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Abstract

Vector-borne diseases are exceptionally sensitive to climate change. Predicting
vector occurrence in specific regions is a challenge that disease control programs
must meet in order to plan and execute control interventions and climate change
adaptation measures. Recently, an increasing number of scientific articles have ap-
plied ecological niche modelling (ENM) to study medically important insects and
ticks. With a myriad of available methods, it is challenging to interpret their results.
Here we review the future projections of disease vectors produced by ENM, and as-
sess their trends and limitations. Tropical regions are currently occupied by many
vector species; but future projections indicate poleward expansions of suitable cli-
mates for their occurrence and, therefore, entomological surveillance must be con-
tinuously done in areas projected to become suitable. The most commonly applied
methods were the maximum entropy algorithm, generalized linear models, the gen-
etic algorithm for rule set prediction, and discriminant analysis. Lack of consideration
of the full-known current distribution of the target species on models with future pro-
jections has led to questionable predictions. We conclude that there is no ideal ‘gold
standard” method to model vector distributions; researchers are encouraged to test
different methods for the same data. Such practice is becoming common in the
field of ENM, but still lags behind in studies of disease vectors.
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Introduction

Climate change is happening more quickly and strongly than
predicted, and the anthropic influence in this process is now
clear IPCC, 2014). Projections from several greenhouse gas
emission scenarios agree on an increase of the mean earth sur-
face temperature by the end of the 21st century, with continents

*Author for correspondence
Phone: +55 21 2562 1375
E-mail: brunomc@ioc.fiocruz.br

https://doi.org/10.1017/50007485316001097 Published online by Cambridge University Press

heating more than oceans and high latitude regions heating
more than the tropics. Longer and more frequent heat waves
will probably occur, as well as more intense precipitation events
in several regions (IPCC, 2014). Increased floods, droughts, fires,
heat waves and air pollutants will directly impact human health.
Indirect impacts on human health will arise from ecological dis-
turbances and social responses to disruptions to agriculture, and
to water and food supplies. Vector-borne diseases will also in-
crease, compounded by human migrations towards endemic
areas (Woodward et al., 2014).

Vector-borne diseases are exceptionally sensitive to climate
change because they emerge from complex transmission
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cycles involving several species of pathogens, vectors and
hosts (Parham et al., 2015). Most disease vectors are arthro-
pods, including insects and ticks. Climate change should,
therefore, cause changes in disease distribution, density, sea-
sonality and prevalence, and might prompt adaptation of vec-
tors and hosts to new transmission cycles (Kovats et al., 2001;
Brooks & Hoberg, 2007; Rosenthal, 2009; Mills ef al., 2010).

The ecology of arthropod vectors should be impacted by
climate change at three levels of biological organization: (i)
at the individual level — being ectothermic organisms, vectors’
metabolism varies with daily fluctuations in temperature,
which may affect physiological traits related to vector compe-
tence (Paaijmans et al., 2013) such as muscle activity (Harrison
& Roberts, 2000) and biting rates, although this latter influence
is not entirely clear (Rogers & Randolph, 2006; Ready, 2013);
(i) at the population level — changes in climate should influ-
ence abundance, density, seasonality, survival rates, gener-
ation time, fecundity and dispersion ability, allowing vectors
to colonize new habitats more efficiently (Mills et al., 2010;
Stange & Ayres, 2010; Eisen et al., 2014); (iii) at the community
level — parasite-vector interactions can be influenced by tem-
perature (Hlavacova ef al., 2013), and new species of vectors or
hosts can adapt to existing transmission cycles (Kovats et al.,
2001; Rosenthal, 2009; Parham et al., 2015).

Knowledge of vectors’ spatial distributions is essential to
assess transmission risks in different regions. Predicting
vector occurrence in specific regions is a challenge that
many disease control programs must meet in order to
plan and execute control interventions and adaptation mea-
sures more efficiently. With the popularization of GIS (geo-
graphic information systems), increasing availability of
species occurrence data, disease information and environ-
mental variables, various methods of spatial analysis and
mathematical modelling have become common in the scien-
tific literature. The methods that correlate these available
data in order to predict species’ distributions are known
as ecological niche models (ENMs) or species distribution
models and have been widely used in studies of ecology,
biogeography and conservation (Guisan & Zimmermann,
2000; Guisan & Thuiller, 2005; Elith & Leathwick, 2009).
Recently, an increasing number of scientific articles have ap-
plied these models to study distributions of many medically
important insect and tick species.

Ecological niche models are perhaps the most used meth-
ods to link climatic and environmental conditions to the distri-
bution of species. In an ENM, an algorithm takes as input
occurrence records of the studied species and calculates their
relation with environmental variables, producing a surface of
environmental suitability or probability of occurrence (Guisan
& Zimmermann, 2000; Franklin, 2010; Peterson et al., 2011).
There are two basic approaches to apply an ENM in studies
of vector-borne diseases. The first considers the entire trans-
mission cycle and their ecological relationships as a ‘black
box’, and analyses the geographical distribution of the disease
occurrence, as if it were a single species (e.g. Nieto ef al., 2006;
Yé et al., 2007; Williams et al., 2008; Arboleda et al., 2009). This
approach indirectly groups all component species of the trans-
mission cycle, as well as their environmental needs and eco-
logical interactions, losing, therefore, important details of the
transmission process. However, the occurrence of the disease
is often the only information available, and this becomes the
only modelling option. The second approach is to model
each species from the transmission cycle individually, and
evaluate areas of co-occurrence afterwards. This approach
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offers the opportunity to distinguish different reasons for the
presence or absence of disease transmission in certain loca-
tions. For example, the disease may be absent due to the lack
of the pathogen, an appropriate vector or a reservoir host
(Peterson et al., 2011). Areas with the presence of only vectors
and competent hosts may be treated as vulnerable — a particu-
larly important situation nowadays, when species are artifi-
cially transported by humans and new diseases emerge in
areas where they would not naturally occur (Komar, 2003;
Ready, 2008, 2010; Daszak et al., 2013).

Comparative studies show that most of uncertainty in
ENM comes from using different modelling algorithms
(Buisson et al., 2009; Diniz-Filho et al., 2009; Elith & Graham,
2009). With the wide variety of methods, it is an additional
challenge to interpret and compare the results of studies on
vector distributions, so that they can be effectively used in con-
trol programs. Here we review the future projections of dis-
ease vectors produced by ENMs, and assess trends and
limitations of the methods applied.

Methods

We performed a systematic review of the literature using
four online databases: (i) Web of Science (http://isiwebof-
knowledge.com); (i) Scopus (http://www.hub.sciverse.
com); (iii) Pubmed (http://www.ncbi.nlm.nih.gov/pubmed);
and (iv) Scientific Electronic Library Online (SciELO) (http://
www.scielo.org). The Web of Science is the most comprehen-
sive database of peer-reviewed articles published in English,
as well as being the most used in systematic reviews
(Falagas et al., 2008; Gavel & Iselid, 2008). However, Scopus
covers a larger number of journals that publish articles in lan-
guages other than English (Falagas et al., 2008; Gavel & Iselid,
2008). PubMed is the most frequently consulted source for in-
formation in the biomedical field (Falagas et al., 2008). The
SciELO database, although less comprehensive, includes
many Latin American journals that are not included in the
other consulted databases.

Searches were conducted in March 2015, through different
combinations of the following key words: ‘ecologic* niche
model* ‘species distribution model”, ‘climat* model*, ‘vec-
tor’, ‘disease’. The initial results (N = 572) were limited to arti-
cles published until 2014 that applied ENMs to predict areas of
occurrence or environmental suitability of arthropods vectors
of diseases. Articles that used models to explain the relation-
ship of the vectors with environmental variables, without pre-
dictive mapping, were excluded from the analysis. Studies
with models based only on the occurrence of disease or risk
maps generated without vector information were also dis-
carded. After removing duplicates and refining selections,
146 articles were reviewed (Table S1).

The articles were described under the following categor-
ies: vector species and main associated disease; study area;
types of biological data; types of environmental data; ap-
plied method; inclusion of future projections (Table S1).
Studies including future projections were analysed in great-
er detail in relation to biological data (number of records,
data source), environmental data (number of variables,
approximate spatial resolution), methods (algorithm em-
ployed, use of ensemble models based on different algo-
rithms) and future projections (years, general circulation
model, climate change scenario) (Table S2). The main results
of the future projections were summarized by vector group
and further described.
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Fig. 1. Methods applied in the literature of ecological niche
modelling of arthropod vectors of diseases.

Results and discussion
Application of different modelling methods

Seventeen different modelling methods were used to pre-
dict vector distributions. The most common was the max-
imum entropy algorithm (MaxEnt, 43 articles) (Phillips et al.,
2006), followed by generalized linear models (GLM, 34)
(Guisan et al., 2002), the genetic algorithm for rule set predic-
tion (GARP, 25) (Stockwell, 1999), and discriminant analysis
(12) (Rogers et al., 1996) (fig. 1, Table S1). Other methods
were less frequently applied, such as CLIMEX (5) (Sutherst
& Maywald, 1985), ENFA (3) (Hirzel et al., 2002), BRT (2)
(Elith et al., 2008), BIOCLIM (1) (Booth et al., 2014) and
Random Forests (1) (Breiman, 2001) (fig. 1, Table S1). For com-
prehensive descriptions of ENM algorithms, see Franklin
(2010) and Peterson et al. (2011).

The predictive performance of MaxEnt has exceeded other
algorithms in several comparative studies (Elith et al., 2006;
Foley et al., 2009, 2010; Larson et al., 2010; Arboleda et al.,
2012). In addition, its popularity can probably be explained
by the fact that it is implemented in free software with a user-
friendly interface, good documentation and many options for
parameterization. Generalized linear models were the second-
most frequent method because they offer more flexibility than
machine learning algorithms (e.g. MaxEnt and GARP), thus
improving model fit and ecological interpretations of para-
meters (Franklin, 2010). Also noteworthy is the use of
CLIMEX, a mechanistic (process-based) algorithm.
Mechanistic models are based on vector’s biological processes,
such as duration of life cycle, biting rates, dispersal ability,
temperature limits for larvae development, etc. The inclusion
of this type of data improves the biological meaning of models,
but they require solid empirical knowledge about the vectors’
physiology, which makes parameterization a challenge
(Kearney & Porter, 2009; Dormann et al., 2012; Fischer et al.,
2014).

Models produced by different algorithms may have dis-
similar, even contrasting outputs (Dormann et al., 2008;
Diniz et al., 2009; Elith & Graham, 2009; Li & Wang, 2013).
Independent evaluations have often been unable to identify
a single recommended algorithm for all circumstances (Elith
et al., 2006; Elith & Graham, 2009; Li & Wang, 2013; Qiao
et al., 2015). An alternative to avoid the choice of a particular
method is to test models produced by a set of algorithms (Qiao
et al., 2015) and combine their results as an ensemble model
(Aratjo & New, 2007; Marmion et al., 2009). With a set of mod-
els produced by a number of algorithms, uncertainty can be
properly quantified, thus improving the study’s result
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(Pearson et al., 2006; Owens et al., 2013; Qiao et al., 2015). The
use of multiple algorithms was present in over 70% of general
ENM studies published recently (Guillera-Arroita ef al., 2015),
but it was under-represented in ENM of disease vectors for the
same period (approximately 10%). This represents a signifi-
cant delay in disease vector studies in relation to what is cur-
rently being published.

A good example of the multiple algorithm approach was a
comparison between models produced by BIOCLIM,
DOMAIN (Carpenter et al., 1993), GARP, GLM (logistic regres-
sion) and MaxEnt to identify areas of high density of Aedes
mosquitoes in Bermuda (Khatchikian ef al., 2011). The results
varied between the different algorithms, but since GLM and
MaxEnt performed better, both were used to predict risk
areas of mosquito infestations (Khatchikian et al.,, 2011).
Another example was a study of the distribution patterns of
natural breeding sites of A. aegypti in Colombia, where models
produced by GARP had fewer omission errors than those pro-
duced by MaxEnt (Arboleda et al., 2012). Models produced by
MaxEnt performed better in certain regions, although areas
predicted as suitable by the two algorithms coincided closely.
The two algorithms were combined into an ensemble model,
where coincident areas were considered suitable with greater
confidence. The combination of methods improved the detec-
tion of natural breeding sites, allowing the optimization of ef-
fort and financial investment in dengue control programs in
the region (Arboleda ef al., 2012).

Future projections of vector distributions

Over 700 vector species were studied in the 146 reviewed
papers, including mostly mosquitoes (63 articles) and sand
flies (29), followed by works on kissing bugs (18), biting
midges (17), ticks (14), tsetse flies (3), fleas (1) and water
bugs (1) (Table S1). The geographic extent of the reviewed
studies varied from local to global (Table S1). The 31 studies
with future ENM projections mostly point to expansions in re-
sponse to climate change scenarios, accompanied by poleward
shifts (table 1). This trend is being observed for several taxo-
nomic groups, where long-term field studies demonstrate re-
cent species” movements towards higher latitudes and higher
altitudes in response to climate change (Hickling et al., 2006;
Stange & Ayres, 2010; Chen et al., 2011). There is, however, a
noteworthy methodological issue in about half of the re-
viewed studies (table 1). When projecting into future scen-
arios, models should be trained with the full-known
distribution of the species. If only a subset of the realized
niche is used, future predictions may underestimate environ-
mentally suitable areas and quantifications of range changes
become questionable (Pearson & Dawson, 2003; Guisan &
Thuiller, 2005; Aratjo & Peterson, 2012). An additional source
of uncertainty in future forecasts is the extrapolation of models
into climatic conditions that do not presently exist (Fitzpatrick
& Hargrove, 2009). Some ENM algorithms have standard
ways of controlling extrapolation, such as MaxEnt, by limiting
output values to the range of environmental variables under
which the model was calibrated (Phillips et al., 2006).
Alternatively, out-of-range values can be masked directly in
model predictions (Owens et al., 2013; Carvalho ef al., 2015).

Aedes aegypti and Aedes albopictus (Diptera: Culicidae)

The main vector of dengue, A. aegypti, is currently distrib-
uted throughout most tropical regions of the world.
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Table 1. Overview of the future projections of the distributions of arthropod vectors of diseases. ~
Full current
distribution Year of Difference of pro- General range shift
Species Main disease  Study area of species  Algorithm projections  jected area directions Reference
Diptera: Culicidae
Aedes aegypti Dengue Australia No GARP 2030,2050  Expansion Central, south Beebe et al. (2009)
Aedes aegypti Dengue Global Yes Alpha-shapes 20102040  Expansion and Several directions Capinha et al. (2014)
contraction
Aedes aegypti Dengue Brazil No MaxEnt 2050 Contraction South Cardoso-Leite et al.
(2014)
Aedes aegypti Dengue Global Yes CLIMEX 2030,2070  Contraction, discrete Several directions Khormi and Kumar
expansion (2014)
Aedes albopictus Arboviruses  Trentino, Italia No GLM (logistic) 2050 Expansion East, west Roiz et al. (2011)
Aedes albopictus Arboviruses Europe Yes MaxEnt 2040, 2070,  Expansion North, east, west Fischer et al. (2011c)
2100
Aedes albopictus Arboviruses Australia, global ~ Yes MaxEnt, 2030, 2050  Discrete expansion Central Hill et al. (2014)
CLIMEX
Aedes stictus Arboviruses Sweden No Other 2020, 2050, Expansion North Schafer and Lundstrom
2080 (2009)
Anopheles Malaria Sudan and North No MaxEnt 2050 Expansion Not given Fuller et al. (2012)
arabiensis of Egypt o
Anopheles Malaria Africa Yes LOBAG-OC 2050 Contraction East, southeast Drake and Beier (2014) Z
arabiensis
Anopheles gambiae Malaria Africa Yes CLIMEX Not given  Expansion South, east Tonnang et al. (2010) E?
and Anopheles S
arabiensis OF
Anopheles gambiae Malaria Africa Yes GARP 2055 Expansion South, east Peterson (2009) ~
and Anopheles g
arabiensis :
Anopheles gambiae Malaria Africa Yes CLIMEX Not given ~ Expansion South, east Tonnang ef al. (2014)
and Anopheles
arabiensis
Diptera: Psychodidae
Lutzomyia antophora Leishmaniasis North America Yes MaxEnt 2020, 2050, Expansion North, northeast Gonzélez et al. (2010)
and Lutzomyia and Mexico 2080
diabolica
Lutzomyia longipalpis ~ Leishmaniasis Colombia No MaxEnt 2020, 2050,  Expansion or North Gonzilez et al. (2014)
and Lutzomyia 2080 contraction (at
evansi different
scenarios)
Lutzomyia spp. Leishmaniasis South America Yes GARP 2055 Expansion South, southeast Peterson and Shaw
(three species) (2003)
Phlebotominae Leishmaniasis North and Central No GARP 2020, 2050, Expansion in 97% of Northwest (64% of Moo-Llanes et al. (2013)
(28 species) Americas 2080 species, species), northeast
contraction in 3% (35%), southeast
(0,6%)
Phlebotomus papatasi ~ Leishmaniasis Southeast Asia No Discriminant Not given  Expansion Not given Cross and Hyams (1996)
Analysis
Phlebotomus Leishmaniasis Bavaria, Germany No MaxEn? 2040 Expansion Not given Fischer et al. (2011b)

perniciosus
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Table 1. (Cont.)

Species Main disease  Study area Full current  Algorithm Year of Difference of pro- General range shift Reference
distribution projections  jected area directions
of species
Phlebotomus ariasi Leishmaniasis Madrid, Spain No GLM (negative 2040, 2070, Expansion Not given Gélvez et al. (2011)
and Phlebotomus binomial) 2100
perniciosus
Phlebotomus spp. Leishmaniasis Southern No MaxEnt 2040 Expansion Central, northwest Haeberlein et al. (2013)
(five species) Germany
Phlebotomus spp. Leishmaniasis Central Europe No MaxEnt 2040, 2070, Expansion Mostly east Fischer et al. (2011a)
(five species) 2100
Diptera:
Ceratopogonidae
Culicoides imicola Bluetongue Spain No GLM (negative 2040 Stability Not given Acevedo et al. (2010)
binomial)
Culicoides imicola Bluetongue Europe No GLM (logistic)  Not given ~ Expansion North Wittmann et al. (2001)
Culicoides imicola Bluetongue Global Yes CLIMEX 2030, 2070  Expansion and Mostly north Guichard ef al. (2014)
contraction
Hemiptera: Reduviidae
Triatoma gerstaeckeri ~ Chagas Mexico and USA  Yes MaxEnt 2050 Expansion North, northeast Garza et al. (2014)
and Triatoma disease
sanguisuga
Triatoma brasiliensis Chagas Northeast Brazil ~ Yes MaxEnt, GARP  2020,2050  Stability Not given Costa ef al. (2014)
species complex disease
Acari: Ixodida
Ixodes ricinus Lyme disease Europe No GARP 2050 Expansion and North Boeckmann and Joyner
contraction (2014)
Ixodes ricinus Lyme disease Europe and Asia  Yes MaxEnt 2050, 2080  Expansion North, east Porretta et al. (2013)
Ixodes scapularis Lyme disease USA/Mexico Yes MaxEnt 2050 Expansion Northeast Feria-Arroyo et al. (2014)
border
Ixodidae (six species) Lyme disease Mediterranean Yes ENFA Not given ~ Not given Not given Estrada-Pefia and
region Venzal (2007)
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Projections of its global distribution showed that most areas
that are currently occupied should remain climatically favour-
able for its occurrence in 2030 and 2070, while new areas will
become suitable for its range expansion, such as the Australian
outback, the Arabian Peninsula, southern Iran and parts of
North America (Khormi & Kumar, 2014). Further projections
for the near future indicate that suitable macroclimatic condi-
tions for this vector should begin to expand between 2010 and
2039 (Capinha et al., 2014). In Brazil, models predict a contrac-
tion of its range in the northern and northeastern regions, ac-
companied by a probable expansion in the south by 2050
(Cardoso-Leite ef al., 2014). Since A. aegypti is a vector with
high adaptability to urban environments, its local distribution
is also influenced by the occurrence of artificial breeding sites
such as water tanks and swimming pools. In Australia, models
based only on climatic variables failed to detect locations of its
known occurrence and of human cases of dengue (Beebe et al.,
2009). This inconsistency was attributed to human behaviour,
as residents began to store water during a regional drought at-
tributed to climate change (Beebe et al., 2009). The study
pointed out, therefore, not only the local-scale limitations of
ENM, but also the importance of implementing climate
change adaptation measures that are compatible with disease
control programs (Beebe et al., 2009). Despite not using the full-
known distribution of the vector in model training, predictions
of future range contraction in Brazil (Cardoso-Leite et al., 2014)
and of future inland expansion in Australia (Beebe et al., 2009)
were similar to those predicted by models based on its global
distribution (Capinha et al., 2014; Khormi & Kumar, 2014).

In contrast to the highly anthropophilic A. aegypti, the Asian
tiger mosquito A. albopictus prefers less disturbed environ-
ments and has predominantly zoophilic habits, participating
in sylvatic transmission cycles of a number of arboviruses,
such as chikungunya, yellow fever and dengue. Despite having
relatively lower importance in human disease transmission
than A. aegypti, the distribution of A. albopictus has been much
studied because it is considered the most invasive mosquito
species in the world (Benedict et al., 2007; Medley, 2010;
Porretta et al., 2012). Its original distribution in Southeast Asia
has expanded in recent decades to various countries in the
Americas, Africa and Europe, mostly through cargo transpor-
tation (Reiter & Sprenger, 1987; Tatem et al., 2006). In Europe,
the speciesis currently established in the Mediterraneanregion,
where local vector populations are already expanding (Roiz
et al., 2011). Future projections of ENM point to an increase of
climate suitability areas for A. albopictus in central and western
parts of Europe by 2040, with eastern areas becoming suitable
from 2070 onwards (Fischer et al., 2011c). Based on these projec-
tions, an assessment of the main cargo shipment routes con-
cluded that certain areas of the continent, such as Rotterdam,
Hamburg and Antwerp, have the dangerous combination of
high incoming cargo from countries where A. albopictus occurs
and high future climatic suitability for the vector (Thomasetal.,
2014). In Australia, where there are currently no records of A.
albopictus, niche models based on the global distribution of
the vector show that the coastal region is climatically suitable
for its establishment, with projections for the coming decades
indicating expansion of this suitable area towards the interior
of the country (Hill et al., 2014).

Anopheles spp. (Diptera: Culicidae)

The distributions of two malaria vectors in Sub-Saharan
Africa, Anopheles gambiae and An. arabiensis, will also likely
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expand southwards and southeastwards, according to
ENMs involving climate change scenarios (Peterson, 2009;
Fuller et al., 2012; Tonnang et al., 2010, 2014). By adding mos-
quito survival rates to niche models, it was concluded that East
African countries will have greater climatic suitability for
these vectors in the coming decades than West African coun-
tries (Tonnang ef al., 2014). Although the models predict local
regions of both increase and decrease of climatic suitability for
the vectors, 11-30% fewer people should be exposed to the
vectors in the coming decades, as seen by overlaying model
predictions and human distribution (Peterson, 2009). A more
recent study pointed to a contraction of over half of the distri-
bution area of An. arabiensis in West African countries (Drake
& Beier, 2014). The overall contraction of the full range of the
vector might erroneously suggest less exposure to vector-
borne diseases with climate change. The association with
human distribution demonstrates the caution needed when in-
terpreting predictions of ENMs of vectors. Vector occurrence
per se does not necessarily implies higher risk of disease trans-
mission, and a closer look at other risk factors is needed.

Lutzomyia spp. and Phlebotomus spp. (Diptera: Psychodidae)

Leishmaniases are neglected tropical diseases widely dis-
tributed in 98 countries, with approximately 0.2-0.4 million
cases of visceral leishmaniasis and 0.7-1.2 million cases of cu-
taneous leishmaniasis occurring every year (Alvar et al., 2012).
The vectors of leishmaniases, sand flies, are classified in two
genera according to their distributions: Lutzomyia in the
Americas and Phlebotomus in other continents. Areas climatic-
ally suitable for the South American vectors L. whitmani,
L. intermedia and L. migonei should expand by the year 2050
(Peterson & Shaw, 2003). Expansion areas are located in differ-
ent regions of the continent, but their most evident direction is
south, where L. whitmani will have larger suitability areas than
the other two vectors (Peterson & Shaw, 2003). In contrast, in
Colombia, future projections from regional distribution mod-
els indicate reduction of the total predicted area of occurrence
of L. longipalpis and L. evansi associated with changes in their
altitudinal distribution (Gonzélez ef al., 2014). Unfortunately,
failure to consider the full distribution of L. longipalpis might
have produced biased predictions for Colombia (Gonzalez
et al., 2014), because the vector occupies a broad range of lati-
tudes from Mexico to Argentina (World Health Organization,
2010).

The vectors L. anthophora and L. diabolica, currently distrib-
uted in Mexico and the USA, are projected to expand north-
wards (Gonzélez et al., 2010). These projections were
associated with predictions of the distributions of rodent
hosts and human populations, and indicated that the expected
number of people exposed to leishmaniases in North America
will at least double by 2080 (Gonzéalez et al., 2010). Future
northward expansions of suitable areas to leishmaniasis vec-
tors are also expected for 27 of 28 species with current occur-
rence in Mexico, Guatemala, Belize, USA and Canada, the
exception being L. vexator (Moo-Llanes et al, 2013).
However, the predictions for species whose distributions in-
clude South America, such as L. longipalpis and L. shannoni,
should be interpreted with caution because the models were
only calibrated with data from Canada, USA, Mexico,
Guatemala and Belize (Moo-Llanes et al., 2013).

Europe is currently on alert for the emergence of leishman-
iasis and the expansion of its vectors, especially in the coun-
tries in central regions of the continent, predicted to become
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increasingly climatically similar to the Mediterranean region,
where there are endemic areas of these diseases (Ready, 2008;
Medlock et al., 2014). In a region of canine leishmaniasis in
Spain, an increase in the abundance of P. ariasi in higher alti-
tude areas was observed, pointing out to a possible migration
of the vector to these areas in response to rising temperatures
(Galvez et al., 2010). Future projections predict expansions of
the range and increase of local densities of both P. ariasi and
P. perniciosus in the 21st century (Galvez et al., 2011); however,
models were restricted to Spain, which represents only part
of the range of both species at the Mediterranean region
(World Health Organization, 2010). In Germany, Austria and
Switzerland, there are predicted areas of increased climate suit-
ability for five species of Phlebotomus, but most are unlikely to be
reached by the vectors by the end of this century due to their
limited dispersal ability (Fischer ef al., 2011a). This finding
was reinforced by later field sampling in the region of
Bavaria, southern Germany, where no sand flies were caught
(Haeberlein et al., 2013). However, field studies show that sev-
eral species of Phlebotomus from the Mediterranean region al-
ready have records of the expansion of their distributions
towards central Europe (Maroliet al., 2008; Medlocket al., 2014).

Culicoides spp. (Diptera: Ceratopogonidae)

Bluetongue disease, a zoonotic infection transmitted by
Culicoides spp. (biting midges) to various ruminants, has im-
portant economic impacts in temperate zones of Europe,
Africa and the Americas. Some authors suggest that in the
Mediterranean region there is evidence of northward expan-
sion of C. imicola in recent decades (Purse et al., 2005), while
others refute this (Conte et al., 2009). Future expansions of C.
imicola in climate change scenarios are predicted for most of
its occurrence areas in the northern hemisphere (mainly cen-
tral and western Europe and the USA) and some contraction
areas in Africa (Guichard et al., 2014). In Europe, their distribu-
tion is currently known in the Iberian Peninsula, with future
climatically suitable areas predicted in the northwest direc-
tion, in climate change scenarios (Wittmann et al., 2001). In
Spain, niche models of wild hosts of Bluetongue virus (deer
and wild boar) were used as predictors of the occurrence of
C. imicola, in addition to other environmental variables, show-
ing that in the near future (2011-2040), its predicted distribu-
tion will not suffer many changes, but its abundance is
expected to increase in currently occupied areas (Acevedo
et al., 2010).

Triatoma spp. (Hemiptera: Reduviidae)

Chagas disease, also known as American trypanosomiasis,
is transmitted by many species of kissing bugs from
Triatominae subfamily. It was originally restricted to Latin
America, but in past decades it has been detected in the
USA, Canada, European and Asian countries, due mostly to
human migration from endemic areas Schmunis & Yadon,
2010). In Brazil, Triatoma brasiliensis, a species complex
(Monteiro et al., 2004), is considered the main vector in the
northeast region (Monteiro et al., 2004). Future projections of
its distribution indicate few areas of both expansion and con-
traction, so its distribution may remain stable, at least until
2050 (Costa et al., 2014). In contrast, ENMs of two vectors of
Chagas disease in the USA, T. gerstaeckeri and T. sanguisuga,
predict northwards expansions of their distributions in re-
sponse to climate change in 2050 (Garza ef al., 2014).
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Ixodes spp. (Acari: Ixodida)

Several species of Ixodes ticks are involved in the transmis-
sion of Lyme disease, which is the most prevalent vector-borne
disease in the USA and Europe. It is vectored by I. scapularis
and I. pacificus in North and Central America, and by I. persul-
catus and I. ricinus in Europe and Asia (Lane et al., 1991).

The distribution of I. ricinus in Europe may nearly double
by 2080 (Porretta et al., 2013). This predicted expansion in-
cludes areas north and east of its current range, reaching the
northernmost regions of Eurasia, such as Sweden and Russia
(Porretta et al., 2013). A model developed from a subset of its
distribution records showed overall similar future predictions
for Europe, with some local differences in the Iberian
Peninsula and Scandinavia (Boeckmann & Joyner, 2014). In
the USA, models indicate current greater probability of occur-
rence of I. scapularis in the Gulf of Mexico, and future projec-
tions point to relative stability in its range by 2050
(Feria-Arroyo et al., 2014).

Further considerations on niche models of disease vectors

Vector occurrence data often present spatial bias towards
endemic areas where disease surveillance programs are active.
In addition, having presence and absence data that are re-
quired for some ENM algorithms is rarely the case when
studying disease vectors. Most studies that used absence
data based on field studies were restricted to regional and
local scales, due to the inherent limitations of sampling effort
(Eisen et al., 2006; Mushinzimana et al.,, 2006; Reiter &
Lapointe, 2007; Khatchikian et al., 2011; Cardo et al., 2014).
Absence data can be replaced by pseudo-absences generated
according to several criteria (Lobo & Tognelli, 2011; Senay
et al., 2013). Real absence data, however, can also be a source
of bias in model outputs if they are not treated appropriately.
After all, a species may be absent from a sampled region for
various reasons besides the lack of environmental suitability,
such as dispersion barriers, historical factors or biotic interac-
tions (Lobo et al., 2010). In a modelling exercise to test different
absence datasets of C. imicola, the removal of false absences im-
proved all model outputs (Peters ef al., 2011).

Most ENMs are correlative approaches based on abiotic
factors; they do not consider species” dispersion (Guisan &
Zimmermann, 2000; Barve et al., 2011). Thus, knowledge of
vector ecology becomes essential for interpretation of model
outputs. Accessible localities in climatic suitability areas can
be either hypothesised a priori (Barve et al., 2011; Carvalho
et al., 2015) or mapped a posteriori for vectors with limited dis-
persal ability, such as sand flies (Fischer et al., 2011a). In con-
trast, ticks” dispersion is facilitated by their hosts” movements,
favouring their range expansion in suitable areas (Porretta
et al., 2013).

Health data are commonly grouped into administrative
areas, such as municipalities, districts, states or countries.
Automatically converting vector records from this format to
point localities can generate positional errors, depending on
the spatial resolution of the study, which might lead to
wrong estimates of the species—environment relationship
(Naimi et al., 2014). Even if the vector records for an ENM
are aggregated into area units, they can be analysed using stat-
istical methods, considering the spatial limitations of model
predictions. This approach was applied in a GLM (logistic re-
gression) of the environmental suitability of L. whitmani, cuta-
neous leishmaniasis vector in the state of Mato Grosso, Brazil,
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where both vector occurrence and environmental data were
grouped at the municipal level (Zeilhofer et al., 2008).

To correctly interpret future ENM projections for disease
vectors, it is important to remember that a vector’s distribution
represents only a fraction of the factors that determine human
vector-borne diseases. Even if vectors, pathogens and hosts co-
exist in a location, the disease might not become endemic for
several reasons. Human social factors play an important role
in disease establishment, such as migration, urbanization,
population immunity and effectiveness of health systems
(Gage et al., 2008; Barcellos et al., 2009). For example, the inci-
dence of malaria has declined since 1900, mainly due to effect-
ive control (Gething et al., 2010). However, in the areas of
predicted expansion of distribution of malaria vectors in
Africa there is more poverty and fewer resources to control
the disease, which are important determinants of transmission
risk (Peterson, 2009). International travel has contributed to in-
creased numbers of imported cases of dengue in the USA and
Europe (Gardner et al., 2012). Chagas disease, a chronic and si-
lent infection currently treated as an emergent vector-borne
disease in southern USA, may have been established in the re-
gion for over 70 years (Garcia et al., 2015), so the predicted ex-
pansion of vectors may increase transmission risk (Garza et al.,
2014). Canine leishmaniasis transmission cycles, known to
precede human outbreaks of the disease have been recorded
in areas with no records of human cases, not only in
European countries (Ready, 2010), but also in the USA and
Canada (Duprey et al., 2006). These and other evidence points
to the need for a multidisciplinary view of the impacts of cli-
mate change on vector-borne diseases.

Conclusions

Changes in the geographical distribution of vectors are ex-
pected with climate change, therefore impacting the spatial
epidemiology of vector-borne diseases. Tropical regions of
the world are currently occupied by many vector species, how-
ever future projections indicate poleward increases of suitable
climates for their occurrence. These are the scenarios for
Mediterranean vectors of several arboviruses, leishmaniasis,
bluetongue disease and tick-borne infections, which are ex-
pected to find climatically suitable areas in central Europe
for their expansions by the end of this century. In
Sub-Saharan Africa, malaria vectors are expected to shift
their distributions southward and eastward, losing climatic
suitability in western countries in the process. Leishmaniasis
vectors from tropical America are projected to expand their
ranges both northwards and southwards in temperate zones,
while inland Australia should increase in climatic suitability
for mosquitoes.

The results discussed here are for the distribution of vectors
only, which are a fraction of the determinants of the occurrence
of these diseases. These likely vector expansions will only
translate into increased risk of human disease if they are ac-
companied by hosts and parasites themselves. Human social
factors and control efforts also play important roles in trans-
mission risk. It is recommended that entomological monitor-
ing activities are made, especially in the areas projected to
become suitable for the occurrence of these vectors.
Long-term monitoring studies can contribute substantially to
the knowledge of the ecology of these species and how their
distributions change in response to climate change.

Adoption of multiple ENM methods to study disease vec-
tor distributions is slow relative to the general ENM literature.
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Another concern is the lack of consideration of the full-known
current distribution of the target species on models that in-
clude future projections; about half of the reviewed studies
had this issue, potentially leading to questionable predictions.
An extra effort from authors is necessary in order to better
understand the details of these methods so that models are
produced with greater reliability and a clear description of
their uncertainties. With this, these studies can support disease
control policies more efficiently.

Supplementary Material

The supplementary material for this article can be found at
https://doi.org/10.1017 /50007485316001097

References

Acevedo, P., Ruiz-Fons, F., Estrada, R., Marquez, A.L., Miranda,
M.A., Gortazar, C., et al. (2010) A broad assessment of factors
determining Culicoides imicola abundance: modelling the
present and forecasting its future in climate change scenarios.
PLoS ONE 5, e14236.

Alvar, J., Vélez, 1.D., Bern, C., Herrero, M., Desjeux, P., Cano, J.,
Jannin, J., den Boer, M. & the WHO Leishmaniasis Control
Team (2012) Leishmaniasis worldwide and global estimates
of its incidence. PLoS ONE 7(5), e35671.

Aratijo, M. & New, M. (2007) Ensemble forecasting of species
distributions. Trends in Ecology and Evolution 22, 42-47.
Aratjo, M.B. & Peterson, A.T. (2012) Uses and misuses of bio-
climatic envelope modelling. Ecology 93(7), 1527-1539.
Arboleda, S., Jaramillo-O, N. & Peterson, A.T. (2009) Mapping
environmental dimensions of dengue fever transmission risk
in the Aburrd Valley, Colombia. International Journal of

Environmental Research and Public Health 6, 3040-3055.

Arboleda, S., Jaramillo-O, N. & Peterson, A.T. (2012) Spatial and
temporal dynamics of Aedes aegypti larval sites in Bello,
Colombia. Journal of Vector Ecology 37, 37-48.

Barcellos, C., Monteiro, A.M.V., Corvalan, C., Gurgel, H,,
Carvalho, M.S., Artaxo, P., Hacon, S. & Ragoni, V. (2009)
Mudangas climaticas e ambientais e as doengas infecciosas:
cendrios e incertezas para o Brasil. Epidemiologia e Servigos de
Saiide 18, 285-304.

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A.,
Mabher, S.P., Peterson, A.T., Soberén, ]J. & Villalobos, F.
(2011) The crucial role of the accessible area in ecological
niche modeling and species distribution modeling. Ecological
Modelling 222, 1810-1819.

Beebe, N.W., Cooper, R.D., Mottram, P. & Sweeney, A.W. (2009)
Australia’s dengue risk driven by human adaptation to cli-
mate change. PLoS Neglected Tropical Diseases 3, e429.

Benedict, M.Q., Levine, R.S., Hawley, W.A. & Lounibos, L.P.
(2007) Spread of the tiger: global risk of invasion by the
mosquito Aedes albopictus. Vector-borne and Zoonotic Diseases
7,76-85.

Boeckmann, M. & Joyner, T.A. (2014) Old health risks in new
places? An ecological niche model for I. ricinus tick distri-
bution in Europe under a changing climate. Health & Place 30,
70-77.

Booth, T.H., Nix, H.A., Busby, J.R. & Hutchinson, M.F. (2014)
BIOCLIM: the first species distribution modelling package,
its early applications and relevance to most current MaxEnt
studies. Diversity and Distributions 20, 1-9.

Breiman, L. (2001) Random forests. Machine Learning 45, 15-32.


https://doi.org/10.1017/S0007485316001097
https://doi.org/10.1017/S0007485316001097
https://doi.org/10.1017/S0007485316001097

Impacts of climate change on disease vectors 427

Brooks, D.R. & Hoberg, E.P. (2007) How will global climate
change affect parasite-host assemblages? Trends in
Parasitology 23(12), 571-574.

Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillette, G.
(2009) Uncertainty in ensemble forecasting of species distri-
bution. Global Change Biology 16, 1145-1157.

Capinha, C., Rocha, J. & Sousa, C.A. (2014) Macroclimate de-
termines the global range limit of Aedes aegypti. EcoHealth 11,
420-428.

Cardo, M.V., Vezzani, D., Rubio, A. & Carbajo, A.E. (2014)
Integrating demographic and meteorological data in urban
ecology: a case study of container-breeding mosquitoes in
temperate Argentina. Area 46(1), 18-26.

Cardoso-Leite, R., Vilarinho, A.C., Novaes, M.C., Tonetto, A.F.,
Vilardi, A.C. & Guillermo-Ferreira, R. (2014) Recent and
future environmental suitability to dengue fever in Brazil
using species distribution model. Transactions of the Royal
Society of Tropical Medicine and Hygiene 108, 99-104.

Carpenter, G., Gillison, A.N. & Winter, J. (1993) DOMAIN: a
flexible modeling procedure for mapping potential distribu-
tions of plants and animals. Biodiversity and Conservation 2,
667-680.

Carvalho, B.M., Rangel, E.F., Ready, P.D. & Vale, M.M. (2015)
Ecological niche modelling predicts southward expansion of
Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae:
Phlebotominae), vector of Leishmania (Leishmania) amazo-
nensis in South America, under climate change. PLoS ONE 10
(11), e0143282.

Chen, I.-C., Hill, J.K., Ohlemiiller, R., Roy, D.B. & Thomas, C.
D. (2011) Rapid range shifts of species associated with
high levels of climate warming. Science 333(6045), 1024—
1026.

Conte, A., Gilbert, M. & Goffredo, M. (2009) Eight years of en-
tomological surveillance in Italy show no evidence of
Culicoides imicola geographical range expansion. Journal of
Applied Ecology 46, 1332-1339.

Costa, J., Dornak, L.L., Almeida, C.E. & Peterson, A.T. (2014)
Distributional potential of the Triatoma brasiliensis species
complex at present and under scenarios of future climate
conditions. Parasites & Vectors 7, 238.

Cross, E.R. & Hyams, K.C. (1996) The potential effect of global
warming on the geographic and seasonal distribution of
Phlebotomus papatasi in Southwest Asia. Environmental Heath
Perspectives 104(7), 724-727.

Daszak, P., Zambrana-Torrelio, C., Bogich, T.L., Fernandez, M.,
Epstein, J.H., Murray, K.A. & Hamilton, H. (2013)
Interdisciplinary approaches to understanding disease
emergence: the past, present and future drivers of Nipah
virus emergence. Proceedings of the National Academy of
Sciences of the United States of America 110(Suppl. 1), 3681
3688.

Diniz-Filho, J.A.F., Bini, L.M., Rangel, T.F., Loyola, R.D., Hof, C.,
Nogués-Bravo, D. & Aratijo, M. (2009) Partitioning and
mapping uncertainties in ensembles of forecasts of species
under climate change. Ecography 32, 897-906.

Dormann, C.F., Purschke, O., Marquez, J.R.G., Lautenbach, S. &
Schroder, B. (2008) Components of uncertainty in species
distribution analysis: a case study of the great grey shrike.
Ecology 89(12), 3371-3386.

Dormann, C.F., Schymanski, S.]J., Cabral, J., Chuine, I., Graham,
C., Hartig, F., Kearney, M., Morin, X., Rémermann, C.,
Schroder, B. & Singer, A., (2012) Correlation and process in
species distribution models: bridging a dichotomy. Journal of
Biogeography 39, 2119-2131.

https://doi.org/10.1017/50007485316001097 Published online by Cambridge University Press

Drake, J.M. & Beier, J.C. (2014) Ecological niche and potential
distribution of Anopheles arabiensis in Africa in 2050. Malaria
Journal 13, 213.

Duprey, Z.H., Steurer, F.J., Rooney, J.A. Kirchhoff, L.V,
Jackson, J.E., Rowton, E.D. & Schantz, P.M. (2006) Canine
visceral leishmaniasis, United States and Canada, 2000-2003.
Emerging Infectious Diseases 12(3), 440—446.

Eisen, L., Eisen, R.J. & Lane, R.S. (2006) Geographical distribution
patterns and habitat suitability models for presence of
host-seeking Ixodid ticks in dense woodlands of Mendocino
County, California. Journal of Medical Entomology 43(2), 415—
427.

Eisen, L., Monaghan, A.J., Lozano-Fuentes, S., Steinhoff, D.F.,
Hayden, M.H. & Bieringer, P.E. (2014) The impact of tem-
perature on the bionomics of Aedes (Stegomyia) aegypti, with
special reference to the cool geographic range margins.
Journal of Medical Entomology 51(3), 496-516.

Elith, J. & Graham, C. (2009) Do they? How do they? WHY do
they differ? On finding reasons for differing performances of
species distribution models. Ecography 32, 66-67.

Elith, J. & Leathwick, J.R. (2009) Species distribution models:
ecological explanation and prediction across space and time.
Annual Review of Ecology, Evolution and Systematics 40, 677—
697.

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S.,
Guisan, A., Hijmans, R.H., Huettmann, F., Leathwick, J.R.,
Lehmann, A., Lj, J., Lohmann, L.G., Loislelle, B.A., Manion,
G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.
McC., Townsend Peterson, A., Phillips, S.J., Richardson, K.,
Scachetti-Pereira, R., Schapire, R.E., Soberén, J., Williams,
S., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods
improve prediction of species’ distributions from occurrence
data. Ecography 29, 129-151.

Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to
boosted regression trees. Journal of Animal Ecology 77, 802—
881.

Estrada-Pefia, A. & Venzal, J.M. (2007) Climate niches of tick
species in the Mediterranean region: modeling of occurrence
data, distributional constraints, and impact of climate
change. Journal of Medical Entomology 44(6), 1130-1138.

Falagas, ML.E., Pitsouni, E.I., Malietzis, G.A. & Pappas, G. (2008)
Comparison of pubmed, Scopus, Web of Science, and Google
Scholar: strengths and weakness. The FASEB Journal 22, 338—
342.

Feria-Arroyo, T.P., Castro-Arellano, I, Gordillo-Perez, G.,
Cavazos, A.L., Vargas-Sandovil, M., Grover, A., Torres, J.,
Medina, R.F., Pérez de Le6n, A.A. & Esteve-Gassent, M.D.
(2014) Implications of climate change on the distribution of
the tick vector Ixodes scapularis and risk for Lyme disease in
the Texas-Mexico transboundary region. Parasites & Vectors 7,
199.

Fischer, D., Moeller, P., Thomas, S.M., Naucke, T.J. &
Beierkuhnlein, C. (20114) Combining climatic projections
and dispersal ability: a method for estimating the responses
of sand fly vector species to climate change. PLoS Neglected
Tropical Diseases 5(11), €1407.

Fischer, D., Thomas, S.M. &, Beierkuhnlein, C. (2011b)
Modelling climatic suitability and dispersal for disease vec-
tors: the example of a phlebotomine sandfly in Europe.
Procedia Environmental Sciences 7, 164—169.

Fischer, D., Thomas, S.M., Niemitz, F., Reineking, B. &
Beierkuhnlein, C. (2011c) Projection of climatic suitability
for Aedes albopictus Skuse (Culicidae) in Europe under climate
change conditions. Global and Planetary Change 78, 54—64.


https://doi.org/10.1017/S0007485316001097

428 B.M. Carvalho et al.

Fischer, D., Thomas, S.M., Neteler, M., Tjaden, N.B. &
Beierkuhnlein, C. (2014) Climatic suitability of Aedes albo-
pictus in Europe referring to climate change projections:
comparison of mechanistic and correlative niche modelling
approaches. Euro Surveillance 19(6), 20696.

Fitzpatrick, M. C. & Hargrove, W.W. (2009) The projection of
species distribution models and the problem of non-analog
climate. Biodiversity and Conservation 18, 2255-2261.

Foley, D.H., Klein, T.A., Kim, H.C., Sames, W.J., Wilkerson, R.C.
& Rueda, L.M. (2009) Geographic distribution and ecology of
potential malaria vectors in the Republic of Korea. Journal of
Medical Entomology 46(3), 680—-692.

Foley, D.H., Klein, T.A., Kim, H.C., Brown, T., Wilkerson, R.C. &
Rueda, L.M. (2010) Validation of ecological niche models for
potential malaria vectors in the republic of Korea. Journal of
the American Mosquito Control Association 26(2), 210-213.

Franklin, J. (2010) Mapping Species Distributions. Spatial Inference
and Prediction. Cambridge, Cambridge University Press.

Fuller, D.O., Parenti, M.S., Hassan, A.L. & Beier, J.C. (2012)
Linking land cover and species distribution models to project
potential ranges of malaria vectors: an example using
Anopheles arabiensis in Sudan and Upper Egypt. Malaria
Journal 11, 264.

Gage, K.L., Burkot, T.R., Eisen, R.J. & Hayes, E.B. (2008) Climate
and vectorborne diseases. American Journal of Preventive
Medicine 35(5), 436—450.

Galvez, R., Descalzo, M.A., Mirg, G., Jiménez, M.1., Martin, O.,
Sandos-Brandao, F., Guerrero, 1., Cubero, E. & Molina, R.
(2010) Seasonal trends and spatial relations between envir-
onmental/meteorological factors and leishmaniosis sand fly
vector abundances in Central Spain. Acta Tropica 115, 95-102.

Galvez, R., Descalzo, M.A., Guerrero, 1., Mir6, G. & Molina, R.
(2011) Mapping the current distribution and predicted
spread of the leishmaniosis sand fly vector in the Madrid
region (Spain) based on environmental variables and ex-
pected climate change. Vector-Borne and Zoonotic Diseases 11
(7), 799-806.

Garcia, M.N., Woc-Colburn, L., Aguilar, D., Hotez, P.J. &
Murray, K.O. (2015) Historical perspectives on the epi-
demiology of human Chagas disease in Texas and re-
commendations for enhanced understanding of clinical
Chagas disease in the southern United States. PLoS Neglected
Tropical Diseases 9(11), €0003981.

Gardner, L.M., Fajardo, D., Waller, S.T., Wang, O. & Sarkar, S.A.
(2012) A predictive spatial model to quantify the risk of
air-travel-associated dengue importation into the United
States and Europe. Journal of Tropical Medicine 2012, 103679.

Garza, M., Arroyo, T.P.F,, Casillas, E.A., Sanchez-Cordero, V.,
Rivaldi, C.-L. & Sarkar, S. (2014) Projected future distribu-
tions of vectors of Trypanosoma cruzi in North America under
climate change scenarios. PLoS Neglected Tropical Diseases 8
(5), €2818.

Gavel, Y. & Iselid, L. (2008) Web of Science and Scopus: a journal
title overlap study. Online Information Review 32, 475-484.

Gething, P.W., Smith, D.L., Patil, A.P., Tatem, A.]J., Snow, R.W. &
Hay, S.I. (2010) Climate change and the global malaria re-
cession. Nature 465, 342-346.

Gonzalez, C., Wang, O., Strutz, S.E.,, Gonzilez-Salazar, C.,
Sanchez-Cordero, V. & Sarkar, S. (2010) Climate change and
risk of leishmaniasis in North America: predictions from
ecological niche models of vector and reservoir species. PLoS
Neglected Tropical Diseases 4(1), e585.

Gonzilez, C.,Paz, A. & Ferro, C. (2014) Predicted altitudinal shifts
and reduced spatial distribution of Leishmania infantum

https://doi.org/10.1017/50007485316001097 Published online by Cambridge University Press

vector species under climate change scenarios in Colombia.
Acta Tropica 129, 83-90.

Guichard, S., Guis, H., Tran, A., Garros, C., Balenghien, T. &
Kriticos, D.J. (2014) Worldwide niche and future potential
distribution of Culicoides imicola, a major vector of Bluetongue
and African horse sickness viruses. PLoS ONE 9(11), e112491.

Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., Gordon, A.,
Kujala, H., Lentini, P.E.,, McCarthy, M.A., Tingles, R. &
Wintle, B.A. (2015) Is my species distribution model fit for
purpose? Matching data and models to applications. Global
Ecology and Biogeography 24, 276-292.

Guisan, A. & Thuiller, W. (2005) Predicting species distribution:
offering more than simple habitat models. Ecology Letters 8,
993-1009.

Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distri-
bution models in ecology. Ecological Modelling 135, 147-186.

Guisan, A., Edwards, T.C. & Hastie, T. (2002) Generalized linear
and generalized additive models in studies of species dis-
tributions: setting the scene. Ecological Modelling 157, 89-100.

Haeberlein, S., Fischer, D., Thomas, S.M., Schleicher, U.,
Beierkuhnlein, C. & Bogdan, C. (2013) First assessment for
the presence of Phlebotomine vectors in Bavaria, Southern
Germany, by combined distribution modelling and field
surveys. PLoS ONE 8(11), e81088.

Harrison, J.F. & Roberts, S.P. (2000) Flight respiration and ener-
getics. Annual Review of Physiology 62, 179-205.

Hickling, R., Roy, D.B., Hill, J.K., Fox, R. & Thomas, C.D. (2006)
The distributions of a wide range of taxonomic groups are
expanding polewards. Global Change Biology 12, 450—455.

Hill, M.P., Axford, J.K. & Hoffmann, A.A. (2014) Predicting the
spread of Aedes albopictus in Australia under current and
future climates: multiple approaches and datasets to in-
corporate potential evolutionary divergence. Austral ecology
39, 469-478.

Hirzel, A.H., Hausser, J., Chessel, D. & Perrin, N. (2002)
Ecological-niche factor analysis: how to compute habitat-
suitability maps without absence data? Ecology 83(7), 2027-
2036.

Hlavacova, J., Votypka, J. & Volf, P. (2013) The effect of tem-
perature on Leishmania (Kinetoplastida: Trypanosomatidae)
development in sand flies. Journal of Medical Entomology 50(5),
955-958.

IPCC. (2014) Core Writing Team, in Pachauri, R.K. and Meyer, L.A.
(eds). Climate Change 2014: Synthesis Report. Contribution of
Working Groups I, Il and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Geneva, IPCC. 31 p.

Kearney, M. & Porter, W. (2009) Mechanistic niche modelling:
combining physiological and spatial data to predict species’
ranges. Ecology Letters 12, 334-350.

Khatchikian, C., Sangermano, F., Kendell, D. & Livdahl, T.
(2011) Evaluation of species distribution model algorithms
for fine-scale container-breeding mosquito risk prediction.
Medical and Veterinary Entomology 25, 268-275.

Khormi, HM. & Kumar, L. (2014) Climate change and the po-
tential global distribution of Aedes aegypti: spatial modelling
using geographical information system and CLIMEX.
Geospatial Health 8(2), 405-415.

Komar, N. (2003) West Nile virus: epidemiology and ecology in
North America. Advances in Virus Research 61, 185-234.
Kovats, R.S., Campbell-Lendrum, D.H., Mcmichael, AlJ,
Woodward, A. & Cox, J.H. (2001) Early effects of climate
change: do they include changes in vector-borne diseases?
Philosophical Transactions of the Royal Society London B 356,

1057-1068.


https://doi.org/10.1017/S0007485316001097

Impacts of climate change on disease vectors 429

Lane, R.S., Piesman, J. & Burgdorfer, W. (1991) Lyme borreliosis:
relation of its causative agent to its vectors and hosts in North
America and Europe. Annual Review of Entomology 36(1), 587—
609.

Larson, S.R., Degroote, J.P., Bartholomay, L.C. & Sugumaran, R.
(2010) Ecological niche modeling of potential West Nile virus
vector mosquito species in Iowa. Journal of Insect Science 10,
110.

Li, X. & Wang, Y. (2013) Applying various algorithms for species
distribution modelling. Integrative Zoology 8, 124-135.

Lobo, J.M. & Tognelli, M.F. (2011) Exploring the effects of
quantity and location of pseudo-absences and sampling
biases on the performance of distribution models with lim-
ited point occurrence data. Journal for Nature Conservation 19,
1-7.

Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. (2010) The uncer-
tain nature of absences and their importance in species dis-
tribution modelling. Ecography 33, 103-114.

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K. &
Thuiller, W. (2009) Evaluation of consensus methods in
predictive species distribution modelling. Diversity and
Distributions 15, 59—-69.

Maroli, M., Rossi, L., Baldelli, R., Capelli, G., Ferroglio, E.,
Genchi, C., Gramicia, M., Mortarino, M., Pietrobelli, M. &
Gradoni, L. (2008) The northward spread of leishmaniasis in
Italy: evidence from retrospective and ongoing studies on the
canine reservoir and phlebotomine vectors. Tropical Medicine
and International Health 13(2), 256-264.

Medley, K.A. (2010) Niche shifts during the global invasion of the
Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), re-
vealed by reciprocal distribution models. Global Ecology and
Biogeography 19, 122-133.

Medlock, J.M., Hansford, K.M., Van Bortel, W., Zeller, H. &
Alten, B. (2014) A summary of the evidence for the change in
European distribution of phlebotomine sand flies (Diptera:
Psychodidae) of public health importance. Journal of Vector
Ecology 39(1), 72-77.

Mills, J.N., Gage, K.L., Khan, A.S. (2010) Potential influence of
climate change on vector-borne and zoonotic diseases: a re-
view and proposed research plan. Environmental Health
Perspectives 118(11), 1507-1514.

Monteiro, F.A., Donnelly, M.]J., Beard, C.B. & Costa, J. (2004)
Nested clade and phylogeographic analyses of the Chagas
disease vector Triatoma brasiliensis in Northeast Brazil.
Molecular Phylogenetics and Evolution 32(1), 46-56.

Moo-Llanes, D., Ibarra-Cerdefia, C.N., Rebollar-Téllez, E.A.,
Ibafiez-Bernal, S., Gonzailez, C. & Ramsey, J.M. (2013)
Current and future niche of North and Central American
sand flies (Diptera: Psychodidae) in climate change scenarios.
PL0S Neglected Tropical Diseases 7(9), €2421.

Mushinzimana, E., Munga, S., Minakawa, N., LI, L., Feng, C,,
Bian, L., Kitron, U., Schmidt, C., Beck, L., Zhou, G.,
Githeko, A.K. & Yan, G., (2006) Landscape determinants
and remote sensing of anopheline mosquito larval habitats in
the western Kenya highlands. Malaria Journal 5, 13.

Naimi, B.,, Hamm, N.A.S., Groen, T.A., Skidmore, A.K. &
Toxopeus, A.G. (2014) Where is positional uncertainty a
problem for species distribution modelling? Ecography 37,
191-203.

Nieto, P., Malone, J.B. & Bavia, M.E. (2006) Ecological niche
modeling for visceral leishmaniasis in the state of Bahia,
Brazil, using genetic algorithm for rule-set prediction and
growing degree day-water budget analysis. Geospatial Health
1, 115-126.

https://doi.org/10.1017/50007485316001097 Published online by Cambridge University Press

Owens, H.L., Campbell, L.P., Dornak, L., Saupe, E.E., Barve, N.,
Soberoén, J., Ingenloff, K., Lira-Noriega, A., Hensz, C.M.,
Myers, C.E. & Towsend Peterson, A. (2013) Constraints on
interpretation of ecological niche models by limited envir-
onmental ranges on calibration areas. Ecological Modelling
263, 10-18.

Paaijmans, K.P., Heinig, R.L., Seliga, R.A., Blanford, J.I,
Blanford, S., Murdock, C.C. & Thomas, M.B. (2013)
Temperature variation makes ectotherms more sensitive to
climate change. Global Change Biology 19(8), 2373-2380.

Parham, P.E., Waldock, J., Christophides, G.K., Hemming, D.,
Agusto, F., Evans, K.J., Feffermann, N., Gaff, H., Gumel, A.,
LaDeau, S., Lenhart, S., Mickens, R.E., Naumova, E.N.,
Ostfeld, R.S.,, Ready, P.D., Thomas, M.B., Velasco-
Hernandez, J. & Michael, E. (2015) Climate, environmental
and socio-economic change: weighing up the balance in
vector-borne disease transmission. Philosophical Transactions
of the Royal Society B 370, 20130551.

Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of
climate change on the distribution of species: are bioclimatic
envelope models useful? Global Ecology & Biogeography 12,
361-371.

Pearson, R.G., Thuiller, W., Aratijo, M.B., Martinez-Meyer, E.,
Brotons, L., Mcclean, C., Miles, L., Segurado, P., Dawson, T.
P. & Lees, D.C. (2006) Model-based uncertainty in species
range prediction. Journal of Biogeography 33, 1704-1711.

Peters, J., De Baets, B., Van Doninck, J., Calvete, C., Lucientes, J.,
De Clercq, E.M., Ducheyne, E. & Verhoest, N.E.C. (2011)
Absence reductions in entomological surveillance data to
improve niche-based distribution models for Culicoides imi-
cola. Preventive Veterinay Medicine 100, 15-28.

Peterson, A.T. (2009) Shifting suitability for malaria vectors
across Africa with warming climates. BMC Infectious
Diseases 9, 59.

Peterson, A.T. & Shaw, J.J. (2003) Lutzomyia vectors for cutaneous
leishmaniasis in Southern Brazil: ecological niche models,
predicted geographic distributions, and climate change ef-
fects. International Journal for Parasitology 33, 919-931.

Peterson, A.T., Sober6n, J., Pearson, R.G., Anderson, R.P.,
Martinez-Meyer, E., Nakamura, M. & Aratjo, M.B. (2011)
Ecological Niches and Geographic Distributions. Monographs in
Population Biology 49. New Jersey, Princeton University
Press.

Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum
entropy modeling of species geographic distributions.
Ecological Modelling 190, 231-259.

Porretta, D., Mastrantonio, V., Bellini, R.,, Somboon, P. &
Urbanelli, S. (2012) Glacial history of a modern invader:
phylogeography and species distribution modelling of the
Asian tiger mosquito Aedes albopictus. PLoS ONE 7(9),
e44515.

Porretta, D., Mastrantonio, V., Amendolia, S., Gaiarsa, S., Epis,
S., Genchi, C., Bandi, C., Otranto, D. & Urbanelli, S., (2013)
Effects of global changes on the climatic niche of the tick
Ixodes ricinus inferred by species distribution modelling.
Parasites & Vectors 6, 271.

Purse, B.V., Mellor, P.S., Rogers, D.J., Samuel, A.R., Mertens,
P.P.C. & Baylis, M. (2005) Climate change and the recent
emergence of bluetongue in Europe. Nature Reviews
Microbiology 3, 171-181.

Qiao, H., Soberdn, J. & Peterson, A.T. (2015) No silver bullets in
correlative ecological niche modelling: insights from testing
among many potential algorithms for niche estimation.
Methods in Ecology and Evolution 6(10), 1126-1136.


https://doi.org/10.1017/S0007485316001097

430 B.M. Carvalho et al.

Ready, P. (2008) Leishmaniasis emergence and climate change.
Revue Scientifique et Technique de L’Office International des
Epizooties 27(2), 399-412.

Ready, P.D. (2010) Leishmaniasis emergence in Europe. Euro
Surveillance 15(10), 19505.

Ready, P.D. (2013) Biology of phlebotomine sand flies as vectors of
disease agents. Annual Reviews in Entomology 58, 227-250.

Reiter, M.E. & Lapointe, D.A. (2007) Landscape factors influen-
cing the spatial distribution and abundance of mosquito
vector Culex quinquefasciatus (Diptera: Culicidae) in a mixed
residential-agricultural community in Hawai'i. Journal of
Medical Entomology 44(5), 861-868.

Reiter, P. & Sprenger, D. (1987) The used tire trade: a mechanism
for the worldwide dispersal of container breeding mosqui-
toes. Journal of the American Mosquito Control Association 3,
494-501.

Rogers, D.J. & Randolph, S.E. (2006) Climate change and
vector-borne diseases. Advances in Parasitology 62, 345-381.

Rogers, D.J., Hay, S.I. & Packer, M.]. (1996) Predicting the dis-
tribution of tsetse flies in West Africa using temporal Fourier
processed meteorological satellite data. Annals of Tropical
Medicine and Parasitology 90(3), 225-241.

Roiz, D., Neteler, M., Castellani, C., Arnoldi, D. & Rizzoli, A.
(2011) Climatic factors driving invasion of the tiger mosquito
(Aedes albopictus) into new areas of Trentino, northern Italy.
PLoS ONE 6(4), e14800.

Rosenthal, J. (2009) Climate change and the geographical distri-
bution of infectious diseases. Ecohealth 6(4), 189—495.

Schifer, M.L. & Lundstrom, J.O. (2009) The present distribution
and predicted geographic expansion of the floodwater mos-
quito Aedes sticticus in Sweden. Journal of Vector Ecology 34(1),
141-147.

Schmunis, G.A., & Yadon, Z.E. (2010) Chagas disease: a Latin
American health problem becoming a world health problem.
Acta tropica 115(1), 14-21.

Senay, S.D., Worner, S.P. & Ikeda, T. (2013) Novel three-step
pseudo-absence selection technique for improved species
distribution modelling. PLoS ONE 8(8), e71218.

Stange, E.E. & Ayres, M.P. (2010) Climate change impacts: insects.
In Encyclopedia of Life Sciences (ELS). Chichester, John Wiley &
Sons.

Stockwell, D. (1999) The GARP modelling system: problems and
solutions to automated spatial prediction. International
Journal of Geographical Information 13(2), 143-158.

Sutherst, RW. & Maywald, G.F. (1985) A computerised system
for matching climates in ecology. Agriculture, Ecosystems &
Environment 13, 281-299.

https://doi.org/10.1017/50007485316001097 Published online by Cambridge University Press

Tatem, A.]., Hay, S.I. & Rogers, D. (2006) Global traffic and
disease vector dispersal. Proceedings of the National
Academy of Sciences of the United States of America 103(16),
6242-6247.

Thomas, S.M., Tjaden, N.B., Van Den Bos, S. & Beierkuhnlein,
C. (2014) Implementing cargo movement into climate based
risk assessment of vector-borne diseases. International
Journal of Environmental Research and Public Health 11, 3360—
3374.

Tonnang, H.E.Z., Kangalawe, R.Y.M. & Yanda, P.Z. (2010)
Predicting and mapping malaria under climate change
scenarios: the potential redistribution of malaria vectors in
Africa. Malaria Journal 9, 111.

Tonnang, H.E.Z., Tchouassi, D.P., Juarez, H.S., Igweta, LK. &
Djouaka, R.F. (2014) Zoom in at African country level: po-
tential climate induced changes in areas of suitability for
survival of malaria vectors. International Journal of Health
Geographics 13, 12.

World Health Organization (2010) Control of the leishmaniases: re-
port of a meeting of the WHO expert committee on the control of
leishmaniases, Geneva, 22-26 March 2010. WHO Technic
Report Series, no. 949. Geneva, WHO Press.

Williams, R.A.J., Fasina, F.O. & Peterson, A.T. (2008) Predictable
ecology and geography of avian influenza (H5N1) trans-
mission in Nigeria and West Africa. Transactions of the Royal
Society of Tropical Medicine and Hygiene 102, 471-479.

Wittmann, E.J., Mellor, P.S. & Baylis, M. (2001) Using climate
data to map the potential distribution of Culicoides imicola
(Diptera: Ceratopogonidae) in Europe. Revue Scientifique
et Technique de L'Office International des Epizooties 20(3),
731-740.

Woodward, A., Smith, K.R., Campbell-Lendrum, D., Chadee, D.
D.,Honda, Y., Liu, Q., Olwoch, J., Revich, B., Sauerborn, R.,
Chafe, Z., Confalonieri, U. & Haines, A. (2014) Climate
change and health: on the latest IPCC report. The Lancet 383,
1185-1189.

Yé, Y., Louis, V.R., Simboro, S. & Sauerborn, R. (2007) Effect of
meteorological factors on clinical malaria risk among chil-
dren: an assessment using village-based meteorological sta-
tions and community-based parasitological survey. BMC
Public Health 7, 101.

Zeilhofer, P., Kummer, O.P., dos Santos, E.S., Ribeiro, A.L.M. &
Missawa, N.A. (2008) Spatial modelling of Lutzomyia
(Nyssomyia) whitmani s.l. (Antunes & Coutinho, 1939)
(Diptera: Psychodidae: Phlebotominae) habitat suitability in
the state of Mato Grosso, Brazil. Memdrias do Instituto Oswaldo
Cruz 103(7), 653-660.


https://doi.org/10.1017/S0007485316001097

	Evaluation of the impacts of climate change on disease vectors through ecological niche modelling
	Abstract
	Introduction
	Methods
	Results and discussion
	Application of different modelling methods
	Future projections of vector distributions
	Aedes aegypti and Aedes albopictus (Diptera: Culicidae)
	Anopheles spp. (Diptera: Culicidae)
	Lutzomyia spp. and Phlebotomus spp. (Diptera: Psychodidae)
	Culicoides spp. (Diptera: Ceratopogonidae)
	Triatoma spp. (Hemiptera: Reduviidae)
	Ixodes spp. (Acari: Ixodida)

	Further considerations on niche models of disease vectors

	Conclusions
	Supplementary Material
	References


