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1. Introduction. We show how the solution to certain diophantine equations
involving the discriminant of complex quadratic fields leads to the divisibility of the class
numbers of the underlying fields. This not only generalizes certain results in the literature
such as [2], [4]-[6] but also shows why certain hypotheses made in these results are
actually unnecessary since, as our criteria demonstrate, these hypotheses are forced by the
solution of the diophantine equations involved. Our methods are based only on the most
elementary properties of a principal ideal in a complex quadratic field.

2. Notation and preliminaries. Let D < - 1 be a square-free integer and set
A = 4Z)/cr2, where a = 2 if £) = l(mod4) and a = 1 otherwise. The value A is called a
discriminant and D is called a radicand. When applied to a quadratic field K = Q(VJ5),
we call A the discriminant of K and D the radicand of K.

Let [a, /3] = aZ©/3Z with a, /3 e K. Then the ring of integers of K is [1, wA] = €A,
where coA = (cr - 1 + vD)/a. It is known that an ideal / of GA may be written as
/ = [a, b + cu)A], where a,b,c e Z, with a > 0, c > 0, c | a, c \ b and ac \ N(b + cwA), where
N(a) = aa' is the norm from K to Q and a' is the algebraic conjugate of a. / is called
primitive if c = 1. Equivalence of ideals in the class group CA of CA is denoted by I ~J,
and the order of CA is hA, the class number of 6A (or simply of K).

3. Diophantine equations and class numbers. Before presenting our first main
result, we state a key lemma which we proved in [7] (for arbitrary complex quadratic
orders).

LEMMA 3.1. / / A < 0 is a discriminant and I = [a,b + wA] is a primitive ideal of OA with
N(b + <DA) < N(cjA)2, then I is principal if and only if a = 1 or a = N(b + wA).

THEOREM 3.1. Let A be a discriminant with radicand D = b2 - a2m' < 0, where
t,m,b eZ, with t>l, m > 1, and b>0. If t is even, then t/2 divides hA, and if
b T* 2m"2 - 1, then t divides hA. If t is odd, and b ̂ lam"2], then t divides hA.

Proof. First we establish two claims.

Claim 1. Either N(u>Af_> N((b + VD)/CT), or else b = 2m"2 - 1.
If N(wA)2 < N((b + VD)/<T), then b > am"2 - 1. However, b < am"2. Thus, b =

lam'al If t is odd, this contradicts the hypothesis, so b = <rm"2-l. If a = l, then
jV(a>A)2 = D2 = 4m' - Am"2 + l>N(b + V3) = m'. This establishes Claim 1.

We may form the ideals Ic = [mc, (b + VD)/a], where 1 < c < t.

Claim 2. Is — I, where g = gcd(r, hA).
There exist integers u and v such that g = tu + hAv. Therefore, Is = ru+h*v~

(I')u(Ih*)v ~ 1, since N{I') = m' = N((b + VD)/a) and clearly Ih" ~ 1. This secures Claim
2.
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By Lemma 3.1 and Claims 1-2, we conclude that g = t, i.e. t | /tA, unless b = 2m"2 - 1.
In the latter case, D = 1 - 4m"2. In this instance, we form the ideal J = [mg\ (1 + VZ))/2],
where gx = gcd(r/2, /iA). We may use the same reasoning as above to conclude that / ~ 1.
Moreover, since m"2 = N((l + VZ>)/2) < JV(WA)2 = m', then by Lemma 3.1 g, = til, i.e.
t/2 divides /iA.

Theorem 3.1 has numerous applications and it generalizes and helps to explain many
related results in the literature. We cite a few as immediate consequences.

COROLLARY 3.1 (Gross and Rohrlich [5]). Let A = D = 1 - Am' be a discriminant with
m>\ and tprime. Then t\h±.

COROLLARY 3.2 (Cowles [4]). Let A = b2 - Am' = 1 (mod 4) be a negative discriminant
where m and t are odd primes. If one of the prime ideals over m is not principal in (9A,
then 11 /iA.

COROLLARY 3.3 (Mollin [6]). Let A = b2 — Am' = 1 (mod 4) < 0 be a discriminant with
m>\ nd t>\. If mc is not the norm of a primitive element of <?A whenever c properly
divides t, then 11 h&.

REMARK 3.1. In Cowles' result above and our generalization of it stated in Corollary
3.3, there is an unnecessary hypothesis. This is explained by Theorem 3.1, namely that it
is not possible for mc to be the norm of a primitive principal ideal when A = b2 - Am' < 0
and 1 ^ c < t, unless b = \_arn"2] or b = 2m"2 - 1. What the proof of Theorem 3.1 shows is
that, with the exception of this special case, Ic *• 1 for any such c. See Remark 3.3.
Furthermore, we have the following corollary.

COROLLARY 3.4 (Mollin [6]). Let A be a discriminant with radicand D = b2 - o-2m',
where b > 0, m > 1, and t > 1. / / b2 < a2m'~\m - 1), then t \ /iA.

REMARK 3.2. What the condition in Corollary 3.4 precludes is the possibility that
b = \_crm"2], but it is unnecessarily strong. In fact, we improve upon this as follows.

COROLLARY 3.5. / / A is a discriminant with radicand D = b2 - a2m' < 0, where t > 1,
m > 1, b > 0 and b2 < <r2m' - 2a2m'a + &-1, then 11 /iA.

Proof. By Theorem 3.1, we need only ensure that b ¥\.am'a\ and b ^2ml12- 1. If
b=l<Tmtl2\, then {am"2- l)2<fc2<o-2m' -2o-2mll2 + a - 1. Thus, 2a2m'a<2am"2 +
a -2, a contradiction.

If b = 2ml/2-l, then (2m"2- l)2 = 62<4m' - 8m"2 + 1 and so -4w'/2<8m'/2
) a

contradiction.

REMARKS 3.3. It should be remarked that Theorem 3.1 speaks about divisibility of
class numbers but says little (which cannot be determined easily by other methods) about
the actual solutions of the Diophantine equations. The reasons for this are as follows.
Consider a radicand D < 0, and the equation

D = b2-a2m', (3.1)

where b and t are unknowns.
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Suppose that
t > 2 log((l - Z>)/(2<r))/log m. (3.2)

Then it is not difficult to see that - 1 < 6 - <rm"2<0, i.e. either b-{.o-mtl2\ or
b = am"2 - 1. Thus, if (3.2) holds, and t is odd for example, then the solvability of (3.1) is
equivalent to the solvability of D = lam'12]2 - cr2m'.

Illustrations of the power of Theorem 3.1 as a divisibility criterion are given in the
following examples.

EXAMPLE 3.1. Let D = 349332 - 4. 513 = -3,662,498,011 = - 6 1 . 60,040,951 with /iA =
12,714 = 13 . 978. Here t = 13, and lam"2] = 1.2 . 513/2J = 69,877 > b = 34,933.

The next example illustrates Theorem 3.1 when b = 2m'12 - 1.

EXAMPLE 3.2. Let D = 2492 - 4. 56 = -499. Then b = 249 = 2m"2 - 1 = 2. 53 - 1 and
/iA = 3 = t/2.

The final example illustrates Corollary 3.5.

EXAMPLE 3.3. If D = 1746882 - 515 = -1,680,781 = -151. 11,131, then fcA = 660 =
15. 44 with t = 15 and Im"2] = 174,692 > b = 174,688.

There is a treasure chest full of such examples to which Theorem 3.1 applies. These
computations are limited only by the reader's imagination. Furthermore we may
generalize results such as those of Ankeny and Chowla [2], wherein they show that there
are infinitely many square-free radicands D = b2 - 3', where t | /iA. Our application is that
we may easily show that there are infinitely many square-free radicands D = 4 - m' with
11 /iA using the above techniques.
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