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Abstract
It is fairly well-known that proper time series analysis requires that estimated equations be balanced.
Numerous scholars mistake this to mean that one cannot mix orders of integration. Previous studies have
clarified the distinction between equation balance and having different orders of integration, and shown
that mixing orders of integration does not increase the risk of type I error when using the general error cor-
rection/autoregressive distributed lag (GECM/ADL) models, that is, so long as equations are balanced (and
other modeling assumptions are met). This paper builds on that research to assess the consequences for
type II error when employing those models. Specifically, we consider cases where a true relationship exists,
the left- and right-hand sides of the equation mix orders of integration, and the equation still is balanced.
Using the asymptotic case, we find that the different orders of integration do not preclude identification of
the true relationship using the GECM/ADL. We then highlight that estimation is trickier in practice, over finite
time, as data sometimes do not reveal the underlying process. But, simulations show that even in these cases,
researchers will typically draw accurate inferences as long as they select their models based on the observed
characteristics of the data and test to be sure that standard model assumptions are met. We conclude by con-
sidering the implications for researchers analyzing or conducting simulations with time series data.

Keywords: Dynamic modeling/analysis; time series models

Equation balance is of paramount importance in time series analysis. An unbalanced equation is mis-
specified and prone to type I error; that is, the rejection of a true null hypothesis. Although this is well
known to statisticians, there is confusion in political science about what constitutes balance. Indeed,
in his contribution to a recent symposium on time series analysis in Political Analysis, John Freeman
(2016, 50) wrote, “It now is clear that equation balance is not understood by political scientists.” One
area of confusion is the tendency to equate equation imbalance with mixing orders of integration.
Any time an analysis includes variables with different time series characteristics, we have mixed
orders of integration. Consider, for example, an integrated variable, which contains a unit root
and is nonstationary, where the mean, variance, and covariance vary over time, an example of
which may be the gross domestic product (GDP). By contrast, a stationary series tends to hover
around its mean over time, as seems to be the case for presidential approval in the USA, which exhi-
bits autoregressive properties (Beck, 1991).1 Some research concludes that presidential approval may
be fractionally integrated (FI) (which would mean more persistence than an I(0) stationary time ser-
ies) (Donovan et al., 2020). In either case, given the different time series properties of presidential

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction
in any medium, provided the original work is properly cited.

1Stationary series are indicated as I(0). Non-stationary series order I(1), I(2), or I(3), depending on the number of times a
series needs to be differenced to become stationary, although I(1) is most common.
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approval and GDP, an equation relating these variables mixes orders of integration. Importantly, this
mixing does not necessarily produce an unbalanced equation.

Enns and Wlezien (2017) review the scholarly debate on the subject and clarify the distinction
between imbalance and mixed orders of integration. Following Banerjee et al. (1993), they show
that a linear combination of the regressand and of the regressors can produce a balanced equa-
tion, even if the variables are of different orders of integration. Using simulations and an applied
example of models of income inequality in the United States, Enns and Wlezien (2017) demon-
strate that there are situations where estimating general error correction/autoregressive distributed
lag (GECM/ADL) models with different orders of integration does not produce an increased risk
of spurious results. In this paper, we build on Enns and Wlezien’s (2017) findings to further
assess the estimation of GECM/ADL models when mixing orders of integration, specifically, to
analyze the implications for the risk of type II error; that is, failing to reject a false null hypothesis.
With good reason, researchers continue to be worried about type I error (e.g., Philips, this sym-
posium; Kraft, Key, and Lebo, this symposium), and this concern motivated Enns and Wlezien’s
previous study on the subject. Yet, any recommended methods should be able to identify true
relationships in the data when those exist, hence our focus in this paper.

We run simulations of a model with a stationary variable on the right-hand side and a depend-
ent variable that contains both stationary and unit root, that is, integrated, components. As a result,
we set up a data generation process in which the variables on the right- and left-hand sides are
related but of different orders of integration. This setup is frequently found in social science
research, where many variables may involve both stationary and unit root processes, such as peo-
ple’s attitudes over time (Converse, 1964; Achen, 1975; Erikson, 1979), party identification (Erikson
et al., 1998), vote intentions (Erikson and Wlezien, 2012), and global capital mobility (Ahlquist,
2006). Thus, focusing on this type of process allows us to demonstrate that mixing orders of inte-
gration does not necessarily result in an unbalanced equation, and holds implications for the myr-
iad of published studies in the discipline that model these combined processes with GECMs.

Previous research has shown that the GECM/ADL avoids inflated type I error rates with this
data-generating process (DGP). Our goal is to identify whether a GECM/ADL model can detect
the true relationship underlying the generated data, and thus avoid type II error. Failure to do so
would imply that the GECM/ADL is overly conservative when estimating relationships. By con-
trast, correctly identifying true relationships would suggest that the GECM/ADL can be appro-
priate in time series analysis with mixed orders of integration, at least where researchers can
establish that equations are balanced (and other modeling assumptions are met).2

Our results suggest that the GECM/ADL can indeed identify the true relationship in our data.
The mean coefficients also behave as expected, regardless of the autoregressive parameter (ρ) of
the stationary component. This is most clear for the asymptotic case. In practice, when T is smal-
ler, analyses are complicated by the fact that the observed time series characteristics of variables
do not always match the underlying DGP. However, our simulations show that if researchers base
their modeling decisions on the observed time series properties of the data (as is standard practice
in time series analysis), they typically will reach sound inferences. Mixing orders of integration in
a balanced equation evidently does not compromise the detection of true relationships between
series. Our results underscore that pre-whitening data to equalize orders of integration is not
always necessary, namely, in the presence of an already balanced equation. This is important,
as Enns and Wlezien (2017) show that pre-whitening can come at the expense of identifying
true relationships in the data.

This paper thus contributes to an increasing trend in the literature that asserts that there are
exceptions to the idea that orders of integration have to be consistent across all series in a model

2Of course, balance is not the only criterion for effective time series modeling. Standard statistical assumptions apply,
including independent and identically distributed (iid) residuals, i.e., “white noise” and, particularly with small samples, par-
simony to avoid overfitting the model.
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(Grant and Lebo, 2016, 4). Indeed, GECM/ADL models can be applied with mixed orders of inte-
gration, as long as equations are balanced and other assumptions are met as well.

1. Equation balance with mixed orders of integration does not necessarily increase the
probability of type I error
Our starting point is the correct assertion that time series analysis requires equations to be
balanced. Unbalanced equations suffer from mis-specification and typically result in an increased
probability of type I error. Enns and Wlezien (2017) highlight that much of the emphasis in the
discussion around equation balance has focused on an overly strict definition that entails having
all variables belonging to the same order of integration. Banerjee et al. (1993, 164, italics ours)
define an unbalanced equation as one “in which the regressand is not the same order of integra-
tion as the regressors, or any linear combination of the regressors.” Relying on Banerjee et al.’s
(1993) definition, Enns and Wlezien (2017) show that because of the linear combination, regres-
sors that contain different orders of integration can result in a balanced equation. This clarifica-
tion is important, for many analyses in the social sciences are modeled with equations that mix
orders of integration. Inappropriately restricting the concept of equation balance could thus lead
to fruitless contestation of a multitude of published studies that mix orders of integration, but that
actually have balanced equations that produce non-spurious results.

Two cointegrated I(1) series, when represented as a single equation GECM,3 offer a classic case
of a balanced equation with mixed orders of integration (Grant and Lebo, 2016; Keele et al., 2016;
Enns and Wlezien, 2017). The GECM is a balanced equation in this case because ΔYt (the regres-
sand) and ΔXt are both stationary and the integrated regressors (Xt−1 and Yt−1) are jointly sta-
tionary.4 Thus, both sides of the equation are stationary, which is necessary for proper
estimation. Although illustrative, cointegration is not exceptional. In this symposium, Kraft,
Key, and Lebo also highlight scenarios where linear combinations of integrated X or X and Y
yield stationary processes, creating a balanced equation. Enns and Wlezien (2017) also demon-
strate cases where it is appropriate to estimate models that mix orders of integration; specifically,
as long as the equation is balanced (and others modeling assumptions are met), the GECM/ADL
does not inflate the type I error rate.

Yet, some recent studies question the use of GECM/ADL based on type I errors (Grant and
Lebo, 2016; Keele et al., 2016), which seemingly contrasts with Enns and Wlezien’s (2017) find-
ings and other studies showing that when simulations are implemented correctly, the type I error
rate follows the expected 5 percent (Enns et al., 2016a, 2017b; Esarey, 2016). Like all methods, the
GECM is only appropriate when relevant assumptions are met. Much of the recent confusion may
stem from conducting simulations that violate these assumptions. Even when we specify the DGP
in simulations, the observed series will not always reflect the underlying time series properties of the
DGP because the simulated data also contain a stochastic component. If the simulations are
designed to test a statistical approach that would be appropriate based on the DGP, but some of
the simulated data departs from the specified DGP because of the stochastic component—which
is especially likely when T is short—conclusions about the statistical approach may be misguided,
because the statistical procedure is being evaluated on data it was not intended to be applied to. As
Lebo and Grant (2016, 71) state, “Missteps here are easy if we diagnose the properties of our series
in terms of some population instead of the sample in hand.”

Indeed, the fact that small sample simulations do not necessarily reflect the time series prop-
erties specified in the DGP likely explains some (perhaps all) of the seeming divergent

3A GECM models the first difference of a variable in terms of the lagged level of that variable and the first difference and
lagged level of each independent variable. Throughout this article, we refer to “GECM/ADL” because, although the GECM
and ADL models look different, they are identical (algebraically equivalent) models.

4This is necessarily so if the two series are cointegrated.
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conclusions across this symposium. For example, Kraft, Key, and Lebo in this symposium suggest
that they observe inflated type I error rates because of equation imbalance. But equation imbal-
ance cannot fully account for their results. To see why, consider their Figure 2, which shows that
the rate of spurious regression declines as T increases. If the type I error rate in their simulations
resulted because of equation imbalance in the DGP, we would not expect the false positive rate to
decline as the sample size increases. To further evaluate the relationship between sample size and
type I error rate in their simulations, we increased the sample size in their simulations to 5000
and then replicated their simulations designed to test the influence of adding unrelated I(1)
regressors. We chose T = 5000 so the data more closely follow the asymptotic time series prop-
erties of the DGP. Despite using the exact same DGP, increasing the sample size completely chan-
ged the conclusions of Kraft, Key, and Lebo’s simulations; even with the inclusion of I(1)
regressors, the type I error rate drops to 5.2 percent with a mean value of −0.00002 (full results
are reported in online Appendix 1).5 Although adding unrelated regressors should never be
advised in applied settings, doing so does not necessarily create an unbalanced equation.6

Since social scientists often confront small samples, it is of course critical to evaluate methods
when T is small. However, when conducting these simulations, the series should be diagnosed
and model assumptions tested before selecting the model (e.g., Enns et al., 2016a, 2017b) or
else both small and large samples should be simulated to assess whether the small sample prop-
erties deviate from the asymptotic results (e.g., Enns and Wlezien, 2017). Failure to follow these
steps risks misinterpreting simulation results because the statistical model was chosen based on
the asymptotic properties of the DGP instead of the properties of the data being analyzed.

Some of Philips’ simulations in this symposium highlight a related concern. He evaluates three
separate models (static, LDV (lagged dependent variable), and ARDL/GECM) on the same simu-
late data. In practice, theory and tests of statistical assumptions would almost always indicate one
of these models was appropriate and the other two were inappropriate. What we typically want to
know from data simulations is how a model performs when applied as it would be by a
researcher. If the sample properties of the simulated data are ignored, and three models that
would almost never be applied to the same data are evaluated, we would expect that at least
two of the models would consistently perform poorly in the simulations. But the poor perform-
ance would be the result of evaluating the models when they should not have been applied (which
a researcher could easily avoid with standard time series diagnostics).

In addition to not testing the time series properties of the simulated series to determine which
model to estimate, it appears that Philips did not evaluate whether the coefficient on lagged X was
significant prior to evaluating the Long Run Multiplier (LRM), which depends on that coefficient.
Absent a significant relationship between Xt−1 and ΔYt in a GECM, a researcher has no reason to
test for a significant LRM. And evaluating the LRM in this context will necessarily inflate the
number of type I errors associated with this parameter. These are spurious associations that a
practitioner would not encounter, because a practitioner should not estimate an LRM absent evi-
dence of a long-term relationship.

These points offer three insights related to our paper. First, they are a reminder that particu-
larly when T is short, simulations meant to guide applied research cannot be based on asymptotic
properties of the DGP. We incorporate this insight into our small sample simulations later in this
paper. Second, we believe this discussion helps account for the seemingly divergent findings
across the symposium and between the symposium and past research. That is, what may at
first look like different conclusions about equation balance and the rate of type I error rates
with the GECM/ADL may disappear when simulations base modeling decisions on the observed

5This also follows mathematically. Kraft, Key, and Lebo’s DGP creates a cointegrating relationship between y and x1 and
the true weight on an irrelevant variable in the linear combination is zero, so an irrelevant variable should not create imbal-
ance asymptotically.

6Also see Enns and Wlezien (2017).
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data (as researchers do in practice). Finally, since Kraft, Key, and Lebo as well as Philips did not
base their modeling decisions on the observed data, we should be careful drawing conclusions
about published research based on their simulations.

2. Identifying true relationships with mixed orders of integration
As discussed, it has been demonstrated that unrelated stationary and first order integrated time
series, that is, non-stationary series, can, in some cases, be analyzed together with a GECM/ADL
model without concerns for spurious regressions (i.e., type I error). We now consider whether the
GECM/ADL model can identify a true relationship between series that are of different orders of
integration. Although time series researchers typically—and understandably—are more con-
cerned about type I error, failing to detect true relationships in the data is also an issue. In the
absence of knowledge of the effect of one variable on another, we would like to know that our
estimation approach will reveal it.

To address this issue, we evaluate a regression model with a stationary variable on the right-
hand side and a dependent variable that includes both stationary and unit root components.
Wlezien (2000) refers to such a variable as a “combined” time series process. Here, the shock
to a combined time series, et, can be separated into two parts: a series of stationary shocks
that cumulate indefinitely (xIt ) and another series xSt that decays (Wlezien, 2000, 79).7 In theory,
such series are integrated (Granger, 1980), as the portion that cumulates over time dominates.

There are many scenarios in the political and economic world that can produce combined
time series. To begin with, consider that any process that includes long-term change and meas-
urement error is such a series. But even putting aside measurement error, there are reasons to
suppose that numerous processes combine both long-term and short-term change. Theories of
people’s attitudes over time reflect distinctions between effects that endure versus those that
decay (Converse, 1964; Achen, 1975; Erikson, 1979). Characterizations of party identification
also reflect these distinctions, and some scholars (Erikson et al., 1998) explicitly conceive of
macro-partisanship as a combined process. The same is true for electoral preferences, which
clearly change over time, some of which lasts to impact the outcome and some does not
(Erikson and Wlezien, 2012). We also see evidence of short-term and enduring changes in studies
of political economy, such as the determinants of global capital mobility (Ahlquist, 2006) and its
electoral consequences (Tomashevskiy, 2015). It may be that most seemingly “pure” integrated
series actually are combined, where in addition to shocks to the series that cumulate over time
there are shocks that decay. Indeed, any series that contains a unit root and is cointegrated
with another series must combine integrated and stationary components. This can be seen in
Kraft, Key, and Lebo’s contribution to this symposium (Equations 5–7), where cointegrated Y
combines X, which contains a unit root, and ζ, which is a stationary series. In sum, combined
time series are common—and important—for political research, and notice they are substantially
quite different to FI series (Box-Steffensmeier and Smith, 1998b), where all shocks decay, just
more slowly than we expect of pure stationary processes.8 Combined time series also are ideally
suited for GECMs, which estimate both short run (stationary) and long run (integrated)
components.

Just as important for our purposes, however, the data generation process of combined time
series allow us to conduct simulations where the left- and right-hand side variables are related
and of different orders of integration. Not only do researchers often find themselves analyzing

7A pure integrated series, by contrast, only contains a series of shocks that cumulate indefinitely. For more details, see
Wlezien (2000).

8As Granger and Joyeux (1980b) showed, aggregating across AR processes with different rates of decay may produce an FI
series. In practice, it may be difficult differentiating a combined and FI series, and differentiating each of these from a near-
integrated series (De Boef and Granato, 1997), where shocks decay at a very slow rate (see Wlezien, 2000).
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series with different orders of integration that are hypothesized to be related, but focusing on
cases with different orders of integration offers an opportunity to further clarify the concept
of equation balance. For our simulations,

Yt = xIt + xSt (1)

xIt = xIt−1 + u1t , u1t N(0, 1) (2)

xSt = rxSt−1 + u2t , u2t N(0, 1) (3)

where ρ equals 0.2, 0.5, or 0.8.
Because we want to evaluate whether the GECM/ADL can recover true relationships when the

orders of integration on the right- and left-hand side of the equation are mixed, we estimate the
equation,9

Yt = a0 + a1Yt−1 + b1x
S
t + b2x

S
t−1 + d (4)

The equation does not include xIt , which means we are mixing a combined time series, Y, which
in theory is integrated (Granger, 1980), with a stationary time series, xS. Clearly, when analyzing
combined time series (as with all data types), researchers should aim to model all explanatory
factors. If xIt were correlated with xSt , this omission would create an omitted variable bias problem.
Our goal, however, is to model related series that are of different orders of integration and omit-
ting xIt ensures this scenario. Also keep in mind that time series researchers often face the pos-
sibility of omitted variables, either because repeated historical measures do not exist or because
they simply do not know the true DGP. Consider research on electoral preferences mentioned
earlier, where long-term effects of campaigns are difficult to directly capture on the right-hand
side of models of pre-election polls (Erikson and Wlezien, 2012). Equation 4 would not be
recommended if we knew the true DGP and had measures of all relevant variables, but it allows
us to evaluate the performance of the GECM/ADL with mixed orders of integration and a com-
mon but imperfect specification. As a result, our simulations mirror the constraints that research-
ers may encounter in applied settings.

Since the true relationship between xSt and Yt is 1.0, in our simulations we expect b̂1 to equal
1.0. (To be clear, the equation reveals the contribution the independent variable makes to our
outcome variable, not the autoregressive parameter of the component.) Relatedly, we expect b̂2
to equal − 1.0. That this is true can be seen by substituting for Yt−1, which equals xIt−1 + xSt−1,
as follows:

Yt = a0 + a1[x
I
t−1 + xSt−1]+ b1x

S
t + b2x

S
t−1. (5)

Since Y contains a unit root, α1 = 1, and the equation reduces to

Yt = a0 + xIt−1 + xSt−1 + b1x
S
t + b2x

S
t−1. (6)

Given that Yt = xIt + xSt , by construction, we expect β2 to equal − β1, which cancels the portion of
xSt−1 in Yt−1 (since xSt−1 does not enter the DGP in Equation 1). Notice that this generalizes across

9Notice that this equation appears to be one of the cases that Kraft, Key, and Lebo identify where standard limiting dis-
tributions are appropriate, as xSt is stationary and there is little to no autocorrelation between the disturbances. Also note that
while Equation 4 reflects the ADL specification, the GECM is the identical model, and as we show below, produces identical
results.
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combinations of xIt and xSt . For example, where the true relationship between xSt and Yt equal to 2.0
(and that between xIt and Yt equal to 1.0), we would expect β1 in Equation 4 to equal 2 and β2 to
equal −2, which would again cancel out the portion of xSt−1 in Yt−1. Finally, we expect α0 to
equal 0.0. Of course, all of these theoretical expectations are based on the asymptotic case.

As previously noted, sometimes political scientists have suggested that it is never acceptable to
mix orders of integration and that series should be pre-whitened to ensure the same order of inte-
gration for all variables in the model. However, despite different orders of integration on both
sides of the equation, we show that the equation is indeed balanced. Substituting Equation 1
for Y, Equation 4 can be rewritten as follows:

xSt + xIt = xSt−1 + xIt−1 + b1x
S
t + b2x

S
t−1 + d. (7)

By rearranging Equation 7, in Equation 8, we see that we now have stationary series on both
sides of the equation:

DxIt + xSt = b1x
S
t + (1+ b2)∗xSt−1 + d, (8)

and so we would expect to be able to identify the true relationships between xS and Y described
above.10 This does not mean that estimating Equation 4 will correctly represent the DGP, as it
clearly does not, since we omit xIt to ensure that we mix orders of integration. We are intending
only to illustrate that, just as an ADL (or GECM) does not necessarily induce spurious results
when orders of integration are mixed, it can reveal true relationships with mixed orders of inte-
gration, at least when the equation is balanced (and other modeling assumptions are met). As De
Boef and Keele (2008) have shown, the GECM/ADL does so in a general way, by allowing the
data to determine the dynamic structure, that is, settling it empirically not by assumption.

2.1 The asymptotic case

We begin by presenting simulations where T = 5000, only to approximate the asymptotic
behavior of the series, before turning to shorter, more realistic T. The asymptotic case is espe-
cially important because if equation balance were a concern, it would be evident when T is large.
Table 1 presents the results of 2000 simulations where equations are estimated using the ADL,
the GECM, and the differenced dependent variable (DV) specification.11 Although the simula-
tions employ a single lag, in practice, other lags could be considered and lag structure tested via
goodness of fit statistics, such as the Akaike Information Criterion (see also, Hendry, 1995;
Wilkins, 2018). The left part of the table presents the results for the ADL model. There we
can see that the estimation almost always recovers the DGP described above. Specifically, the
coefficient on xst is consistently near 1.0 and the coefficients on xst−1 and Yt−1 are consistently
equal and opposite signed.12

The GECM is mathematically equivalent to the ADL, so the results based on the former in the
middle of Table 1 must be equivalent to the those for the latter (De Boef and Keele, 2008; Enns
et al., 2016a). To see this, consider the ADL results in the first column, where α1, the coefficient
on yt−1 = 0.9989. If we subtract Yt−1 from both sides of the ADL, the dependent variable becomes
ΔY, which matches the GECM and α*1, the coefficient on Yt−1 in the GECM, should equal
0.9989− 1, or −0.0011, which perfectly matches α*1 in the GECM results. The ADL coefficients

10Following Banerjee et al. (1993), no transformation is required to achieve balance in this case; what matters, “is the pos-
sibility of transforming” (168, italics in original). However, to achieve what Pickup (2020) call “I(0) balance,” transformation
is required.

11Table A.1 in online Appendix 2 reports analogous results where a disturbance term, q, is added to the DGP of Yt.
12As noted above, asymptotically β1 and β2 will be equal and opposite, but as α1 deviates from 1 in finite samples, this will

be reflected in the estimate of β2, as we see in Table 3 and online Appendix 3.
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Table 1. Identifying a true relationship (β1 = 1.0) between xSt and Y when xSt is stationary and Y combines stationary and unit root properties

T = 5000

ADL GECM First difference

ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8

coef % coef % coef % coef % coef % coef % coef % coef % coef %

â1 0.9989 100 0.9989 100 0.9989 100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
â∗

1 N/A N/A N/A N/A N/A N/A −0.0011 0 −0.0011 0 −0.0011 0 N/A N/A N/A N/A N/A N/A
b̂1 0.9999 100 1.0000 100 1.0004 100 0.9999 100 1.0000 100 1.0004 100 0.9999 100 1.0000 100 1.0004 100
b̂2 −0.9983 100 −0.9994 100 −0.9995 100 N/A N/A N/A N/A N/A N/A −0.9994 100 −1.0005 100 −1.0006 100
b̂∗

2 N/A N/A N/A N/A N/A N/A 0.0016 5.6 0.0006 5.3 0.001 5.2 N/A N/A N/A N/A N/A N/A

Notes: coef represents the mean coefficient estimate across 2000 simulations. % represents the percent of simulations for which we (correctly) reject the null hypothesis of no relationship. Consistent with
expectations, across all models b̂1 ≈ 1.0. As explained in the text, the other parameter estimates also follow expectations. ADL: Yt = α0 + α1Yt−1 + b1x

s
t + b2x

s
t−1 + δ GECM: ΔYt = α0 + α*1Yt−1 + b1Dx

s
t + b∗

2x
s
t−1 + γ,

where α*1 = α− 1 and β*2 = β1 + β2 from the ADL. First difference: ΔYt = α*0 + b1x
s
t + b2x

s
t−1 + ε, where ΔYt = Yt− α1Yt−1 from the ADL.
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on xst and xst−1 (β1 and β2) equal 0.9999 and −0.9983, respectively. To show the equivalency with
the GECM results, we can subtract and add 0.9999xt−1 to the right hand side of the ADL results.
This produces 0.9999xst − 0.9983xst−1 − 0.9999xst−1 + 0.9999xt−1, which equals 0.9999Δx +
0.0016xt−1, exactly the same as the estimates for β1 and β*2 in the GECM results. These results
illustrate that the ADL and GECM always produce the exact same numerical information; the
only difference is how the two models present this information.

The right side of Table 1 presents the results from a model that first-differences the dependent
variable. The model offers an additional way to show that the previously estimated ADL/GECM
model is balanced even though the model mixes different orders of integration. To see why, recall
that the right hand side of the model (xst) is stationary and the dependent variable contains a unit
root (as well as stationary properties). The standard approach in such a situation is to first-
difference Y to make it stationary. Because ΔY = Yt− Yt−1, as the series approaches infinity, sub-
tracting Yt−1 from both sides of the ADL in Equation 4 yields the first-difference model. In other
words, given our sample size and DGP, the first-difference model the first-difference model
approximates the ADL (and GECM). The results on the far right of Table 1 support this predic-
tion. In most cases the numerical results are identical. The largest difference is 0.001. As can be
seen in online Appendix 3, things are nearly identical when T = 200, 100, and 50, although we
consider these simulations in more detail below. In other words, in cases where the data could
suggest either the GECM/ADL or the first-difference model, both yield nearly identical results.13

As discussed above, Equation 4 is misspecified by construction, because it omits xIt .
14 Clearly,

theory must guide model specification and it would be wrong to conclude that these results imply
that the GECM/ADL is always appropriate. They key point is that even with mixed orders of inte-
gration, we find that the estimated ADL/GECM in Equation 4 is balanced. Our initial focus, how-
ever, has been on an atypically large sample size (T = 5000), so the observed data follow the
asymptotic properties.

2.2 Diagnosing and estimating in practice

In practice, when dealing with finite time series where the true characteristics of the variables and
their relationships are unknown, before selecting a model, researchers would first identify the
characteristics of the variables. For instance, scholars commonly employ tests, such as the aug-
mented Dickey–Fuller (ADF) test, to diagnose whether series are nonstationary and whether
there is drift and/or trend as well.15

To illustrate this process, we return to the series we generated for Table A.2 in online
Appendix 3. As before, Y always combines unit root and stationary properties and xst is always
stationary, where the autoregressive parameter ρ = 0.2, 0.5, or 0.8 and T = 50, 100, or 200.
Instead of analyzing the data naively, we diagnose the time series properties on each of the simu-
lated combined DVs as well as the stationary independent variables (IVs) with ADF tests, which

13Specifically, with these sample sizes, the ADL almost always yields accurate inferences about the presence of a relation-
ship (between 99.2 and 100 percent of the time), b̂1 is always within 0.01, and the estimates for α1 and xst are offsetting
(within 0.01), as expected.

14Thus, any correlation between u1t and u2t in Equations 2 and 3 would bias the estimate of β1.
15The ADF tests for the presence of a unit root in a variable, where the first difference of the variable is regressed on its

lagged level and a series of lagged differences, as follows:

DYt = a+ b1Yt−1 + b2DYt−1 + b3DYt−2 + · · · + DYt−x. (9)
The coefficient for the lagged level variable is the primary focus: if it is indistinguishable from 0, then we conclude that the
variable is integrated; if it is negative and significantly different from 0, we conclude that the variable is stationary. Note that
the appropriate critical values for unit root test are nonstandard. For a more complete discussion and well as an introduction
to other tests scholars use, see e.g., Pickup (2014); Box-Steffensmeier et al. (2014). Particularly with small samples, some ser-
ies may not appear to be strictly I(1) or I(0), but FI instead (e.g., Baille, 1996; Lebo and Clarke, 2000).
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are particularly relevant for combined time series (see Wlezien, 2000). To reiterate, while we
know the characteristics of the underlying process, researchers in the observational world will
not know, so it is important for us to mimic that process, as it has implications for the estimation
approaches that are appropriate. As Durr (1992, 193) explains, “empirical diagnoses of time-
series data are necessarily a function of a finite sample of a realization of the process in question”
(also see Enns et al., 2016a; Lebo and Grant, 2016: 71–72).

To illustrate, let us take the case where the ρ of the stationary component is 0.5 and T = 100.
We apply ADF tests using a critical value of 0.05 to each of the 2000 simulated series of both our
DV and IV. Table 2 summarizes the results. The first two rows show that we always correctly
identify that the IV (xst) is stationary but have more difficulty with the combined DV, and identify
the underlying integrated process only 78.6 percent of the time (which we see by summing the
first and third rows). This pattern comports with previous research (Wlezien, 2000). By implica-
tion, we correctly infer both underlying processes in 78.3 percent of the simulations. Much less
frequently—21.4 percent of the time—we conclude that both series are stationary.

These inferences are important, as they matter for estimation. For instance, in the case where
both variables appear stationary, we can proceed to estimate an ADL model. Where the DV is
nonstationary and the IV stationary, time series practice would recommend regressing the differ-
enced DV on the current and lagged IV. The results of estimating these models are summarized
in Table 3. Here we can see that in the 78.3 percent of the simulations where we correctly identify
the underlying true processes and estimate a model with a differenced DV, we detect a significant
effect of the IV in each of our 2000 simulations, with a mean coefficient of near-perfect 1.0
(0.9999). We also detect the expected β2 (i.e., xst−1) in every simulation, the mean estimate of
which is −1.0031. The virtually equal and oppositely-signed effects of β1 and β2, which corres-
pond with xs and xst−1, imply that the difference in our DV, Y, reflects the difference in xst ,
that is, ΔY = Δxs.16 In 21.4 percent of the simulations where both variables appear stationary
and we estimate an ADL (as a researcher would do in an applied setting), we obtain similar
results, identifying significant current and lagged effects 100 percent of the time and with
mean coefficients of 1.0001 and −0.9491, respectively. The estimates do vary, of course, which
is important; we nevertheless always detect a true effect of our IV on our DV.

Let us now consider different combinations of ρ and T, where the former varies between 0.2,
0.5, and 0.8 and the latter between 50, 100, and 200. Although we know the DGP, we are inter-
ested in how researchers would diagnose these series in an applied setting. Table 4 shows the
results of our diagnostic analyses for each set of simulations. The patterns are similar to what
we saw in Table 2 (and 3), excepting where ρ is large (0.8) and T is low (50). In this case, we
frequently identify integration in both the DV and the IV, as the (low) power of the ADF tests
make it difficult to reject the null of nonstationarity.17 This is important because it implies a dif-
ferent estimate strategy. Specifically, with two I(1) variables, we need to first assess whether they

Table 2. Percent of simulations that identify Y and xst as I(1) or I(0) with ADF tests when T = 100 and ρ = 0.5

Y I(1), xst I(0) 78.3
Y I(0), xst I(0) 21.4
Y I(1), xst I(1) 0.3
Y I(0), xst I(1) 0.1

Notes: The first row shows the percent of simulations that correctly identify both series.

16That is, we know that b1x
s
t + b2x

s
t−1 = b1x

s
t − b1x

s
t−1 + b2x

s
t−1 + b1x

s
t−1 = b1Dx

s
t + b2x

s
t−1 + b1x

s
t−1. Thus, multiply-

ing through using the mean coefficients in Table 3 we get 0.9999Dxst − 0.003xst−1. Again, this comports with the results from
estimating the GECM in Table 1.

17The high rate of acceptance (66.7 percent) of the null of nonstationarity for our IV reflects the combination of a relatively
large ρ and small T. But even with these parameters, the evidence in favor of nonstationarity is not strong, for example, we
would reject the null of a unit root in all but 6.75 percent of cases using a critical value of 0.10 instead of 0.05.
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are cointegrated. If they are, we should proceed to a general model suitable for cointegrated series
like the GECM; if not, it is necessary to difference both the DV and IV and to estimate a more
restricted model.18 This is standard time series practice. Furthermore, when we estimate the first-
difference models that meet these criteria, we identify the expected relationship in all situations.

In sum, two patterns stand out in these results. First, even in the case where ρ is large (0.8) and
T is low (50), most of the time the ADF identifies the time series properties of the DGP. Second,
when the ADF indicates the finite series differs from the time series properties of the DGP (which
becomes more likely with smaller samples), if we estimate a model based on the observed prop-
erties of the data (as indicated by the ADF), we still accurately identify the true relationship
between the series in most cases.

3. Conclusion
Time series researchers have understandably focused their studies on the issue of how to avoid
spurious correlations. In this paper, we turned our attention to the capacity of GECM/ADL models
to detect true relationships between series of different orders of integration, as long as equations are
balanced (and other modeling assumptions are met). Although it is known that the GECM/ADL
avoids spurious regression in this situation (Enns and Wlezien, 2017), if the model cannot detect
true relationships in the data, results would not be informative to researchers.

Our simulations show that an equation with a stationary variable on the right-hand side and a
dependent variable that combines both unit root and stationary components (a “combined” time
series process) can be estimated using a GECM/ADL model. In the simulations, we are able to
identify the true relationship between the variables in the asymptotic case. This means that mix-
ing orders of integration not only does not necessarily increase the probability of type I error, as
shown by Enns and Wlezien (2017), it also does not necessarily increase the risk of type II error.

TABLE 3. Results from simulated first difference and ADL models with different combinations of independent and
dependent variables

First difference, Y = I(1), xst = I(0) ADL, Y = I(0), xst = I(0)

coef % coef %

â1 N/A N/A 0.9461 100
b̂1 0.9999 100 1.0001 100
b̂2 −1.0031 100 −0.9491 100

% cases 78.3 21.4

Notes: Consistent with expectations, across all models b̂1 ≈ 1.0. As explained in the text, the other parameter estimates also follow
expectations. The bottom row (%) shows the percent of simulations that correctly identify the series as Y = I(1), xst = I(0) or Y = I(0), xst = I(0).
First difference: ΔYt = α*0 + b1x

s
t + b2x

s
t−1 + ε ADL: Yt = α0 + α1Yt−1 + b1x

s
t + b2x

s
t−1 + δ

Table 4. Percent of simulations that identify Y and X as I(1) or I(0) with ADF tests when T = 50, 100, and 200

T = 50 T = 100 T = 200

ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8

Y I(1), X I(0) 75.6 79.9 29.7 73.6 78.3 73.6 76.4 77.4 82.8
Y I(0), X I(0) 24 16.5 3.7 26.3 21.4 11.7 23.6 22.6 17.1
Y I(1), X I(1) 0.5 3.2 61.7 0.2 0.3 13.1 0.1 0.1 0.2
Y I(0), X I(1) 0 0.5 5.0 0 0.1 1.8 0 0 0

Notes: The first row shows the percent of simulations that correctly identify Y as I(1) and X as I(0). ρ indicates the value of the autoregressive
parameter in X. Results based on ADF tests on each of the 2000 simulated DVs and IVs using the particular ρ and T, as indicated. Columns
may not sum to 100 due to rounding.

18See De Boef and Keele (2008) and Keele et al. (2016) for more on the value of moving from a general to a specific model.
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Of course, things are more complicated when dealing in finite time. As we show in the paper,
researchers must first identify the time series properties of the observed data; after doing so,
assuming other modeling assumptions are met, the GECM/ADL consistently identifies true
relationships.

These findings have important implications for research in most areas in political science.
First, they underscore that equation balance and mixed orders of integration, while related, are
not one in the same, and that it is possible to have both. Second, we thus need not avoid estima-
tion with mixed orders of integration, or rule out previous research based on such estimation, at
least where we have equation balance. Third, and more specifically, with a balanced equation, we
can detect true relationships (and eschew spurious ones) even in cases where we cannot correctly
represent the DGP. This is of special importance because we often are uncertain about the char-
acteristics of our variables. Although the necessity of pre-testing is encouraged in the literature,
including in this symposium (Philips), detecting the properties of series is a difficult task. The
findings from our simulations thus assuage some of the problems practitioners often face
while also highlighting the importance of the general approach that DeBoef and Keele (2008) rec-
ommend. Of course, even when a parsimonious model guided by complete pre-tests fits the data
well, standard diagnostics must be evaluated, particularly the characteristics of the residuals. This
is (or at least should be) routine in time series analysis, as it provides critical information to
researchers.

Finally, we make the additional point that, while there is consensus that the GECM avoids
spurious regression when assumptions are met and it is implemented correctly (e.g., Enns
et al., 2016a, 2017b; Grant and Lebo, 2016), this symposium highlights that there is still some
disagreement about how frequently these assumptions are met. We understand that part of the
disagreement stems from the application of different approaches to simulations. In our minds,
a focus on both large and small samples for simulations, estimating models on simulated data
based on the observed data (not naively based on the DGP), and attention to both type I and
type II error rates will help advance our understanding of the limits of GECM/ADL models
and the use of simulations in time series analysis.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2021.
38.

Acknowledgments. An earlier version of this paper was presented at the Texas Methods Meeting, University of Houston,
2017. For comments, we thank Neal Beck, Francisco Cantu, Scott Cook, Justin Esarey, Florian Hollenbach, Ryan Kennedy,
Tse-Min Lin, Pablo Pinto, Randy Stevenson, Guy Whitten, and the anonymous reviewers.

References
Achen C (1975) Mass political attitudes and the survey response. American Political Science Review 69, 1218–1231.
Ahlquist JS (2006) Economic policy, institutions, and capital flows: portfolio and direct investment flows in developing coun-

tries. International Studies Quarterly 50, 681–704.
Baille RT (1996) Long memory processes and fractional integration in econometrics. Journal of Econometrics 73, 5–59.
Banerjee A, Dolado J, Galbraith JW and Hendry DF (1993) Co-Integration, Error Correction, and the Econometric Analysis

of Non-Stationary Data. Oxford: Oxford University Press.
Beck N (1991) Model Selection: Are Time Series Techniques Useful in Cross-Sectional Problems? 999: Midwest Meeting.
Box-Steffensmeier JM, Freeman JR, Hitt MP and Pevehouse JCW (2014) Time Series Analysis for the Social Sciences.

New York: Cambridge University Press.
Box-Steffensmeier JM and Smith RM (1998) Investigating political dynamics using fractional integration methods.

American Journal of Political Science 42, 661–689.
Converse PE (1964) The Nature of Belief Systems in Mass Publics. In Apter DE (ed.), Ideology and Discontent. Ann Arbor:

University of Michigan Press, pp. 206–261.
De Boef S and Granato J (1997) Near-integrated data and the analysis of political relationships. American Journal of Political

Science 41, 619–640.
De Boef S and Keele L (2008) Taking time seriously. American Journal of Political Science 52, 184–200.

868 Peter K. Enns, Carolina Moehlecke, Christopher Wlezien

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

sr
m

.2
02

1.
38

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/psrm.2021.38
https://doi.org/10.1017/psrm.2021.38
https://doi.org/10.1017/psrm.2021.38
https://doi.org/10.1017/psrm.2021.38


Donovan K, Kellstedt PM, Key EM and Lebo MJ (2020) Motivated reasoning, public opinion, and presidential approval.
Political Behavior 42, 1201–1221.

Durr RH (1992) An essay on cointegration and error correction models. Political Analysis 4, 185–228.
Enns PK and Wlezien C (2017) Understanding equation balance in time series regression. The Political Methodologist 24, 2–

12.
Enns PK, Kelly NJ, Masaki T and Wohlfarth PC (2016) Don’t Jettison the general error correction model just yet: a practical

guide to avoiding spurious regression with the GECM. Research and Politics 3, 1–13.
Enns PK, Kelly NJ, Masaki T and Wohlfarth PC (2017) Moving forward with time series analysis. Research and Politics 4,

1–7.
Erikson RS (1979) The SRC panel data and mass political attitudes. British Journal of Political Science 9, 89–114.
Erikson RS and Wlezien C (2012) The Timeline of Presidential Elections. Chicago: University of Chicago Press.
Erikson RS, MacKuen MB and Stimson JA (1998) What moves macropartisanship? A reply to Green, Palmquist, and

Schickler. American Political Science Review 92, 901–912.
Esarey J (2016) Fractionally integrated data and the autodistributed lag model: results from a simulation study. Political

Analysis 24, 42–49.
Freeman JR (2016) Progress in the study of nonstationary political time series: a comment. Political Analysis 24, 50–58.
Granger CWJ (1980) Long memory relationships and the aggregation of dynamic models. Journal of Econometrics 14, 227–

238.
Granger CWJ and Joyeux R (1980) An introduction to long-memory time series models and fractional differencing. Journal

of Time Series Analysis 1, 15–29.
Grant T and Lebo MJ (2016) Error correction methods with political time series. Political Analysis 24, 3–30.
Hendry DF (1995) Dynamic Econometrics. Oxford: Oxford University Press.
Keele L, Linn S and McLaughlin Webb C (2016) Treating time with all due seriousness. Political Analysis 24, 31–41.
Lebo MJ and Clarke HD (2000) Modelling memory and volatility: recent advances in the analysis of political time series.

Electoral Studies 19, 1–7.
Pickup M (2014) Introduction to Time Series Analysis. Thousand Oaks, CA: Sage.
Pickup M and Kellstedt P (2020) Equation Balance in Time Series Analysis: What it is and How to Apply It. Available at

SSRN: http://dx.doi.org/10.2139/ssrn.3526534.
Tomashevskiy A (2015) Capital preferences: international capital and government partisanship. International Studies

Quarterly 59, 776–789.
Wilkins AS (2018) To lag or not to lag?: Re-evaluating the use of lagged dependent variables in regression analysis. Political

Science Research and Methods 6, 393–411.
Wlezien C (2000) An essay on ‘Combined’ time series processes. Electoral Studies 19, 77–93.

Cite this article: Enns PK, Moehlecke C, Wlezien C (2022). Detecting true relationships in time series data with different
orders of integration. Political Science Research and Methods 10, 857–869. https://doi.org/10.1017/psrm.2021.38

Political Science Research and Methods 869

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

sr
m

.2
02

1.
38

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://dx.doi.org/10.2139/ssrn.3526534
http://dx.doi.org/10.2139/ssrn.3526534
https://doi.org/10.1017/psrm.2021.38
https://doi.org/10.1017/psrm.2021.38

	Detecting true relationships in time series data with different orders of integration
	Equation balance with mixed orders of integration does not necessarily increase the probability of type I error
	Identifying true relationships with mixed orders of integration
	The asymptotic case
	Diagnosing and estimating in practice

	Conclusion
	Acknowledgments
	References


