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The validity of empirical research often relies upon the accuracy of self-reported behavior and beliefs.
Yet eliciting truthful answers in surveys is challenging, especially when studying sensitive issues such as
racial prejudice, corruption, and support for militant groups. List experiments have attracted much attention
recently as a potential solution to this measurement problem. Many researchers, however, have used a
simple difference-in-means estimator, which prevents the efficient examination of multivariate relationships
between respondents’ characteristics and their responses to sensitive items. Moreover, no systematic
means exists to investigate the role of underlying assumptions. We fill these gaps by developing a set
of new statistical methods for list experiments. We identify the commonly invoked assumptions, propose
new multivariate regression estimators, and develop methods to detect and adjust for potential violations
of key assumptions. For empirical illustration, we analyze list experiments concerning racial prejudice.
Open-source software is made available to implement the proposed methodology.

1 Introduction

The validity of much empirical social science research relies upon the accuracy of self-reported individ-
ual behavior and beliefs. Yet eliciting truthful answers in surveys is challenging, especially when studying
such sensitive issues as racial prejudice, religious attendance, corruption, and support for militant groups
(e.g.,Kuklinski, Cobb, and Gilens 1997a; Presser and Stinson 1998; Gingerich 2010; Bullock, Imai, and
Shapiro 2011). When asked directly in surveys about these issues, individuals may conceal their actions
and opinions in order to conform to social norms or they may simply refuse to answer the questions. The
potential biases that result from social desirability and nonresponse can seriously undermine the credi-
bility of self-reported measures used by empirical researchers (Berinsky 2004). In fact, the measurement
problem of self-reports can manifest itself even for seemingly less sensitive matters such as turnout and
media exposure (e.g.,Burden 2000; Zaller 2002).

The question of how to elicit truthful answers to sensitive questions has been a central methodological
challenge for survey researchers across disciplines. Over the past several decades, various survey tech-
niques, including the randomized response method, have been developed and used with a mixed record
of success (Tourangeau and Yan 2007). Recently, list experiments have attracted much attention among
social scientists as an alternative survey methodology that offers a potential solution to this measure-
ment problem (e.g.,Kuklinski, Cobb, and Gilens 1997a; Kuklinski et al. 1997b; Sniderman and Carmines
1997; Gilens, Sniderman, and Kuklinski 1998; Kane, Craig, and Wald 2004; Tsuchiya, Hirai, and Ono
2007; Streb et al. 2008; Corstange 2009; Flavin and Keane 2009; Glynn 2010; Gonzalez-Ocantos et al.
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2010; Holbrook and Krosnick 2010; Janus 2010; Redlawsk, Tolbert, and Franko 2010; Coutts and Jann
2011; Imai 2011).1 A growing number of researchers are currently designing and analyzing their own list
experiments to address research questions that are either difficult or impossible to study with direct survey
questions.

The basic idea of list experiments is best illustrated through an example. In the 1991 National Race
and Politics Survey, a group of political scientists conducted the first list experiment in the discipline
(Sniderman, Tetlock, and Piazza 1992). In order to measure racial prejudice, the investigators randomly
divided the sample of respondents into treatment and control groups and asked the following question for
the control group:

Now I’m going to read you three things that sometimes make people
angry or upset. After I read all three, just tell me HOW MANY of
them upset you. (I don’t want to know which ones, just how many.)

(1) the federal government increasing the tax on gasoline

(2) professional athletes getting million-dollar-plus salaries

(3) large corporations polluting the environment

How many, if any, of these things upset you?

For the treatment group, they asked an identical question except that a sensitive item concerning racial
prejudice was appended to the list,

Now I’m going to read you four things that sometimes make people
angry or upset. After I read all four, just tell me HOW MANY of
them upset you. (I don’t want to know which ones, just how many.)

(1) the federal government increasing the tax on gasoline

(2) professional athletes getting million-dollar-plus salaries

(3) large corporations polluting the environment

(4) a black family moving next door to you

How many, if any, of these things upset you?

The premise of list experiments is that if a sensitive question is asked in this indirect fashion, respon-
dents may be more willing to offer a truthful response even when social norms encourage them to answer
the question in a certain way. In the example at hand, list experiments may allow survey researchers to
elicit truthful answers from respondents who do not wish to have a black family as a neighbor but are
aware of the commonly held equality norm that blacks should not be discriminated against based on their
ethnicity. The methodological challenge, on the other hand, is how to efficiently recover truthful responses
to the sensitive item from aggregated answers in response to indirect questioning.

Despite their growing popularity, statistical analyses of list experiments have been unsatisfactory for
two reasons. First, most researchers have relied upon the difference in mean responses between the
treatment and control groups to estimate the population proportion of those respondents who answer
the sensitive item affirmatively.2 The lack of multivariate regression estimators made it difficult to effi-
ciently explore the relationships between respondents’ characteristics and their answers to sensitive items.
Although some have begun to apply multivariate regression techniques such as linear regression with
interaction terms (e.g.,Holbrook and Krosnick 2010; Glynn 2010; Coutts and Jann 2011) and an

1A variant of this technique was originally proposed byRaghavarao and Federer(1979), who called it theblock total response
method. The method is also referred to as the item count technique (Miller 1984) or unmatched count technique (Dalton, Wimbush,
and Daily 1994) and has been applied in a variety of disciplines (see, e.g.,Droitcour et al. 1991; Wimbush and Dalton 1997; LaBrie
and Earleywine 2000; Rayburn, Earleywine, and Davison 2003among many others).

2Several refinements based on this difference-in-means estimator and various variance calculations have been studied in the method-
ological literature (e.g.,Raghavarao and Federer 1979; Tsuchiya 2005; Chaudhuri and Christofides 2007).
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Statistical Analysis of List Experiments 49

approximate likelihood-based model for a modified design (Corstange 2009), they are prone to bias, much
less efficient, and less generalizable than the (exact) likelihood method we propose here (see alsoImai
2011).3

This state of affairs is problematic because researchers are often interested in which respondents are
more likely to answer sensitive questions affirmatively in addition to the proportion who do so. In the
above example, the researcher would like to learn which respondent characteristics are associated with
racial hatred, not just the number of respondents who are racially prejudiced. The ability to adjust for mul-
tiple covariates is also critical to avoid omitted variable bias and spurious correlations. Second, although
some have raised concerns about possible failures of list experiments (e.g.,Flavin and Keane 2009), there
exists no systematic means to assess the validity of underlying assumptions and to adjust for potential
violations of them. As a result, it remains difficult to evaluate the credibility of empirical findings based
upon list experiments.

In this paper, we fill these gaps by developing a set of new statistical methods for list experiments.
First, we identify the assumptions commonly, but often only implicitly, invoked in previous studies (Sec-
tion 2.1). Second, under these assumptions, we show how to move beyond the standard difference-in-
means analysis by developing new multivariate regression estimators under various designs of list exper-
iments (Sections2.1–2.4). The proposed methodology provides researchers with essential tools to effi-
ciently examine who is more likely to answer sensitive items affirmatively (seeBiemer and Brown 2005
for an alternative approach). The method also allows researchers to investigate which respondents are
likely to answer sensitive questions differently, depending on whether asked directly or indirectly through
a list experiment (Section2.2). This difference between responses to direct and indirect questioning has
been interpreted as a measure of social desirability bias in the list experiment literature (e.g.,Gilens,
Sniderman, and Kuklinski 1998; Janus 2010).

A critical advantage of the proposed regression methodology is its greater statistical efficiency because
it allows researchers to recoup the loss of information arising from the indirect questioning of list ex-
periments.4 For example, in the above racial prejudice list experiment, using the difference-in-means
estimator, the standard error for the estimated overall population proportion of those who would answer
the sensitive item affirmatively is 0.050. In contrast, if we had obtained the same estimate using the
direct questioning with the same sample size, the standard error would have been 0.007, which is about
seven times smaller than the standard error based on the list experiment. In addition, direct questioning of
sensitive items generally leads to greater nonresponse rates. For example, in the Multi-Investigator Sur-
vey discussed in Section2.2 where the sensitive question about affirmative action is asked both directly
and indirectly, the nonresponse rate is 6.5% for the direct questioning format and 0% for the list exper-
iment. This highlights the bias-variance trade-off: list experiments may reduce bias at the cost of effi-
ciency.

We also investigate the scenarios in which the key assumptions break down and propose statistical
methods to detect and adjust for certain failures of list experiments. We begin by developing a statistical
test for examining whether responses to control items change with the addition of a sensitive item to
the list (Section3.1). Such adesign effectmay arise when respondents evaluate list items relative to one
another. In the above example, how angry or upset respondents feel about each control item may change
depending upon whether or not the racial prejudice or affirmative action item is included in the list. The
validity of list experiments critically depends on the assumption of no design effect, so we propose a
statistical test with the null hypothesis of no design effect. The rejection of this null hypothesis provides
evidence that the design effect may exist and respondents’ answers to control items may be affected by
the inclusion of the sensitive item. We conduct a simulation study to explore how the statistical power of
the proposed test changes according to underlying response distributions (Section3.5).

Furthermore, we show how to adjust empirical results for the possible presence ofceiling and floor
effects(Section3.2), which have long been a concern in the list experiment literature (e.g.,Kuklinski,

3For example, linear regression with interaction terms often produces negative predicted values for proportions of affirmative
responses to sensitive items when such responses are rare.

4Applied researchers have used stratification and employed the difference-in-means estimator within each subset of the data defined
by respondents’ characteristics of interest. The problem of this approach is that it cannot accommodate many variables or variables
that take many different values unless a large sample is drawn.
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Cobb, and Gilens 1997a; Kuklinski et al. 1997b). These effects represent two respondent behaviors that
may interfere with the ability of list experiments to elicit truthful answers. Ceiling effects may result when
respondents’ true preferences are affirmative for all the control items as well as the sensitive item. Floor
effects may arise if the control questions are so uncontroversial that uniformly negative responses are
expected for many respondents.5 Under both scenarios, respondents in the treatment group may fear that
answering the question truthfully would reveal their true (affirmative) preference for the sensitive item.
We show how to account for these possible violations of the assumption while conducting multivariate
regression analysis. Our methodology allows researchers to formally assess the robustness of their con-
clusions. We also discuss how the same modeling strategy may be used to adjust for design effects
(Section3.3).

For empirical illustrations, we apply the proposed methods to the 1991 National Race and Politics
Survey described above and the 1994 Multi-Investigator Survey (Sections2.5 and3.4). Both these sur-
veys contain list experiments about racial prejudice. We also conduct simulation studies to evaluate the
performance of our methods (Sections2.6 and3.5). Open-source software, which implements all of our
suggestions, is made available so that other researchers can apply the proposed methods to their own
list experiments. This software, “list: Statistical Methods for the Item Count Technique and List Experi-
ment”(Blair and Imai 2011a), is an R package and is freely available for download at the Comprehensive
R Archive Network (CRAN;http://cran.r-project.org/package=list).

In Section4, we offer practical suggestions for applied researchers who design and analyze list
experiments. While statistical methods developed in this paper can detect and correct failures of list ex-
periments under certain conditions, researchers should carefully design list experiments in order to avoid
potential violations of the underlying assumptions. We offer several concrete tips in this regard. Finally,
we emphasize that the statistical methods developed in this paper, and list experiments in general, do not
permit causal inference unless additional assumptions, such as exogeneity of causal variables of interest,
are satisfied. Randomization in the design of list experiments helps to elicit truthful responses to sensi-
tive questions, but it does not guarantee that researchers can identify causal relationships between these
responses and other variables.

2 Multivariate Regression Analysis for List Experiments

In this section, we show how to conduct multivariate regression analyses using the data from list
experiments. Until recently, researchers lacked methods to efficiently explore the multivariate relation-
ships between various characteristics of respondents and their responses to the sensitive item (for recent
advances, seeCorstange 2009; Glynn 2010; Imai 2011). We begin by reviewing the general statistical
framework proposed byImai (2011), which allows for the multivariate regression analysis under the stan-
dard design (Section2.1). We then extend this methodology to three other commonly used designs.

First, we consider the design in which respondents are also asked directly about the sensitive item after
they answer the list experiment question about control items. This design is useful when researchers are
interested in the question of which respondents are likely to exhibit social desirability bias (Section2.2).
By comparing answers to direct and indirect questioning,Gilens, Sniderman, and Kuklinski(1998) and
Janus(2010) examine the magnitude of social desirability bias with respect to affirmative action and
immigration policy, respectively. We show how to conduct a multivariate regression analysis by modeling
this difference in responses as a function of respondents’ characteristics.

Second, we show how to conduct multivariate regression analysis under the design with more than one
sensitive item (Section2.3). For scholars interested in multiple sensitive subjects, a common approach
is to have multiple treatment lists, each of which contains a different sensitive item and the same set of
control items. For example, in the 1991 National Race and Politics Survey described above, there were two
sensitive items, one about a black family moving in next door and the other about affirmative action. We
show how to gain statistical efficiency by modeling all treatment groups together with the control group
rather than analyzing each treatment group separately. Our method also allows researchers to explore the
relationships between respondents’ answers to different sensitive items.

5Another possible floor effect may arise if respondents fear that answering “0” reveals their truthful (negative) preference.
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Finally, we extend this methodology to the design recently proposed byCorstange(2009) in which each
control item is asked directly of respondents in the control group (Section2.4). A potential advantage
of this alternative design is that it may yield greater statistical power when compared to the standard
design because the answers to each control item are directly observed for the control group. The main
disadvantage, however, is that answers to control items may be different if asked directly than they would
be if asked indirectly, as in the standard design (see, e.g.,Flavin and Keane 2009; see also Section3.1for
a method to detect such a design effect). Through a simulation study, we demonstrate that our proposed
estimators exhibit better statistical properties than the existing estimator.

2.1 The Standard Design

Consider the administration of a list experiment to a random sample ofN respondents from a population.
Under the standard design, we randomly split the sample into treatment and control groups whereTi = 1
(Ti = 0) implies that respondenti belongs to the treatment (control) group. The respondents in the control
group are presented with a list ofJ control items and asked how many of the items they would respond to
in the affirmative. In the racial prejudice example described in Section1, three control items are used, and
thus we haveJ = 3. The respondents in the treatment group are presented with the full list of one sensitive
item andJ control items and are asked, similarly, how many of the(J + 1) items they would respond in
the affirmative to. Without loss of generality, we assume that the firstJ items, that is,j = 1, . . . , J, are
control items and the last item, that is,j = J + 1, is a sensitive item. The order of items on the partial and
full lists may be randomized to minimize order effects.

2.1.1 Notation

To facilitate our analysis, we use potential outcomes notation (Holland 1986) and letZi j (t) be a bi-
nary variable denoting respondenti ’s preference for thej th control item for j = 1, . . . , J under the
treatment statust = 0, 1. In the racial prejudice list experiment introduced in Section1, Zi 2(1) = 1
means that respondenti would feel she is upset by the second control item—“professional athletes get-
ting million-dollar-plus salaries”—when assigned to the treatment group. Similarly, we useZi,J+1(1) to
represent respondenti ’s answer to the sensitive item under the treatment condition. The sensitive item is
not included in the control list and soZi,J+1(0) is not defined. Finally,Z∗

i j denotes respondenti ’s truthful
answer to thej th item wherej = 1, . . . , J + 1. In particular,Z∗

i,J+1 represents the truthful answer to the
sensitive item.

Given this notation, we further defineYi (0) =
∑J

j =1 Zi j (0) andYi (1) =
∑J+1

j =1 Zi j (1) as the potential
answer respondenti would give under the treatment and control conditions, respectively. Then, the ob-
served response is represented byYi = Yi (Ti ). Note thatYi (1) takes a nonnegative integer not greater than
(J + 1), while the range ofYi (0) is given by{0, 1, . . . , J}. Finally, a vector of observed (pretreatment)
covariates is denoted byXi ∈ X , whereX is the support of the covariate distribution. These covariates
typically include the characteristics of respondents and their answers to other questions in the survey. The
randomization of the treatment implies that potential and truthful responses are jointly independent of the
treatment variable.6

2.1.2 Identification assumptions and analysis

We identify the assumptions commonly but often only implicitly invoked under the standard design
(see alsoGlynn 2010). First, researchers typically assume that the inclusion of a sensitive item has no
effect on respondents’ answers to control items. We do not require respondents to give truthful answers
to the control items. Instead, we only assume that the addition of the sensitive item does not change the
sum of affirmative answers to the control items. We call this theno design effect assumptionand write
formally as,

6Formally, we write{{Z∗
i j }

J+1
j =1 , {Zi j (0), Zi j (1)}

J
j =1, Zi,J+1(1)} q Ti for eachi = 1, . . . , N.
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Table 1 An example illustrating identification under the standard design with three controlitems

Response Treatment group Control group
Yi (Ti = 1) (Ti = 0)
4 (3, 1)
3 (2, 1) (3, 0) (3, 1) (3, 0)
2 (1, 1) (2,0) (2, 1) (2, 0)
1 (0, 1) (1, 0) (1, 1) (1, 0)
0 (0, 0) (0, 1) (0,0)

Note.The table shows how each respondent type, characterized by(Yi (0), Z∗
i,J+1), corresponds to the observed cell defined by

(Yi , Ti ), whereYi (0) represents the total number of affirmative answers forJ control items andZ∗
i,J+1 denotes the truthful prefer-

ence for the sensitive item. In this example, the total number of control itemsJ is set to 3.

Assumption 1. (No design effect). For eachi = 1, . . . , N, we assume

J∑

j =1

Zi j (0) =
J∑

j =1

Zi j (1) or equivalently Yi (1) = Yi (0)+ Zi,J+1(1).

The second assumption is that respondents give truthful answers for the sensitive item. We call this the
no liars assumptionand write it as follows:

Assumption 2. (No liars). For eachi = 1, . . . , N, we assume

Zi,J+1(1) = Z∗
i,J+1

whereZ∗
i,J+1 represents a truthful answer to the sensitive item.

Under these two assumptions, the following standard difference-in-means estimator yields an unbiased
estimate of the population proportion of those who give an affirmative answer to the sensitive item,

τ̂ =
1

N1

N∑

i =1

Ti Yi −
1

N0

N∑

i =1

(1 − Ti )Yi , (1)

whereN1 =
∑N

i =1 Ti is the size of the treatment group andN0 = N − N1 is the size of the control group.7

Although this standard estimator uses the treatment and control groups separately, it is important to
note that under Assumptions1 and2, we can identify thejoint distribution of(Yi (0), Z∗

i,J+1) as shown by
Glynn (2010). This joint distribution completely characterizes each respondent’s type for the purpose of
analyzing list experiments under the standard design. For example,(Yi (0), Z∗

i,J+1) = (2, 1) means that
respondenti affirmatively answers the sensitive item as well as two of the control items. There exist a
total of (2 × (J + 1)) such possible types of respondents.

Table 1 provides a simple example withJ = 3 that illustrates the identification of the population
proportion of each respondent type. Each cell of the table contains possible respondent types. For example,
the respondents in the control group whose answer is 2, that is,Yi = 2, are either type(Yi (0), Z∗

i,J+1) =
(2, 1) or type(2, 0). Similarly, those in the treatment group whose answer is 2 are either type(1, 1) or
(2, 0). Since the types are known for the respondents in the treatment group withYi = 0 andYi = 4, the
population proportion of each type can be identified from the observed data under Assumptions1 and2.
More generally, if we denote the population proportion of each type asπyz = Pr(Yi (0) = y, Z∗

i,J+1 = z)
for y = 0, . . . , J andz = 0, 1, thenπyz is identified for ally = 0, . . . , J as follows:

πy1 = Pr(Yi 6 y|Ti = 0)− Pr(Yi 6 y|Ti = 1), (2)

πy0 = Pr(Yi 6 y|Ti = 1)− Pr(Yi 6 y − 1|Ti = 0). (3)

7The unbiasedness impliesE(τ̂ ) = Pr(Z∗
i,J+1 = 1).
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2.1.3 Multivariate regression analysis

The major limitation of the standard difference-in-means estimator given in equation (1) is that it
does not allow researchers to efficiently estimate multivariate relationships between preferences over the
sensitive item and respondents’ characteristics. Researchers may apply this estimator to various subsets of
the data and compare the results, but such an approach is inefficient and is not applicable when the sample
size is small or when many covariates must be incorporated into analysis.

To overcome this problem,Imai (2011) developed two new multivariate regression estimators under
Assumptions1 and2. The first is the following nonlinear least squares (NLS) estimator:

Yi = f (Xi , γ )+ Ti g(Xi , δ)+ εi , (4)

whereE(εi |Xi , Ti ) = 0 and(γ, δ) is a vector of unknown parameters. The model puts together two
possibly nonlinear regression models, wheref (x, γ ) andg(x, δ) represent the regression models for the
conditional expectations of the control and sensitive items given the covariates, respectively, wherex ∈
X .8 One can use, for example, logistic regression submodels, which would yieldf (x, γ ) = E(Yi (0)|Xi =
x) = J × logit−1(x>γ ) andg(x, δ) = Pr(Z∗

i,J+1 = 1|Xi = x) = logit−1(x>δ). Heteroskedasticity-
consistent standard errors are used because the variance of error term is likely to be different between the
treatment and control groups.

This estimator includes two other important estimators as special cases. First, it generalizes the
difference-in-means estimator because the procedure yields an estimate that is numerically identical to
it when Xi contains only an intercept. Second, if linearity is assumed for the two submodels, that is,
f (x, γ ) = x>γ andg(x, δ) = x>δ, then the estimator reduces to the linear regression with interaction
terms (e.g.,Holbrook and Krosnick 2010; Coutts and Jann 2011),

Yi = X>
i γ + Ti X>

i δ + εi . (5)

As before, heteroskedasticity-consistent robust standard errors should be used because the error variance
necessarily depends on the treatment variable. This linear specification is advantageous in that estimation
and interpretation are more straightforward than the NLS estimator, but it does not take into account the
fact that the response variables are bounded.

The proposed NLS estimator is consistent so long as the conditional expectation functions are correctly
specified regardless of the exact distribution of error term.9 However, this robustness comes with a price.
In particular, the estimator can be inefficient because it does not use all the information about the joint
distribution of(Yi (0), Z∗

i,J+1), which is identified under Assumptions1 and2 as shown above. To over-
come this limitation,Imai (2011) proposes the maximum likelihood (ML) estimator by modeling the joint
distribution as,

g(x, δ)= Pr(Z∗
i,J+1 = 1|Xi = x), (6)

hz(y; x, ψz)= Pr(Yi (0) = y|Z∗
i,J+1 = z, Xi = x), (7)

wherex ∈ X , y = 0, . . . , J, andz = 0, 1. Analysts can use binomial logistic regressions for bothg(x, δ)
andhz(y; x, ψz), for example. If overdispersion is a concern due to possible positive correlation among
control items, then beta-binomial logistic regression may be used.

The likelihood function is quite complex, consisting of many mixture components, soImai (2011)
proposes an expectation–maximization (EM) algorithm by treatingZ∗

i,J+1 as (partially) missing data
(Dempster, Laird, and Rubin 1977). The EM algorithm considerably simplifies the optimization problem
because it only requires the separate estimation ofg(x, δ) andhz(y; x, ψz), which can be accomplished

8To facilitate computation,Imai (2011) proposes a two-step procedure wheref (x, γ ) is first fitted to the control group and then
g(x, δ) is fitted to the treatment group using the adjusted response variableYi − f (x, γ̂ ), whereγ̂ represents the estimate ofγ
obtained at the first stage. Heteroskedasticity-consistent robust standard errors are obtained by formulating this two-step estimator
as a method of moments estimator.

9The precise regularity conditions that must be satisfied for the consistency and asymptotic normality of the two-step NLS estimator
of Imai (2011) are the same as those for the method of moments estimator (seeNewey and McFadden 1994). Note that the functions
f (x, γ ) andg(x, δ) are bounded because the outcome variable is bounded.
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using the standard fitting routines available in many statistical software programs. Another advantage
of the EM algorithm is its stability, represented by the monotone convergence property, under which the
value of the observed likelihood function monotonically increases throughout the iterations and eventually
reaches the local maximum under mild regularity conditions.10

In the remainder of this section, we show how to extend this basic multivariate regression analysis
methodology to other common designs of list experiments.

2.2 Measuring Social Desirability Bias

In some cases, researchers may be interested in how the magnitude of social desirability bias varies across
respondents as a function of their characteristics. To answer this question, researchers have designed list
experiments so that the respondents in the control group are also directly asked about the sensitive item
after the list experiment question concerning a set of control items.11Note that the direct question about the
sensitive item could be given to respondents in the treatment group as well, but the indirect questioning
may prime respondents, invalidating the comparison. Regardless of differences in implementation, the
basic idea of this design is to compare estimates about the sensitive item from the list experiment question
with those from the direct question and determine which respondents are more likely to answer differently.
This design is not always feasible, especially because the sensitivity of survey questions often makes direct
questioning impossible.

For example, the 1994 Multi-Investigator Survey contained a list experiment that resembles the one
from the 1991 National Race and Politics Survey with the affirmative action item.12 Gilens, Sniderman,
and Kuklinski(1998) compared the estimates from the list experiment with those from a direct question13

and found that many respondents, especially those with liberal ideology, were less forthcoming with
their anger over affirmative action when asked directly than when asked indirectly in the list experiment.
More recently,Janus(2010) conducted a list experiment concerning immigration policy using the same
design. The author finds, similarly, that liberals and college graduates in the United States deny supporting
restrictive immigration policies when asked directly but admit they are in favor of those same policies
when asked indirectly in a list experiment.

2.2.1 Multivariate regression analysis

To extend our proposed multivariate regression analysis to this design, we useZi,J+1(0) to denote
respondenti ’s potential answer to the sensitive item when asked directly under the control condition.
Then, the social desirability bias for respondents with characteristicsXi = x can be formally defined as,

S(x)= Pr(Zi,J+1(0) = 1|Xi = x)− Pr(Z∗
i,J+1 = 1|Xi = x) (8)

for any x ∈ X . Provided that Assumptions1 and2 hold, we can consistently estimate the second term
using one of our proposed estimators for the standard list experiment design. The first term can be es-
timated directly from the control group by regressing the observed value ofZi,J+1(0) on respondents’
characteristics via, say, the logistic regression. Because the two terms that constitute the social desirabil-
ity bias,S(x), can be estimated separately, this analysis strategy extends directly to the designs considered
in Sections2.3and2.4as well so long as the sensitive items are also asked directly.

2.3 Studying Multiple Sensitive Items

Researchers are often interested in eliciting truthful responses to more than one sensitive item. The 1991
National Race and Politics Survey described in Section1, for example, had a second treatment group with

10Both the NLS and ML estimators (as well as the linear regression estimator) are implemented as part of our open-source software
(Blair and Imai 2011a). Imai (2011) presents simulation and empirical evidence showing the potentially substantial efficiency gain
obtained by using these multivariate regression models for list experiments.

11Asking in this order may reduce the possibility that the responses to the control items are affected by the direct question about the
sensitive item.

12The key difference is the following additional control item:requiring seat belts be used when driving .
13In this survey, the direct question about the sensitive item was given to a separate treatment group rather than the control group.
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another sensitive item about affirmative action, which was presented along with the same three control
items:

(4) black leaders asking the government for affirmative action

The key characteristic of this design is that the same set of control items is combined with each of the
sensitive items to form separate treatment lists; there is one control group and multiple treatment groups.
In this section, we extend the NLS and ML estimators described above to this design so that efficient
multivariate regression analysis can be conducted.

2.3.1 Notation and Assumptions

Suppose that we haveJ control items andK sensitive items. As before, we useTi to denote the
treatment variable that equals 0 if respondenti is assigned to the control group and equalst if assigned to
the treatment group with thet th sensitive item wherei = 1, . . . , N andt = 1, . . . , K . We useZi j (t) to
denote a binary variable that represents the preference of respondenti for control item j for j = 1, . . . , J
under the treatment statust = 0, 1, . . . , K . Under the control condition, we observe the total number of
affirmative responses toJ control items, that is,Yi (0) =

∑J
j =1 Zi j (0). Under thet th treatment condition

Ti = t , wheret = 1, . . . , K , we observeYi (t) = Zi,J+t (t) +
∑J

j =1 Zi j (t), whereZi,J+t (t) represents
the answer respondenti would give to thet th sensitive question under this treatment condition. As before,
Zi,J+t (t ′) is not defined fort ′ 6= t , and we useZ∗

i,J+t to denote the truthful answer to thet th sensitive
question fort = 1, . . . , K . Finally, the observed response is given byYi = Yi (Ti ).

Given this setup, we can generalize Assumptions1 and2 as follows:

J∑

j =1

Zi j (0) =
J∑

j =1

Zi j (t) and Zi,J+t (t) = Z∗
i,J+t (9)

for eachi = 1, . . . , N and t = 1, . . . , K . The substantive implication of these assumptions remains
identical under the current design. That is, we assume that the addition of sensitive items does not alter
responses to the control items (no design effect) and that the response for each sensitive item is truthful
(no liars).

2.3.2 Multivariate regression analysis

Under these assumptions, the NLS estimator reviewed above can be directly applied to each sensitive
item separately. However, this estimator is inefficient because it does not exploit the fact that the same set
of control items is used across all control and treatment groups.14Thus, we develop an ML estimator that
analyzes all groups together for efficient multivariate analysis.

We construct the likelihood slightly differently than that of the standard design. Here, we first model
the marginal distribution of the response toJ control items and then model the conditional distribution of
the response to each sensitive item given the response to the control items. Formally, the model is given by,

h(y; x, ψ)= Pr(Yi (0) = y|Xi = x), (10)

gt (x, y, δty)= Pr(Z∗
i,J+t = 1|Yi (0) = y, Xi = x) (11)

for eachx ∈ X , t = 1, . . . , K , andy = 0, 1, . . . , J. For example, one can use the following binomial
logistic regressions to model the two conditional distributions:

h(y; x, ψ)= J × logit−1(x>ψ), (12)

gt (x, y, δty)= logit−1(αt y + x>βt ), (13)

14In theory, one can estimate the NLS using all groups, that is,Yi = f (Xi , γ )+
∑K

t=1 1{Ti = t}gt (Xi , δt )+ εi , wheregt (x, δ) =
Pr(Z∗

i,J+t = 1|Xi = x). However, the optimization problem may be difficult unless we assume a linear specification.
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whereδty = (αt , βt ). Note that this particular specification for the sensitive item assumes that the slope
coefficientβt is equal across different responses to the control items and the response to the control
items enter as an additional linear term in order to keep the model parsimonious. Clearly, many other
model specifications are possible.15 As under the standard design, if overdispersion is a concern, then
beta-binomial regression might be more appropriate. In Supplementary Materials Section 1, we derive the
likelihood function based on this formulation and develop an EM algorithm to estimate the model.

Finally, one important quantity of interest is the conditional probability of answering the sensitive item
affirmatively given a certain set of respondents’ characteristicsx ∈ X . This quantity can be obtained via:

Pr(Z∗
i,J+t = 1|Xi = x)=

J∑

y=0

gt (x, y, δty)h(y; x, ψ). (14)

2.4 Improving the Efficiency of List Experiments

While list experiments can protect the privacy of respondents, their main drawback is a potential loss of
statistical efficiency due to the aggregation of responses.Corstange(2009) recently proposed one possible
way to address this problem by considering an alternative experimental design in which the control items
are asked directly in the control group. Below, we extend the NLS and ML estimators ofImai (2011)
to this design (seeGlynn 2010for other suggestions to improve efficiency). While doing so, we derive
the exact likelihood function rather than an approximate likelihood function such as the one used for
Corstange’s multivariate regression model, LISTIT. A simulation study is conducted to assess the relative
performance of the proposed estimator over the LISTIT estimator.

2.4.1 Notation and Assumptions

We continue to use the notation introduced in Section2.1. Under this design, we observe a respondent’s
answer for each ofJ control items because these items are asked directly. We observeZi j = Zi j (0) for
each j = 1, . . . , J and all respondents in the control group. As before, for the treatment group, we only
observe the total number of affirmative answers to(J + 1) items on the list that includes one sensitive
item andJ control items.

The identification assumptions under this design are somewhat stronger than Assumptions1 and2.
Specifically, we assume that the treatment status does not influence answers to each of the control ques-
tions and that the respondents give truthful answers to the sensitive item. Note that as before the answers
to the control items do not have to be truthful. Formally, we assume, for eachi = 1, . . . , N, that:

Zi j (1)= Zi j (0) for j = 1, . . . , J and Zi,J+1(1) = Z∗
i,J+1. (15)

Under this design, researchers often worry about the possibility that asking directly alters responses even
for control items. In an attempt to minimize such a design effect, all the control items can be presented
together to the respondents in the control group before they are asked to answer each item separately.
Under this setup, the administration of the questions is more consistent across the treatment and control
conditions. For example,Flavin and Keane(2009) use the following question wording for the control
group:

Please look over the statements below. Then indicate which of the
following things make you angry or upset, if any.

(1) The way gasoline prices keep going up

(2) Professional athletes getting million-dollar-plus salaries

(3) Requiring seat belts be used when driving

(4) Large corporations polluting the environment

15For example, a slightly more general model would begt (x, y, δty) = logit−1(αty + x>βt ), which allows for variation in slopes
by treatment status.
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2.4.2 Multivariate regression analysis

We develop two new estimators for the modified design: the NLS and ML estimators. The former is
more robust than the latter in that it allows for arbitrary correlations across answers to different items on
the list. However, the ML estimator can be potentially more efficient than the NLS estimator. First, we
consider the NLS estimator based on the following multivariate regression model:

Yi = g(x, δ)+
J∑

j =1

π j (Xi , θ j )+ εi for the treatment group, (16)

Zi 1 = π1(Xi , θ1)+ ηi 1
...

Zi J = πJ(Xi , θJ)+ ηi J





for the control group, (17)

whereπ j (Xi , θ j ) = Pr(Zi j = 1|Xi ) andE(εi | Xi ) = E(ηi j |Xi ) = 0 for j = 1, . . . , J. The model
is general and permits any functional form forπ j (x, θ j ) andg(x, δ). As in Corstange(2009), one may
assume the logistic regression model, that is,g(x, δ) = logit−1(x>δ) andπ j (x, θ j ) = logit−1(x>θ j ) for
j = 1, . . . , J.

To facilitate computation, we developed a two-step estimation procedure.16 Like any two-step esti-
mator, the calculation of valid standard errors must take into account the estimation uncertainty from
both the first and second steps. In Supplementary Materials Section 2, we derive the asymptotic distri-
bution of this two-step NLS estimator. The resulting standard errors are robust to heteroskedasticity and
within-respondent correlation across answers for control items. Note that this two-step estimation is un-
necessary if all conditional expectation functions are assumed to be linear, that is,g(x, δ) = x>δ and
π j (x, θ j ) = x>θ j for each j = 1, . . . , J because then the model reduces to the linear regression with
interaction terms.

Next, we develop the ML estimator.Corstange(2009) is the first to consider likelihood inference
under this modified design. He begins by assuming conditional independence between each respondent’s
answers to different items given her observed characteristicsXi . Under this setup,Corstange(2009) uses
an approximation based on the assumption that the response variableYi for the treatment group follows
the binomial distribution with sizeJ + 1 and success probabilitȳπ(Xi , θ) =

∑J+1
j =1 π j (Xi , θ j )/(J + 1),

where, for the sake of notational simplicity we useπJ+1(x, θJ+1) = g(x, δ) with θJ+1 = δ.
However, the sum of independent, but heterogeneous, Bernoulli random variables (i.e., with different

success probabilities) follows the Poisson–Binomial distribution rather than the Binomial distribution.
Since a Binomial random variable is a sum of independent and identical Bernoulli random variables,
it is a special case of the Poisson–Binomial random variable. In list experiments, this difference is present
because the probability of giving an affirmative answer to a control item usually differs across
items.

Although the two distributions have identical means, the Poisson–Binomial distribution is different
from the Binomial distribution. Figure1 illustrates the difference between the two distributions with five
trials and selected mean success probabilities (0.5 for the left panel and 0.3 for the right panel). The figure
shows that although the means are identical, these distributions can be quite different especially when the
variation of success probabilities is large (the density represented by dark grey rectangles). In general,
the variance of the Poisson–Binomial distribution is no greater than that of the Binomial distribution.17

Given this discussion, the exact likelihood function for the modified design should be based on the
Poisson–Binomial distribution. In Appendix4, we derive this exact likelihood function and develop an
EM algorithm to estimate model parameters.

16In the first step, we fit each model defined in equation (17) to the control group using NLS. This step yields a consistent estimate of
θ j for j = 1, . . . , J. Denote this estimate bŷθ j . In the second step, we substituteθ̂ j into the model defined in equation (16) and fit

the model for the sensitive itemg(x, δ) to the treatment group using NLS with the adjusted response variableYi −
∑J

j =1 π j (x, θ̂ j ).
This step yields a consistent estimate ofδ.

17Formally, we have
∑J+1

j =1 π j (Xi , θ j )(1 − π j (Xi , θ j )) 6 (J + 1)π̄(Xi , θ)(1 − π̄(Xi , θ)). Ehm(1991) shows that the Poisson–
Binomial distribution is well approximated by the Binomial distribution if and only if the variance of success probabilities, i.e.,
∑J+1

j =1 (π j (Xi , θ j )− π̄(Xi , θ))
2/(J + 1), is small relative toπ̄(Xi , θ)(1 − π̄(Xi , θ)).
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Fig. 1 Differences between the Binomial and Poisson–Binomial distributions. The two density plots illustrate the
difference between the Binomial (open rectangles) and Poisson–Binomial (grey rectangles) distributions with iden-
tical mean success probabilities (0.5 for the left panel and 0.3 for the right panel) and the same number of trials,
five. The Poisson–Binomial distributions whose success probabilitiesp vary greatly are markedly different from the
Binomial distribution.

Table 2 Observed data from the list experiment in the 1991 National Race and Politics Survey

Control Group Treatment Groups
Response Black family Affirmativeaction

value Frequency Proportion Frequency Proportion Frequency Proportion
0 8 1.4% 19 3.0% 9 1.5%
1 132 22.4 123 19.7 78 13.4
2 222 37.7 229 36.7 172 29.6
3 227 38.5 219 35.1 184 31.6
4 34 5.4 139 23.9

Total 589 624 582

Note.The table displays the number of respondents for each value of the observed outcome variabley and its proportions, separately
for the control and two treatment groups (black family and affirmative action items). The proportions do not sum to 100% due to
rounding.

2.5 An Empirical Application

We apply the ML estimator developed in Section2.3 to the 1991 National and Race and Politics Survey.
As described in Section1, this list experiment has two treatment groups, regarding moving near a black
family and affirmative action and has three control items that are common across all treatment and control
groups. Therefore, we haveJ = 3 and K = 2. The sample size is 1795 (all are white respondents),
of which 624 and 582 are in the treatment groups for the black family item and the affirmative action
item, respectively. Table2 summarizes the data from this experiment. We observe that nearly 40% of
respondents in the control group answer all control items in the affirmative. From a design perspective,
this is less than ideal because such a right-skewed response distribution indicates the potential risk of
ceiling effects (see Section3.2). Ideally, control items should be chosen such that fewer extreme responses
are observed in the control group.

2.5.1 The New South hypothesis

In an influential paper,Kuklinski, Cobb, and Gilens(1997a) analyzed this list experiment to test the
“New South” hypothesis that southern whites had become less racially prejudiced over time and as a result
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Table 3 Estimated coefficients from the combined logistic regression model where the outcome variables are
whether or not “A Black Family Moving Next Door to You” and whether or not “Black Leaders Asking the

Government for Affirmative Action” will make (white) respondentsangry

Sensitive items Controlitems

Black family Affirmativeaction

Variables Est. SE Est. SE Est. SE

Intercept −7.575 1.539 −5.270 1.268 1.389 0.143
Male 1.200 0.569 0.538 0.435 −0.325 0.076
College −0.259 0.496 −0.552 0.399 −0.533 0.074
Age 0.852 0.220 0.579 0.147 0.006 0.028
South 4.751 1.850 5.660 2.429 −0.685 0.297
South× age −0.643 0.347 −0.833 0.418 0.093 0.061
Control itemsYi (0) 0.267 0.252 0.991 0.264

Note.The key variables of interest are South, which indicates whether or not a respondent lives in one of the Southern states, and its
interaction with the age variable.

the level of their racial prejudice had become no higher than that of non-southern whites. The authors used
the simple difference-in-means estimator and estimated the difference in the proportions of those who
answer each sensitive item in the affirmative between southern and non-southern whites. They find that
southern whites are substantially more racially prejudiced than non-southern whites with respect to both
sensitive items. However, as acknowledged by the authors (pp. 334–335), in the absence of multivariate
regression techniques at that time, they were unable to adjust for differences in individual characteristics
between southern and non-southern whites, which could explain the difference in the degree of racial
prejudice they found.

Furthermore, at the core of the New South hypothesis is a theory of generational change. AsKuklinski,
Cobb, and Gilens(1997a) put it, “Young white southerners look more like their non-southern counterparts
than their parents did; and the older generations themselves have become more willing to acknowledge the
rights of black people” (p. 325). Due to the lack of multivariate regression methods for list experiments,
however, the original analysis of this generational change dichotomized the age variable in a particular
manner and compared the mean level of prejudice among white southerners born before 1960 to those
born after 1960, finding that the estimated proportion of those southern whites who are angry declined
from 47% to 35%. Clearly, a better approach is to treat age as a multivalued variable rather than a binary
variable.

We apply our proposed multivariate regression methodology and improve the original analysis at least
in three ways. First, we take into account potentially confounding demographic differences between
southern and non-southern whites. We adjust for age, education (whether respondents attended college),
and the gender of survey respondents. Second, we analyze three groups (two treatment and one control
groups) together to take advantage of the fact that the same set of control items were asked in all groups,
thereby improving statistical efficiency. Finally, we examine the generational changes among southern
and non-southern whites by utilizing the interaction variable in regression rather than dichotomizing the
age variable.

Table3 presents the estimated coefficients and their standard errors from the fitted binomial logistic
regression model where we analyze the two treatment groups and one control group simultaneously. We
include the interaction term between the age and south variables in order to examine possibly different
generational changes among southern and non-southern whites.18 We find that both the age and south
variables play a significant role in explaining the variation in answering the sensitive item affirmatively. In
addition, there appear to be different patterns in generational changes between southern and non-southern
whites. These findings are obtained while adjusting for gender and education level.

18The likelihood ratio test, comparing the model presented in this paper and the expanded model with the square of the age variable
and its interaction with the South variable, fails to reject the null hypothesis of no difference between the two models, withp value
of 0.840.
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Fig. 2 Estimated proportions of respondents answering each sensitive item in the affirmative by respondent age for
southern and non-southern whites. The sensitive items are whether or not “A Black Family Moving Next Door to You”
and whether or not “Black Leaders Asking the Government for Affirmative Action” will make (white) respondents
angry. The estimates (dashed and solid lines) are based on the regression model given in Table3.

To facilitate the substantive interpretation of the regression results given in Table3, Fig. 2 plots the
estimated proportions of southern and non-southern white respondents who are angered by each sensi-
tive item as a function of respondent age while adjusting for gender and education.19 We find that there
is a dramatic generational shift among non-southern whites in terms of pure racial prejudice, measured
by aversion to “black families moving in next door” (left panel). In contrast, generational change among
southern whites is much slower. In every age group of southern whites, the proportion of racially preju-
diced individuals is estimated to be 20% or greater. This difference in the pattern of generational change
between southern and non-southern whites yields convergence in the degree of racial prejudice, which
becomes approximately equal between the two groups at approximately age 70.

With respect to the affirmative action item (right panel of Fig.2), we find a similar but slightly different
pattern of generational change. In particular, younger whites in the South are more upset by the idea of
black leaders asking for affirmative action than their parents and grandparents are. In contrast, among
non-southern whites, we observe the same rapid generational shift as we did for the black family item in
which case young individuals are much less angry about the affirmative action item.

In sum, the proposed multivariate regression analysis yields new insights about generational changes
among southern and non-southern whites. Our analysis suggests that these generational changes play
an important role in explaining the persistent differences in racial prejudice between southern and non-
southern whites even after adjusting for gender and education. This finding also contrasts with that of
Kuklinski, Cobb, and Gilens(1997a) who state that “prejudice is concentrated among white southern
men” (pp. 323). This gender difference seems to largely disappear once we adjust for other covariates.20

As these results suggest, the proposed multivariate regression methodology allows researchers to conduct
richer statistical analyses of list experiments than they could with standard methods.

2.5.2 Social desirability bias

Next, we analyze the responses to the list experiment and direct question about affirmative action from
the 1994 Multi-Investigator Survey.Gilens, Sniderman, and Kuklinski(1998) investigated the relationship
between partisanship and social desirability bias. The authors measure the extent to which individuals
hide their true beliefs by estimating the difference in responses to the direct and indirect questions about

19To obtain the estimated proportion at each age for each subgroup, we compute the predicted probability by setting all the other
covariates to their observed values of each respondent. We then average these predicted probabilities over all respondents.

20Both the main effect of gender and its interaction effect with the South variable are estimated with large standard errors, failing to
provide conclusive evidence about gender effects. In the model of views of affirmative action, for example, the coefficient on the
male indicator is 0.140 (SE= 0.377), and the interaction effect coefficient is−0.757 (SE= 1.03).
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Fig. 3 Estimated proportions of respondents answering the sensitive item in the affirmative by partisanship and their
differences between direct and indirect questioning. Indirect questioning is based on the standard design of the list
experiment in the 1994 Multi-Investigator Survey. The sensitive item is whether or not “Black Leaders Asking the
Government for Affirmative Action” will make (white) respondents angry. The estimates (solid circles, triangles, and
squares) are based on a logistic regression model for the direct measure and the proposed binomial logistic regression
model for the indirect measure from the list experiment. Both models contain the three-category partisanship variable
as well as the same age, male, South, and college covariates. The 95% confidence intervals (vertical lines) are obtained
via Monte Carlo simulations.

affirmative action. Using the multivariate regression method described in Section2.2, we examine the
extent to which respondents answer the direct and indirect questions about the same sensitive item dif-
ferently. We use the proposed standard design binomial logistic regression model for responses to the list
experiment and a binary logistic regression to model answers to direct questions. Each model includes a
three-category partisanship variable (Democrats, Republicans, and Independents) as well as the age, male,
South, and college covariates. As before, we limit our analysis to the subsample of white respondents.

The left panel of Fig.3 presents the estimated proportion of respondents answering the sensitive
question in the affirmative and the differences between direct and indirect questioning, separately for
Democrats (solid circles), Republicans (solid triangles), and Independents (solid squares). The verti-
cal bars represent 95% confidence intervals.21 Consistent with the findings ofGilens, Sniderman, and
Kuklinski (1998), even after adjusting for age, gender, South, and education, the size of social desirability
bias is estimated to be the greatest among Democrats. In contrast, Republicans and Independents have a
similar response pattern regardless of question format.

Does this partisan gap explain most of variation in social desirability bias? The right panel of Fig.3
presents the difference between responses to direct and indirect questions across education levels within
each possible party identification. The results show dramatic differences in social desirability bias within
each partisan group and suggest that education may explain the partisan gap. In particular, we find that
noncollege educated respondents are much more likely to conceal their true anger over affirmative ac-
tion than are college graduates and this difference is consistent across parties (between a 44.5% point
difference for independents and a 51.5 point difference for Republicans). College educated Democrats,
whom theGilens, Sniderman, and Kuklinskistudy suggests are the group that may hide their true beliefs
most, exhibit low social desirability bias, while noncollege educated Democrats, labeled “sympathetic”
to racial causes, exhibit a high degree of social desirability bias. These findings highlight the importance

21The confidence intervals are calculated by first sampling parameters from the multivariate normal distribution with mean set to the
vector of parameter estimates and the variance set to the estimated covariance matrices. We then calculate each quantity of interest
based on equation (14), and average over the empirical distribution of covariates from the entire data.
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of adjusting for additional covariates, which is made possible by the proposed multivariate regression
analysis.

Finally, we emphasize that this measure of social desirability bias relies on Assumptions1 and2. If
these assumptions are violated, then the estimates based on list experiments are invalid and hence the
difference between responses to direct questioning and list experiments no longer represent the degree of
social desirability bias. For example, it is possible that college educated Democrats are more likely to lie
under the list experiment than noncollege educated Democrats and that this may explain the difference
we observe. We address this issue in Section3 by developing statistical methods to detect and correct
violations of the assumptions.

2.6 A Simulation Study

We now compare the performance of three estimators for the modified design: LISTIT (Corstange 2009)
as well as the proposed NLS and ML estimators. Our Monte Carlo study is based upon the simulation
settings reported inCorstange(2009). We sample a single covariate from the uniform distribution and use
the logistic regression model for the sensitive item where the true values of the intercept and the coefficient
are set to 0 and 1, respectively. We vary the sample size from 500 to 1500 and consider two different
numbers of control items, three and four. We begin by replicating one of the simulation scenarios used in
Corstange(2009), where the success probability is assumed to be identical across all three control items.
Thus, the true values of coefficients in the logistic models are all set to one. In the other three scenarios, we
relax the assumption of equal probabilities. FollowingCorstange, we choose the true values of coefficients
such that the probabilities for the control items are equal to

(1
2,

1
4,

3
4

)
(three control items with unequal

symmetric probabilities),
(1

5,
2
5,

3
5,

4
5

)
(four control items with unequal, symmetric probabilities), and

(1
6,

3
6,

4
6,

4
6

)
(four control items with unequal, skewed probabilities).

Figure4 summarizes the results based on 10,000 independent Monte Carlo draws for each scenario.
The four columns represent different simulation settings and the three rows report bias, root mean squared
error (RMSE), and the coverage of 90% confidence intervals. As expected, across all four scenarios and
in terms of all three criteria considered here, the ML estimator (open circles) exhibits the best statistical
properties, while the NLS estimator (solid circles) outperforms the LISTIT estimator (open diamonds).
The differences are larger when the sample size is smaller. When the sample size is as large as 1,500,
the performance of all three estimators is similar in terms of bias and RMSE. Given that both the NLS
and LISTIT estimators model the conditional means correctly, the differences can be attributed to the fact
that the ML estimator incorporates the knowledge of response distribution. In addition, a large bias of the
LISTIT estimator in small samples may come from the failure of the Newton-Raphson-type optimization
used to maximize the complex likelihood function. This may explain why the LISTIT estimator does
not do well even in the case of equal probabilities. In contrast, our EM algorithm yields more reliable
computation of the ML estimator.

In sum, this simulation study suggests that our proposed estimators for the modified design can outper-
form the existing estimator in terms of bias, RMSE, and the coverage probability of confidence intervals
especially when the sample size is small.

3 Detecting and Correcting Failures of List Experiments

The validity of statistical analyses of list experiments, including those discussed in previous studies and
those based on the methods proposed above, depends critically upon the two assumptions described in
Section2.1: the assumption of no design effect (Assumption1) and that of no liars (Assumption2).
When analyzing list experiments, any careful empirical researcher should try to detect violations of these
assumptions and make appropriate adjustments for them whenever possible.

In this section, we develop new statistical methods to detect and adjust for certain types of list experi-
ment failures. We first propose a statistical test for detectingdesign effects, in which the inclusion of a
sensitive item changes responses to control items. We then extend the identification analysis and likelihood
inference framework described in Section2.1to address potential violations of another key assumption –
respondents give truthful answers to the sensitive item. In particular, we modelceiling and floor effects,
which may arise under certain circumstances in which respondents suppress their truthful answers to the
sensitive item despite the anonymity protections offered by list experiments.
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Fig. 4 Monte Carlo evaluation of the three estimators, LISTIT (Corstange 2009), NLS, and ML. Four simulation
scenarios are constructed. The left most column is identical to a simulation setting ofCorstange(2009) with three
control items whose probability distributions are identical. The other columns relax the assumption of equal probabil-
ities with different numbers of control items. Bias (first row), root mean squared error (second row), and the coverage
of 90% confidence intervals (third row) for the estimated coefficient are reported under each scenario. The sample
size varies from 500 to 1500. In all cases, the ML estimator (open circles) has the best performance while the NLS
estimator (solid circles) has better statistical properties than the LISTIT estimator (open diamonds). The differences
are larger when the sample size is smaller.

3.1 A Statistical Test for Detecting Design Effects

First, we develop a statistical test for detecting potential violations of Assumption1 by considering the
scenario in which the inclusion of a sensitive item affects some respondents’ answers to control items.
Such a design effect may arise if respondents evaluate control items relative to the sensitive item, yielding
different propensities to answer control items affirmatively across the treatment and control conditions.
We define the average design effect as the difference in average response between treatment and control
conditions,

Δ= E(Yi (0) | Ti = 1)− E(Yi (0) | Ti = 0). (18)

The goal of the statistical test we propose below is to detect the existence of such a design effect.

3.1.1 Setup

We first consider the standard design described in Section2.1. Our statistical test exploits the fact
that under the standard assumptions all of the proportions of respondent types, i.e.,πyt ’s, are identified
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(see Section2.1). If at least one of these proportions is negative, the assumption of no design effect is
necessarily violated (see alsoGlynn 2010). Note that the violation of Assumption2 alone does not lead to
negative proportions of these types while it may make it difficult to identify certain design effects. Thus,
the statistical test described below attempts to detect violation of Assumption1.

Formally, using equations (2) and (3), we can express the null hypothesis as follows:

H0 :

{
Pr(Yi 6 y|Ti = 0) > Pr(Yi 6 y|Ti = 1) for all y = 0, . . . , J − 1 and

Pr(Yi 6 y|Ti = 1) > Pr(Yi 6 y − 1|Ti = 0) for all y = 1, . . . , J.
(19)

Note that some values ofy are excluded because in those cases the inequalities are guaranteed to be satis-
fied. An equivalent expression of the null hypothesis isπyt > 0 for all y andt . The alternative hypothesis
is that there existsat leastone value ofy that does not satisfy the inequalities given in equation (19).

Given this setup, our proposed test reduces to a statistical test of two first-order stochastic dominance
relationships. Intuitively, if the assumption of no design effect is satisfied, the addition of the sensi-
tive item to the control list makes the response variable of the treatment group larger than the control
response (the first line of equation (19)) but at most by one item (the second line of equation (19)). If the
estimates ofπyt ’s are negative and unusually large, we may suspect that the null hypothesis of no design
effect is false.

The form of the null hypothesis suggests that in some situations the detection of design effects is dif-
ficult. For example, when the probability of an affirmative answer to the sensitive item is around 50%,
design effects may not manifest themselves clearly unless the probability of answering affirmatively to
control items differs markedly under the treatment and control conditions (i.e., the design effect is large).
Alternatively, when the probability of answering affirmatively to the sensitive item is either small (large)
and the design effectΔ is negative (positive), then the power of the statistical test is greater. This asymme-
try offers some implications for design of list experiments. In particular, when only few (a large number
of) people hold a sensitive viewpoint, researchers may be able to choose control items such that the likely
direction of design effect, if it exists, is going to be negative (positive) so that the power of the proposed
test is greater.

3.1.2 The proposed testing procedure

Clearly, if all the estimated proportionŝπyt are nonnegative, then we fail to reject the null hypothesis.
If some of the estimated proportions are negative, however, then the critical question is whether such
negative values have arisen by chance. The basic idea of our proposed statistical testing procedure is to
first conduct a separate hypothesis test for each of the two stochastic dominance relationships given in
equation (19) and then combine the results using the Bonferroni correction.22 That is, we compute two
p values based on the two separate statistical tests of stochastic dominance relationships and then reject
the null hypothesis if and only if the minimum of these twop values is less thanα/2, whereα is the
desired size of the test chosen by researchers, for example,α = 0.05. Note that the threshold is adjusted
downward, which corrects for false positives due to multiple testing. This Bonferroni correction results in
some loss of statistical power but directly testing the entire null hypothesis is difficult because the least
favorable value ofπ under the null hypothesis is not readily available (seeWolak 1991).

To test each stochastic dominance relationship, we use the likelihood ratio test based on the asymptotic
multivariate normal approximation (seeKudô 1963; Perlman 1969). The test statistic is given by

λ̂t = min
πt
(π̂t − πt )

>Σ̂−1
t (π̂t − πt ) subject toπt > 0 (20)

for t = 0, 1, whereπt is the J dimensional stacked vector ofπyt ’s andΣ̂t is a consistent estimate of
the covariance matrix of̂πt . It has been shown that thep value of the hypothesis test based onλ̂t can
be computed based upon the mixture of chi-squared distributions. Finally, to improve the power of the

22When test statistics are either independent or positively dependent, a procedure that uniformly improves the Bonferroni correction
has been developed (see, e.g.,Holland and Copenhaver 1987, Section 3). However, in our case, the two test statistics are negatively
correlated, implying that improvement over the Bonferroni correction may be difficult.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pr
04

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpr048


Statistical Analysis of List Experiments 65

proposed test, we employ the generalized moment selection (GMS) procedure proposed byAndrews and
Soares(2010). The GMS procedure can improve the power of the test in some situations because in
practice many of the moment inequalities,πyt > 0, are unlikely to be binding and hence can be ignored.
The technical details of the test including the expression ofΣ is given in Appendix4.

3.1.3 Applications to other designs

The statistical test proposed above can be applied to the other designs considered in Section2. First,
consider the design with multiple sensitive items. If there existK sensitive items, for each sensitive item
we can form the null hypothesis of no design effect given in equation (19) and conduct the proposed
statistical test.23

Similarly, the proposed test can be applied to the design with the direct questioning of control items in
the control group. Under this design, the careful examination of possible design effect may be especially
important because the control group is presented with each item rather than a list of items. Based on the
two list experiments about racial prejudice in the United States, for example,Flavin and Keane(2009)
find that respondents’ answers to control items differ depending on whether they are asked directly. The
application of the proposed statistical test under this design is straightforward. Before applying the test,
researchers must aggregate all the separate answers to control items for each respondent in the control
group, that is,Yi (0) =

∑J
j =1 Zi (0). Once this is done, our proposed statistical test can be applied to this

alternative design in the exactly same manner as under the standard design.

3.1.4 Limitations

Finally, we briefly discuss the limitations of the proposed hypothesis test. First, it is important to
emphasize that, as is the case in general for any statistical hypothesis test, the failure to reject the null
hypothesis of no design effect does not necessarily imply that Assumption1 is validated. In particular,
researchers may fail to reject the null hypothesis due to a lack of statistical power. For example, certain
violations of Assumption2 may mask the presence of design effects. Correction for multiple testing also
reduces the power of statistical tests for design effects. After describing the proposed statistical test, we
conduct a Monte Carlo simulation study to assess its statistical power. Second, the proposed test may
fail to detect design effects if positive design effects from some respondents are canceled out by negative
design effects from others. To address this problem, one may apply the proposed test to different subsets of
the data but such an approach often lacks statistical power and also faces the problem of multiple testing.

These limitations point to the simple and general fact that the failure to reject the null hypothesis of no
design effect should not be taken as evidence to support the null hypothesis (although the rejection of the
null hypothesis certainly constitutes evidence against it).

3.2 Adjusting for Ceiling and Floor Effects

Even if we assume that design effects do not exist (Assumption1), we may wish to address the possibility
that some respondents in the treatment group lie about the sensitive item, which would violate Assump-
tion 2. Below, we consider two scenarios in which this second assumption is violated. The first is the
problem of a “ceiling effect,” which is caused by the fact that privacy is not protected for those respon-
dents in the treatment group whose true preferences are affirmative for all the sensitive and control items.
Here, we entertain the possibility that some of these respondents would lie and give an answerYi = J
rather thanYi = J + 1 in order to conceal their true affirmative preference for the sensitive item.

We also investigate the possibility of a “floor effect” in which some of the respondents whose truthful
answer is affirmative only for the sensitive item (and thus negative for all control items) giveYi = 0 as
an answer instead of the truthfulYi = 1. This may occur when the control items are expected to generate
many negative answers. In such a situation, the respondents in the treatment group whose truthful answer
is affirmative only for the sensitive item may fear that their true preference for the sensitive item would be

23If desired, a procedure can be derived to further account for multiple testing acrossK sensitive items (e.g., by controlling the false
discovery rate), but the development of such a procedure is beyond the scope of this paper.
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Table 4 An example illustrating ceiling and floor effects under the standard design with three controlitems

Response Treatment group Control group
Yi (Ti = 1) (Ti = 0)

4 (3, 1)
3 (2, 1) (3, 0) (3, 1)† (3, 1) (3, 0)
2 (1, 1) (2, 0) (2, 1) (2, 0)
1 (0, 1) (1, 0) (1, 1) (1, 0)
0 (0, 0) (0, 1)† (0, 1) (0,0)

Note.The table shows how each respondent type, characterized by(Yi (0), Z∗
i,J+1), corresponds to the observed cell defined by

(Yi , Ti ), whereYi (0) represents the total number of affirmative answers forJ control items andZ∗
i,J+1 denotes the truthful prefer-

ence for the sensitive item. The symbol † represents liars who are affected by ceiling and floor effects.

revealed by givingYi = 1 as their answer. For the reminder of this section, we assume that the number of
control items is no less than three (J > 3) to focus on realistic situations.

3.2.1 Setup

What are the consequences of such violations of Assumption2? Table4 illustrates ceiling and floor
effects when there are three control items. The difference between this table and Table1 is the presence of
ceiling and floor effects. Among those in the treatment group who give the answerYi = 3, for example,
there exist some respondents whose truthful answer isYi = 4. Similarly, some of the respondents in the
treatment group who give the answerYi = 0 are lying, since their truthful answer is affirmative for the
sensitive item. In the table, the types of these respondents are marked with the symbol †.

Intuitively, the presence of such ceiling and floor effects would lead to the underestimation of the
population proportion of those who would answer affirmatively for the sensitive item. This is because
both types of lies lower the observed mean response of the treatment group. How large can this bias be?
To derive the magnitude of bias, we begin by defining the conditional probability of lying under these two
scenarios as,

q̄ ≡ Pr(Yi (1) = J|Yi (0) = J, Z∗
i,J+1 = 1), (21)

q ≡ Pr(Yi (1) = 0|Yi (0) = 0, Z∗
i,J+1 = 1). (22)

In words,q̄ represents the population proportion of liars who give the answerYi = J if assigned to the
treatment condition, among the respondents whose truthful answer is affirmative for both sensitive and
control items. Similarly,q denotes the population proportion of liars who reportYi = 0 if assigned to
the treatment condition, among the respondents whose truthful answer is affirmative only for the sensitive
item. Whenq̄ = 0 (q = 0), the standard assumption holds and the ceiling effects (the floor effects)
are zero.

Given these definitions, Table4 shows that the respondents in the treatment group who answerYi =
J + 1 consist of the(1 − q̄) proportion of the respondent type(Yi (0), Z∗

i,J+1) = (J, 1), whereas those
in the treatment group whose answer isYi = J are a mixture of three types:(J − 1, 1), (J, 0), and theq̄
proportion of the type(J, 1). Similarly, the respondents in the treatment group whose answer isYi = 0
form a mixture of two types,(0, 0) and the proportionq of the type(0, 1), whereas those in the treatment
group who give the answerYi = 1 also consist of two types:(1, 0) and the proportion(1 − q) of the
type(0, 1).

3.2.2 Modeling ceiling and floor effects

One approach to the potential existence of ceiling and/or floor effects is to derive the sharp bounds
on the true population proportion for the sensitive item (Manski 2007). Such an approach characterizes
what can be learned about responses to the sensitive item from the observed data alone without making
additional assumptions. In Appendix4, we show that the existence of ceiling and/or floor effects leads
to underestimation of the true population for the sensitive item. However, this approach cannot easily
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incorporate various types of covariates. As a result, the direction and magnitude of bias are difficult to
ascertain for estimating the effects of these covariates on the probability of answering the sensitive item
affirmatively.

To overcome these limitations, we take an alternative strategy of directly modeling certain ceiling
and floor effects at the cost of making an additional assumption. This strategy will allow researchers
to estimate the population proportion of respondents responding affirmatively to the sensitive item as
well as the relationship between covariates and the probability of answering in the affirmative. Below,
we present one way to model dishonest responses in the form of ceiling and floor effects within the
likelihood framework described in Section2.1. The proposed methodology, therefore, enables inferences
about responses to the sensitive item and their association with covariates, while correcting for certain
violations of Assumption2.

In the absence of ceiling and floor effects,πyz is just identified, meaning that the identification of this
quantity requires the use of all information contained in the data.24 One implication of this fact is that
to model ceiling and floor effects we must introduce at least two additional constraints because we now
have to identify two additional unknown quantities,q̄ andq. Our proposed assumption is that respondents’
truthful answer for the sensitive item is independent of their answers for control items conditional upon the
pretreatment covariatesXi . Such an assumption may be plausible if, for example, the control items are not
substantively related to the sensitive item. Moreover, researchers may be able to increase the plausibility
of this assumption by collecting relevant covariates that can predict respondents’ answers so that what is
left unexplained for each item can be thought of as an idiosyncratic error term. We emphasize that this
assumption may not be plausible in certain applications and must be made with great care. If liars decide
their truthful responses to sensitive items based on their answers to control items, for example, then this
assumption will be violated.

Formally, the assumption can be written as

Pr(Yi (0) = y|Z∗
i,J+1 = 1, Xi = x)= Pr(Yi (0) = y|Z∗

i,J+1 = 0, Xi = x) (23)

for all y = 0, 1, . . . , J given anyx. It can be shown thatπyz is identified under this additional assumption
even when ceiling and floor effects exist.25 Under this assumption, we define the model for the control
item ash(y; x, ψ) = Pr(Yi (0) = y|Xi = x) under the conditional independence assumption given in
equation (23). We then model̄q andq using covariates as

q̄(x, φ)= Pr(Yi (1) = J|Yi (0) = J, Z∗
i,J+1 = 1, Xi = x), (24)

q(x, κ)= Pr(Yi (1) = 0|Yi (0) = 0, Z∗
i,J+1 = 1, Xi = x). (25)

In Supplementary Materials Section 3, we derive the likelihood function based on this approach and de-
velop an EM algorithm to estimate model parameters. While the setup is general, in practice we may
use binomial logistic regression models for each component,g(x, δ), h(y; x, ψ), q̄(x, φ), andq(x, κ).
In some applications, including the racial prejudice example analyzed below, we find that complete sep-
aration of covariates occurs in logistic regression models when adding the models for ceiling and floor
effects. In such situations, weakly informative priors can be added to the models for ceiling/floor effects
by following the recommendations ofGelman et al.(2008) and calculating the uncertainty estimates based
on this pseudoposterior distribution.

24To see why this is the case, note that there exist(2× (J +1)) types of respondents. Since the population proportions of these types
have to sum to unity, there are a total of(2J +1) unknowns. Now, for these unknown quantities, the data from the treatment group
provide(J +1) independent linear constraints and the data from the control group provideJ independent linear constraints (again
noting the fact that within each group the observed proportions of each response have to sum up to unity). Since the number of
linearly independent constraints match exactly with the number of unknowns, it follows thatπyz is just identified.

25Specifically, equation (23) implies the following nonlinear constraint,
∑J

j ′=0 π j ′1 =
π j 1

π j 1+π j 0
for each j = 0, . . . , J. Therefore,

there exist a total(3J +2) constraints including(2J +1) constraints that are already implied by the data generating process. When
the ceiling and floor effects are present, there are(2J + 3) unknowns and therefore identification is possible.
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3.2.3 Quantities of interest

When modeling ceiling and floor effects, we may be interested in the conditional probability of lying
under two scenarios. First, the population proportion of liars among those who would affirmatively answer
both sensitive and control items, as defined in equation (21), is given by,

q̄ =
∫

q̄(Xi ;ψ)dP(Xi |Yi (0) = J, Z∗
i,J+1 = 1)

=

∫
q̄(Xi ;ψ)h(J; Xi , φ)g(Xi , δ)dP(Xi )∫

h(J, ; Xi , φ)g(Xi , δ)dP(Xi )
≈

∑n
i =1 q̄(Xi ;ψ)h(J; Xi , φ)g(Xi , δ)∑n

i =1 h(J, ; Xi , φ)g(Xi , δ)
, (26)

where the second equality follows from Bayes’ rule and the distribution ofXi is approximated by its
empirical distribution. In addition, researchers may be interested in the population proportions of these
liars. In the case of ceiling effects, this quantity can be estimated as

Pr(Zi,J+1(1) = 0, Z∗
i,J+1 = 1,Yi (0) = J)≈

1

n

n∑

i =1

q̄(Xi ;ψ)h(J; Xi , φ)g(Xi , δ). (27)

Similarly, the population proportion of liars among those who would negatively answer all control items
and answer affirmatively about the sensitive item, that is,q defined in equation (22), is approximated by

q ≈

∑n
i =1 q(Xi ;ψ)h(0; Xi , φ)g(Xi , δ)
∑n

i =1 h(0; Xi , φ)g(Xi , δ)
. (28)

The population proportion of these liars can be estimated as follows:

Pr(Zi,J+1(1) = 0, Z∗
i,J+1 = 1,Yi (0) = 0)≈

1

n

n∑

i =1

q(Xi ;ψ)h(0; Xi , φ)g(Xi , δ). (29)

3.3 Adjusting for Design Effects

The modeling strategy described above can be also used to adjust for certain design effects. As a general
example, consider a situation where there is a negative design effect such that adding the sensitive item
may reduce the answer of some respondents by at most one item. This scenario is summarized in Table5
in the same manner as Table4. Under the assumption of independence between responses to sensitive
and control items, we have two free parameters. Thus, we may model the probability of being affected
by this negative design effect separately for those whose answer to the sensitive item is affirmative and
those whose answer is not affirmative, that is,r0(x) = Pr(Yi = j − 1|Yi (0) = j, Z∗

i,J+1 = 0, Xi = x)
andr1(x) = Pr(Yi = j − 1|Yi (0) = j − 1, Z∗

i,J+1 = 1, Xi = x), respectively. Given this setup, the
ML estimation can be accomplished in a manner similar to the way described in Supplementary Materials
Section 3.

Table 5 An example illustrating a particular negative design effect under the standard design with three
controlitems

Response Treatment group Control group
Yi (Ti = 1) (Ti = 0)
4 (3,1)
3 (2,1) (3,0) (3,1)† (3,1) (3,0)
2 (1,1) (2,0) (2,1)† (3,0)† (2,1) (2,0)
1 (0,1) (1,0) (1,1)† (2,0)† (1,1) (1,0)
0 (0,0) (1,0)† (0,1) (0,0)

Note.The table shows how each respondent type, characterized by(Yi (0), Z∗
i,J+1), corresponds to the observed cell defined by

(Yi , Ti ), whereYi (0) represents the total number of affirmative answers forJ control items andZ∗
i,J+1 denotes the truthful pref-

erence for the sensitive item. The symbol † represents respondents who are affected by the negative design effect and underreport
their total count by one.
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Table 6 Estimated respondent types for the list experiment in the 1991 National Race and Politics Survey

Black family Affirmativeaction
y value π̂y0 SE π̂y1 SE π̂y0 SE π̂y1 SE

0 3.0% 0.7 −1.7% 0.8 1.5% 0.5 −0.2% 0.7
1 21.4 1.7 1.0 2.4 13.6 1.6 8.8 2.3
2 35.7 2.6 2.0 2.8 20.7 2.7 17.0 2.9
3 33.1 2.2 5.5 0.9 14.7 2.7 23.9 1.8

Total 93.2 6.8 50.5 49.5

Note.The table shows, for each of the two sensitive items, the estimated proportion of respondent types,π̂yz, characterized by the
total number of affirmative answers to the control questions,y, and the truthful answer for the sensitive item (1 indicates affirmative
and 0 represents negative). Standard errors are also provided for each estimated proportion.

3.4 An Empirical Application

To illustrate the proposed methods described in this section, we analyze the list experiment from the 1991
National Race and Politics Survey discussed in Section1 and analyzed in Section2.5. The summary
statistics are presented in Table2. The two treatment groups (the black family and affirmative action
items) and the control group all share the same three control items (J = 3).

Under the assumptions of no design effect and no liars (Assumptions1 and2), we estimate the popula-
tion proportions of each respondent type. These estimates are shown in Table6. The results indicate that
the estimated proportion for one type, those respondents whose truthful answers are negative for all items
except the sensitive one, is below zero for both experiments with standard errors of 0.8 and 0.7, while the
other estimated proportions are all positive. How likely is it to observe such a negative estimate in each
experiment under the assumption of no design effect? We use the statistical test proposed in Section3.1
in order to answer this question and detect possible failures of each list experiment.

Suppose that we useα = 0.05 as the significance level of the test. We conduct the proposed statistical
test for the “black family” sensitive item and find the minimump value to be 0.022. With the Bonferroni
correction for multiple testing, we reject the null hypothesis of no design effect because the minimum
p value is below the threshold, which isα/2 = 0.025. The result suggests that the observed data pro-
vide evidence for the possible existence of the design effect in this list experiment. Using the affirmative
action item, we find the minimump value to be 0.394, which, with the Bonferroni correction, is above
the threshold. Thus, for the affirmative action item, we fail to reject the null hypothesis of no design
effect.

Given these test results, we proceed to analyze the affirmative action list experiment under the as-
sumption of no design effect. We use the proposed ML estimators to statistically adjust for the possible
existence of floor and ceiling effects. As explained in Section2.5, the key covariate of interest in the orig-
inal analysis is the South variable, which indicates whether or not a respondent lives in a southern state.
The other covariates include each respondent’s gender, education, and age as before.

Table 7 presents the results of our analysis. First, assuming that there are neither ceiling nor floor
effects, we fit the standard binomial logistic model proposed byImai (2011) and report the estimated
coefficients of the logistic regression model for the sensitive item in the first two columns of the table.
The results suggest that white respondents in the South are significantly more likely to report that they
would be “angry” if a black leaders asked the government for affirmative action. This finding is consistent
with that of the original study byKuklinski, Cobb, and Gilens(1997a).

We then relax the assumptions of no ceiling and floor effects and model them using the methodology
described in Section3.2. We fit three models with ceiling effects, floor effects, and both simultaneously,
and estimate the population proportions of liars separately for ceiling effects and floor effects. The esti-
mated coefficients for the sensitive item based on these models are reported in the right six columns of
Table7. In general, we find that the population proportion of liars who may cause ceiling and floor effects
is estimated to be relatively small because, as shown in Table6, π̂01 andπ̂31 are both estimated to be small.
The estimated population proportion of ceiling liars is close to zero, while the population proportion of
floor liars is 1.2%.

We can now estimate the population proportion of respondents answering the affirmative action item
in the affirmative while accounting for ceiling and/or floor effects. In the analysis based on the standard
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Table 7 Estimated coefficients from the logistic regression models where the outcome variable is whether or not
“Black Leaders Asking the Government for Affirmative Action” will make (white) respondentsangry

Without ceiling Both ceiling
and floor effects Ceiling effects alone Floor effects alone and floor effects

Variables Est. SE Est. SE Est. SE Est. SE
Intercept −1.299 0.556 −1.291 0.558 −1.251 0.501 −1.245 0.502
Age 0.295 0.101 0.294 0.101 0.314 0.092 0.313 0.092
College −0.343 0.336 −0.345 0.336 −0.605 0.298 −0.606 0.298
Male 0.040 0.346 0.038 0.346 −0.088 0.300 −0.088 0.300
South 1.177 0.480 1.175 0.480 0.682 0.335 0.681 0.335
Proportion of liars
Ceiling effects 0.0002 0.0017 0.0002 0.0016
Floor effects 0.0115 0.0000 0.0115 0.0000

Note.The key coefficient of interest is the one for the variable South, which indicates whether or not a respondent lives in one of
the southern states. The results in the left two columns are based on the standard Binomial logistic model ofImai (2011) (without
ceiling or floor effects), and the remaining columns report the results based on the models with ceiling effects, floor effects, and then
both. The last two rows report the estimated population probability of lying separately for ceiling and floor effects.

binomial logistic model, we find that the difference between this proportion for respondents in the South
and for respondents in the non-South is 0.250 (SE= 0.095). After adjusting for ceiling and floor effects,
the estimated difference in proportions is 0.146 (SE= 0.074), well within the margin of error. This finding
is consistent with the result of a standard model selection procedure. Indeed, according to the Bayesian
information criterion (BIC), the model without ceiling or floor effects is most preferred.26

In sum, the analysis reported here implies that the original conclusion ofKuklinski, Cobb, and Gilens
(1997a)—the degree of racial prejudice is greater for southern whites than their non-southern counter-
parts—is robust to the possible existence of ceiling and floor effects.

3.5 A Simulation Study

We conduct a Monte Carlo simulation study to explore the statistical power of the proposed test (with the
GMS procedure) under various conditions. Figure5 presents the results of the simulation study. The data
generating process is as follows: We independently sample the total number of affirmative answers to three
control itemsYi (0) from the binomial distribution with success probability equal to 0.25 (left column), 0.5
(middle column), or 0.75 (right column). This means that the expected number of affirmative responses
to these control items is equal to 0.75, 1.5, and 2.25, respectively. We then sample the answer to the
sensitive item, again independently, from the Bernoulli distribution with success probability equal to 0.1
(top row), 0.25 (second row), 0.5 (middle row), 0.75 (fourth row), or 0.9 (bottom row). We also vary the
magnitude of the average design effectΔ from −0.6 to 0.6 (horizontal axis). Finally, we consider three
different realistic sample sizes, 500, 1000, and 1500. For all the simulations we conduct, the size of the
treatment group is identical to that of the control group. Together, our simulation study covers a wide
range of response distributions for both the sensitive and control items.

Figure5 confirms the intuition noted earlier that the statistical power of the proposed test depends, in
a predictable way, upon the probability of answering affirmatively to the sensitive item Pr(Z∗

i,J+1 = 1)
as well as the expected number of affirmative responses to the control itemsE(Yi (0)). For example, the
test lacks statistical power when Pr(Z∗

i,J+1 = 1) andE(Yi (0)) are in their medium range as shown by the
plot in the third row and the second column. As the probability for the sensitive item increases, the test
becomes more likely to reject the null hypothesis when the average design effect is positive whereas it has
a harder time detecting a negative design effect.

In general, the statistical power of the proposed test is the greatest when the probability for the sensitive
item takes an extreme value, which may be a desired property if viewpoints become “sensitive” only
when a small number of people share them (in which case a negative design effect can be relatively easily

26The BIC values for the models are, in the order of Table7: 2939.7, 2975.1, 2983.1, and 3018.5.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pr
04

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpr048


Statistical Analysis of List Experiments 71

Fig. 5 Statistical power of the proposed test to detect design effects. The data for the control items (J = 3) are
generated independently according to the Binomial distribution with mean 0.75 (left column), 1.5 (middle column),
and 2.25 (right column). The probability of the affirmative answer for the sensitive item varies from 0.1 (top row) to
0.9 (bottom row). For each plot, the horizontal axis represents the average design effectΔ, ranging from−0.2 to 0.2,
and three lines represent different sample sizes 500 (solid circles), 1000 (open circles), and 2000 (open diamonds).
The figure shows that under certain circumstances the proposed test has strong power for detecting the design effect.

detected). Although a greater sample size generally leads to a greater statistical power, the region where
the proposed test has zero statistical power stays the same regardless of the sample size. This implies
that increasing the sample size in list experiments has only a limited impact on the ability of researchers
to detect the design effect. Our simulation study suggests instead that anticipating the direction of the
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design effect and choosing appropriate control items are essential for efficiently detecting this type of list
experiment failure.

4 Concluding Remarks and Suggestions for Applied Researchers

Eliciting truthful answers to sensitive questions is one of the most important challenges for survey re-
searchers. List experiments have recently emerged as an alternative to the randomized response technique
that has been the most commonly used methodology for addressing this problem (seeWarner 1965;
Gingerich 2010). The advantages of the list experiment over the randomized response method are in
its simplicity, both for respondents and for the researcher. Most respondents find it easy to understand
why list experiments provide them with some degree of privacy protection, while many find it difficult
to see why randomization can protect privacy. In addition, unlike list experiments, which only involve
separate questions for different respondents, the randomized response method often requires survey re-
spondents to conduct randomization without the supervision of enumerators, which can lead to logistical
challenges and the difficulty of verifying accurate implementation. The simplicity of implementation of
the list experiment comes with unique challenges: researchers must design list experiments such that the
assumptions of no design effect and no liars are credible, and the statistical analysis of list experiments
require the modeling of both sensitive and control items.

Despite their growing popularity among applied researchers and their unique methodological chal-
lenges, statistical analysis of list experiments has remained rudimentary. The set of new tools we develop
in this paper should help empirical researchers get the most out of list experiments. Here, we offer general
guidelines that can help applied researchers navigate the statistical analysis of list experiments:

• Estimate the proportion of each respondent “type” under the standard assumptions of list experi-
ments as in the example in Table6. If there is a negative value, conduct the proposed statistical test
for detecting design effects (see Section3.1).

• Conduct multivariate regression analysis. We recommend the ML estimator for statistical efficiency,
but linear and NLS provide slightly more robust alternatives at the cost of losing efficiency (see
Section2).

• Investigate the robustness of any conclusions to the potential existence of ceiling and/or floor effects.
Start first by estimating the population proportion of liars using the intercept-only model and if this
proportion is large run a multivariate regression model that incorporates ceiling and/or floor effects
(see Section3.2).

Finally, although this paper has focused upon the statistical analysis of list experiments, we emphasize
that the success of list experiments hinges upon their design. Only when careful design is combined
with efficient statistical analysis can we effectively exploit the power of list experiments to elicit truthful
answers from survey respondents. Thus, we conclude this paper by highlighting the following important
issues to which applied researchers should pay attention when designing list experiments (see alsoGlynn
2010).

• To recoup the loss of information due to indirect questioning, use blocking or matched-pair designs
before randomization. (Imai, King, and Stuart 2008).

• To avoid ceiling and floor effects, choose control items such that few respondents in the control
group would answer affirmatively or negatively to all control items. For example, researchers may
choose control items whose responses are negatively correlated with each other (Glynn 2010).

• To avoid design effects, choose control items whose evaluation is not affected by the inclusion of
sensitive items. For example, researchers should select control items that are unambiguous and for
which respondents have strong opinions.

• Researchers should conduct a pilot study to assess the possibility of departures from the key
assumptions. The results of pilot studies can also be used to construct a design that maximizes
the power of the proposed statistical test for detecting design effects (see Sections3.1and3.5).
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• To explore social desirability bias, it is useful to include direct questioning of the sensitive items.
Such direct questioning can be administered to both treatment and control groups, but after indirect
questioning is done, through list experiments (see Section2.2).

• Asking control items directly can be useful for improving statistical efficiency, but researchers
should be aware of the possibility of introducing additional design effects. Presenting all con-
trol items together first before asking each one separately may mitigate such design effects (see
Section2.4).

Mathematical Appendix

A.1 The Details of the ML Estimator of Section2.4

In this appendix, we derive the likelihood function based on the Poisson–Binomial distribution as dis-
cussed in Section2.4. We also develop an EM algorithm to obtain the ML estimates of model parameters.
For the sake of notational simplicity, we useZi,J+1 = Z∗

i,J+1. Formally, the distribution ofYi for respon-
dent i in the treatment group is given by the Poisson–Binomial distribution with the following density
function:

Pr(Yi = y|Ti = 1, {π j (Xi , θ j )}
J+1
j =1)=

∑

z∈Z y

J+1∏

j =1

π j (Xi , θ j )
Zi j (1 − π j (Xi , θ j ))

1−Zi j (A1)

for y = 0, 1, . . . , J + 1, whereZ y ≡ {z = (Zi 1, . . . , Zi,J+1): Zi j ∈ {0, 1}, andZi 1 + ∙ ∙ ∙ + Zi,J+1 = y}.
FollowingChen, Dempster, and Liu(1994), this density function can be written more compactly as

Pr(Yi = y|Ti = 1, {π j (Xi , θ j )}
J+1
j =1)= R(y, S; {π j (Xi , θ j )}

J+1
j =1)

∏

j ∈S

(1 − π j (Xi , θ j )) (A2)

for y = 0, 1, . . . , J + 1, where S = {1, . . . , J + 1} and R(k,C; {π j (Xi , θ j )}
J+1
j =1) ≡

∑
B⊂C,|B|=k

(∏
j ∈B

π j (Xi ,θ j )
1−π j (Xi ,θ j )

)
for any nonempty setC ⊂ S and 1 6 k 6 |C| with

R(0,C; {π j (Xi , θ j )}
J+1
j =1) = 1 andR(k,C; {π j (Xi , θ j )}

J+1
j =1) = 0 for anyk > |C|. Note thatR(k,C;

{π j (Xi , θ j )}
J+1
j =1) completely characterizes the distribution up to a normalizing constant. To evaluate this

function, we use a fast algorithm developed byChen, Dempster, and Liu(1994).
Now, we can write the likelihood function under this modified design as follows:

L(θ | Y, T, X, {Z j }
J
j =1) =

N∏

i =1










R(Yi , S; {π j (Xi , θ j )}

J+1
j =1)

∏

j ∈S

(1 − π j (Xi , θ j ))






Ti

×






J∏

j =1

π j (Xi , θ j )
Zi j (1 − π j (Xi , θ j ))

1−Zi j






1−Ti



 .

(A3)

Due to the complex functional form of the Poisson–Binomial density function, the direct maximization
of this likelihood function is challenging. Thus, as before, we derive the EM algorithm for this setup by
considering the answers for control items as missing data for the respondents in the treatment group.

In this case, the complete-data likelihood function is given by

Lcom(θ | T, X, {Z j }
J+1
j =1)

=
N∏

i =1





πJ+1(Xi ; θ j )

Ti Zi,J+1(1 − πJ+1(Xi ; θ j ))
Ti (1−Zi,J+1)

J∏

j =1

π j (Xi ; θ j )
Zi j (1 − π j (Xi ; θ j ))

1−Zi j





.

(A4)
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For each respondenti in the treatment group, the E-step of the EM algorithm requires the conditional
expectation of missing dataZi j for j = 1, . . . , J + 1 given the observed data, that is,(Xi ,Yi ), and the
current parameter values{π j (Xi , θ j )}

J+1
j =1. Chen, Dempster, and Liu(1994) derives the exact expression

for this conditional expectation as follows:

E(Zi j | Yi , Ti = 1, {π j ′(Xi , θ j ′)}
J+1
j ′=1})=

π j (Xi , θ j )R(Yi − 1, S\ { j }; {π j ′(Xi , θ j ′)}
J+1
j ′=1)

(1 − π j (Xi , θ j ))R(Yi , S; {π j ′(Xi , θ j ′)}
J+1
j ′=1)

, (A5)

for each j = 1, . . . , J + 1. We can calculate this quantity by again applying the efficient numerical
algorithm ofChen, Dempster, and Liu(1994). Finally, the M-step of the EM algorithm is simple and
consists of maximizing the weighted log-likelihood function for each regression modelπ j (x, θ j ), where
j = 1, . . . , J + 1.

A.2 The Details of the Hypothesis Test of Section3.1

We first derive the covariance matrix ofπ̂ , which is denoted byΣ . Suppose that we use simple sam-
ple analogue estimators,̂πy1 = 1

N0

∑N
i =1(1 − Ti )1{Yi 6 y} − 1

N1

∑N
i =1 Ti 1{Yi 6 y} and π̂y0 =

1
N1

∑N
i =1 Ti 1{Yi 6 y} − 1

N0

∑N
i =1(1 − Ti )1{Yi 6 y − 1} for eachy. Now, for anyy 6 y′, we have

Cov(1{Yi 6 y}, 1{Yi 6 y′})= E[1{Yi 6 y}1{Yi 6 y′}] − E[1{Yi 6 y}]E[1{Yi 6 y′}] (A6)

= Pr(Yi 6 y){1 − Pr(Yi 6 y′)}. (A7)

Therefore, for anyy 6 y′, the required covariance terms are given by

Cov(π̂y1, π̂y′1)=
1∑

t=0

Pr(Yi 6 y | Ti = t){1 − Pr(Yi 6 y′ | Ti = t)}

Nt
, (A8)

Cov(π̂y0, π̂y′0)=
1∑

t=0

Pr(Yi 6 y − 1 + t | Ti = t){1 − Pr(Yi 6 y′ − 1 + t | Ti = t)}

Nt
. (A9)

Each of these covariance terms can be consistently estimated by their sample analogues.
Given this expression, thep value is given by

p̂t =
J∑

k=0

w(J, J − k, Σ̂t )Pr(Vk > λ̂t ), (A10)

whereVk is the chi-square random variable withk degrees of freedom, andw(J, J − k, Σ̂t ) is the weight
whose expression is given inKudô (1963) andShapiro(1985) when J 6 4, a condition met by most list
experiments. WhenJ > 5, we employ a Monte Carlo approximation leveraging the fact thatw(J, J −
k, Σ̂t ) equals the probability of̃πt having exactlyJ − k positive elements, wherẽπt is the solution to
equation (20) andπ̂t is distributed multivariate normal with mean zero and the covariance matrixΣ̂ . Note
that if all the estimated proportions are nonnegative, that is,π̂yt > 0, thenλt = 0 and hencêpt = 1 for
t = 0, 1.

A.3 Derivation of the Sharp Bounds in the Presence of Ceiling and Floor Effects

First, note thatπJ1 satisfies the following constraints:

Pr(Yi = J + 1|Ti = 1)= (1 − q̄)πJ1, (A11)

Pr(Yi = J|Ti = 1)= πJ−1,1 + πJ0 + q̄πJ1, (A12)

Pr(Yi = J|Ti = 0)= πJ1 + πJ0. (A13)
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Equations (A11) and (A13) imply that the lower and upper bounds onπJ1 equal to Pr(Yi = J +1|Ti = 1)
and Pr(Yi = J|Ti = 0), respectively. Next, we investigate whether or not the information from
equation (A12) can improve these bounds. SinceπJ−1,1 is identified even in the presence of the ceil-
ing and floor effects, we can rewrite equation (A12) as:

Pr(Yi 6 J|Ti = 1)− Pr(Yi 6 J − 1|Ti = 0)= πJ0 + q̄πJ1. (A14)

Now, equation (A13) is a linear combination of equations (A11) and (A14), and thus it follows that
equation (A12) does not improve the above bounds.

Similarly,π01 satisfies the following constraints:

Pr(Yi = 1|Ti = 1)= (1 − q)π01 + π10, (A15)

Pr(Yi = 0|Ti = 1)= π00 + qπ01, (A16)

Pr(Yi = 0|Ti = 0)= π00 + π01. (A17)

Even in the presence of the ceiling and floor effects, we can identifyπ10 and rewrite equation (A15) as

Pr(Yi = 0|Ti = 0)− Pr(Yi = 0|Ti = 1)= (1 − q)π01, (A18)

which implies that the lower bound ofπ01 is equal to Pr(Yi = 0|Ti = 0) − Pr(Yi = 0|Ti = 1).
Equation (A17) implies that the upper bound is equal to Pr(Yi = 0|Ti = 0), and since equation (A16) is
redundant given equations (A17) and (A18), it follows that these bounds cannot be further improved.

Together, these bounds imply the following sharp bounds on the population proportion of the respon-
dents whose truthful answer is affirmative for the sensitive item

J∑

y=0

{Pr(Yi 6 y|Ti = 0)− Pr(Yi 6 y|Ti = 1)} 6 Pr(Z∗
i,J+1 = 1),

6 Pr(Yi = 0|Ti = 0)+
J−1∑

y=1

{Pr(Yi 6 y|Ti = 0)− Pr(Yi 6 y|Ti = 1)} + Pr(Yi = J|Ti = 0).

(A19)

Since the lower bound corresponds to the true population proportion for the sensitive item under
Assumptions1 and2, the result confirms the intuition that the existence of ceiling and floor effects leads
to underestimation.
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