) must 
be the value of the right adjoint to M(f)* applied to M(u). As a shorthand, we will say 
v = Vf u: Vfs —> b. In Set, M(Vfs) will be the subset {b G M (b) | (Va G M(a))(M(f)(a) = 
b => a e M(s)}. 

5.2. The sketch for SbTrm We begin with the sketch for categories described in the 
first paragraph of 1.1. We need a node t to be the formal set of subterminal objects and 
a formal monic e: t —• o. Other nodes are: a node a x a and a cone forcing it to be the 
indicated formal product; a node A and arrow ê : A - ^ a x a and a cone forcing it to be 
the formal diagonal; and a node d and arrow i: d —> a x a which is to be the formal 
equalizer [(/", g) \ 6°f = d°g and d1/ = d1^], together with an arrow k: d —» o which 
formally takes a parallel pair to its codomain. Now adjoin an arrow j : A —-> d. Since in 
a model, A must factor uniquely through d, this arrow will become a monic in a model. 
In order to force the existence of pullbacks, add a formal regular epi t —• 1. Finally, we 
need a UQ constructor 

A u 
T T 

J I 

V 
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A model C of this sketch in Set must have 

(2) C(t) = {t | for all if, g) G C(d) with dlf = t, (f, g) e C(A)} 

= {t | for all parallel pairs (f, g) with codomain tj - g} 

Thus <T(t) is the set of subterminal objects of C. The formal regular epi t —> 1 makes this 
set nonempty. 

5 J . 77ze sketch for GpCen The sketch for groups with centers is similar. What we want 
is to take the sketch for groups (using sorts 1, g, g x g and g x g x g and the familiar 
operations and identities necessary to define a group as well as the cones required to 
make the formal products) and add another type c equipped with a cone so that formally, 

c = {(x, y) <E g x g | xy = yx} 

and a UQ constructor 
c z 

Then formally 
z = {x e g | Vy G g.xy = yx} 

and this is preserved by a group homomorphism if and only if the homomorphism 
preserves the center. Notice, by the way, that all group homomorphisms preserve the 
instantiation of c, for iff is a group homomorphism and xy = yx, then f(x)f(y) = f(y)f(x). 
It is only the universal quantification that isn't preserved. 
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