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Abstract
Artificial intelligence (AI) has achieved human-level performance in specialised tasks such as Go, image recognition
and protein folding, raising the prospect of an AI singularity – where machines not only match, but surpass human
reasoning. Here, we demonstrate a step towards this vision in the context of turbulence modelling. By treating a large
language model (LLM), DeepSeek-R1, as an equal partner, we establish a closed-loop, iterative workflow in which
the LLM proposes, refines and reasons about near-wall turbulence models under adverse pressure gradients (APGs),
system rotation and surface roughness. Through multiple rounds of interaction involving long-chain reasoning and
a priori and a posteriori evaluations, the LLM generates models that not only rediscover established strategies,
but also synthesise new ones that outperform baseline wall models. Specifically, it recommends incorporating a
material derivative to capture history effects in APG flows, modifying the law of the wall to account for system
rotation and developing rough-wall models informed by surface statistics. In contrast to conventional data-driven
turbulence modelling – often characterised by human-designed, black-box architectures – the models developed
here are physically interpretable and grounded in clear reasoning.

Impact Statement
This work redefines the role of AI in turbulence modelling by engaging an LLM not as a tool, but as a col-
laborator in the scientific discovery process. Through a structured, iterative human–AI interaction, the LLM
generates, reasons about and refines wall models for LES under complex non-equilibrium conditions – redis-
covering known strategies and proposing new, physically interpretable formulations that outperform traditional
models. The process leverages the LLM’s comprehensive knowledge of the turbulence modelling literature –
far exceeding that of any individual human. The results demonstrate, for the first time, that general-purpose
LLMs can contribute meaningfully to open-ended, physics-based turbulence modelling tasks, suggesting a
new paradigm in which AI actively advances core areas of fluid mechanics, rather than merely accelerating
existing workflows.

1. Introduction
Artificial intelligence (AI) has achieved human-like performance in tasks once thought to require
uniquely human intuition – mastering the game of Go (Silver et al., 2017), predicting protein structures
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Figure 1. (a) Schematic of wall-modelled LES (WMLES). A wall model predicts the wall fluxes – shear
stress τw and heat flux qw – based on LES-resolved flow quantities at a distance hwm from the wall.
(b) Blades in a turbine, illustrating flows subjected to non-equilibrium effects such as APGs (red box),
system rotation (orange box) and surface roughness (purple box). (c) Model problems. From left to right:
channel subjected to a suddenly imposed APG, channel with system rotation and channel with roughness
on the bottom wall.

(Jumper et al., 2021) and driving through the streets (Yurtsever et al., 2020). These advances have fuelled
speculation about the advent of general artificial intelligence (GAI), an AI that can reason, adapt and
solve problems across domains. A related concept gaining traction is the AI agent – a system capable of
autonomous decision-making and iterative improvement in pursuit of a human-defined goal (Buehler,
2024; Ni and Buehler, 2024; Pandey et al., 2025; Dong et al., 2025). While most practical AI systems
today remain narrow in scope, the emergence of large language models (LLMs) has narrowed the gap
between domain-specific tools and general-purpose intelligence. These models, trained on vast corpora
of human knowledge, can synthesise information, generate code and reason over complex topics (Chang
et al., 2024). Despite the hype surrounding GAI, compelling demonstrations of AI contributing new
scientific insights – particularly in the physics – remain rare.

Among the most enduring grand challenges in physics is turbulence – a chaotic, multi-scale phe-
nomenon that resists closed-form description and predictive modelling. Despite over a century of effort,
turbulence modelling remains largely empirical, guided by human intuition, physical reasoning and
hard-won insights from data (Meneveau and Katz, 2000; Piomelli and Balaras, 2002; Durbin, 2018).
Yet, it underpins critical applications ranging from climate prediction (Alizadeh, 2022) and aerospace
design (Mani and Dorgan, 2023) to wind and energy systems (Stevens and Meneveau, 2017). The gold
standard of predictive fidelity, direct numerical simulation (DNS), is limited to canonical flows at mod-
est Reynolds numbers due to its extreme computational cost (Yang and Griffin, 2021; Choi and Moin,
2012). Large-eddy simulation (LES), which resolves large-scale motions while modelling smaller ones,
offers a more tractable alternative (Goc et al., 2021, 2024) – but its cost remains prohibitive in high-
Reynolds-number applications, especially near walls where turbulent eddies scale with their distance
from the wall (Marusic and Monty, 2019). This makes wall modelling the pacing item for extending
LES to realistic flows (Bose and Park, 2018; Larsson et al., 2016).

Figure 1a schematically illustrates wall modelling in the context of LES. The LES grid in the near-wall
region typically scales with the outer layer rather than the local eddies, leaving the wall layer unresolved.
A wall model is therefore used to reconstruct the near-wall turbulence and predict wall fluxes, such as
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the wall shear stress τw and heat flux qw , based on LES-resolved flow quantities at a distance hwm from
the wall – often referred to as the LES/wall-model matching location. The most widely used wall model
is the equilibrium wall model (EWM) (Schumann, 1975; Kawai and Larsson, 2012; Yang et al., 2017),
which assumes the law of the wall (LoW) holds between the wall and hwm locally and instantaneously.
However, the LoW is valid only under equilibrium conditions for the mean flow. Consequently, the
EWM falls short when applied to the non-equilibrium boundary layers. Figure 1b highlights a represen-
tative case in which near-wall turbulence is affected by non-equilibrium effects, including APGs, system
rotation and surface roughness. Efforts have been made to address these non-equilibrium effects in the
contexts of wall models. In the following, we highlight a few of these developments. Park and Moin
(2014) proposed a dynamic non-equilibrium wall model that accounts for the temporal lag between
outer-layer changes and the wall shear stress response. Yang et al. (2015) developed an integral wall
model based on the momentum integral equation, enabling improved representation of mean velocity
profiles. Bose and Moin (2014) introduced a dynamic slip boundary condition that allows the wall shear
stress to adapt to the large-scale structures resolved by LES. Building on this concept, Bae et al. (2019)
formulated a dynamic slip wall model with a self-consistent treatment of the slip length. Fowler et al.
(2022) introduced a Lagrangian relaxation wall model that does not impose the LoW instantaneously,
but instead allows the modelled stress to evolve towards equilibrium over time, thereby better capturing
non-equilibrium effects such as pressure gradients. A more comprehensive review of recent progress in
wall modelling is available from Fowler et al. (2022), Bose and Park (2018) and Yang et al. (2024b),
and is not repeated here for brevity. While these advances have significantly expanded the applicability
of LES, the process of model development remains human-driven – rooted in hypothesis generation,
expert intuition and iterative refinement. In this context, near-wall turbulence not only remains a persis-
tent bottleneck, but also serves as an ideal testbed for exploring whether AI can drive physical model
development.

Recent years have seen a surge of interest in applying AI to turbulence modelling. In particular,
machine learning (ML) tools have been used to develop turbulence closures by training on data from
high-fidelity simulations and experiments (Duraisamy et al., 2019; Pandey et al., 2020; Shan et al., 2023;
Bin et al., 2022, 2023). These efforts have yielded subgrid-scale models for LES (Maulik et al., 2019;
Cheng et al., 2022; Xie et al., 2020), Reynolds stress closures for Reynolds-averaged Navier–Stokes
(RANS) (Ling et al., 2016; Parish and Duraisamy, 2016; Wang et al., 2017; Bin et al., 2024a, b; Wu
et al., 2025) and wall models for LES (Yang et al., 2019; Bae and Koumoutsakos, 2022; Vadrot et al.,
2023b; Zhou et al., 2021; Ma and Lozano-Durán, 2025). Given the focus of this work on near-wall
turbulence modelling, we briefly review several notable data-driven wall modelling efforts. Yang et al.
(2019) proposed a predictive wall model based on supervised training of neural networks. The model
learns a direct mapping between resolved flow quantities at the matching location and wall fluxes, with
the training guided by the LoW. Zhou et al. (2021) adopted a similar supervised learning approach
and demonstrated its effectiveness in LES of periodic hill flows, accurately capturing flow separation
and reattachment. Bae and Koumoutsakos (2022) introduced a multi-agent reinforcement learning (RL)
framework, in which local agents infer wall stress through trial-and-error interactions with the LES envi-
ronment, with rewards based on physical performance metrics such as velocity field accuracy. Vadrot
et al. (2023b) extended this RL approach and demonstrated that the trained model can recover the loga-
rithmic law of the wall across a range of Reynolds numbers. Lozano-Durán and Bae (2023) proposed a
machine learning wall model based on the principle of composability. Rather than training on complex
geometries directly, the model is trained on simple ‘building-block’ flows – canonical configurations
such as turbulent channel and Couette flows – with the assumption that more complex boundary layer
behaviours can be composed from these elementary patterns. Additional reviews of recent develop-
ments in data-driven wall modelling can be found from Vadrot et al. (2023a) and are not repeated here
for brevity. Despite these advances, the development process remains fundamentally human-guided.
Researchers define the modelling objectives, curate training datasets, select architectures and tune loss
functions. The resulting models are typically evaluated on predefined benchmarks. This raises a broader
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question: can AI be tasked with open-ended problem solving in fluids engineering, where the objective
is to iteratively generate and refine physically meaningful models?

In this study, we present a new paradigm in which a general-purpose LLM is tasked with solving
problems in turbulence modelling. Unlike conventional applications where AI systems are trained to
fit existing data within predefined architectures, we employ DeepSeek-R1, an open-weight LLM, as an
autonomous agent operating within a closed-loop modelling framework. The LLM is prompted to gener-
ate strategies for near-wall turbulence modelling, which are then assessed both a priori and a posteriori.
Based on performance feedback, the LLM revises its models through multiple iterations – mirroring
the hypothesis generation, testing and refinement cycles traditionally performed by human researchers.
This approach departs from standard one-shot benchmark-driven machine learning workflows such as
reported by Pröhl et al. (2024) and Jiang et al. (2025). The present framework enables the model to
engage in long-chain reasoning and to propose modelling strategies that exhibit both interpretability and
performance. We note that the choice of DeepSeek-R1 here over more widely used commercial models,
such as ChatGPT or Claude, is motivated by two key considerations. First, DeepSeek-R1 is open-source,
which enables full control over prompt design, reproducibility and model deployment. Second, recent
benchmarks suggest that DeepSeek-R1 exhibits strong reasoning capabilities, particularly in physics and
mathematics domains (Gao et al., 2025).

This article focuses on three longstanding challenges in near-wall turbulence modelling: the effects
of APGs, system rotation and surface roughness. These physical mechanisms often appear simultane-
ously in engineering applications such as turbomachinery and aerospace flows. However, modelling
their combined effects directly in complex configurations – such as those illustrated in Figure 1b – is
ill-advised. The intertwined influence of multiple non-equilibrium effects makes it difficult to assess
modelling errors. Here, we adopt a classical strategy in turbulence research: decomposing a complex
modelling problem into a set of well-defined model problems. As sketched in Figure 1c, we study each
effect individually in the context of periodic channel flows, which provide controlled environments for
isolating the impact of APG, rotation or roughness. This serves multiple purposes. First, it enables sci-
entific clarity – allowing us to assess whether the AI can identify the dominant mechanisms associated
with each effect. Second, it facilitates validation against available high-fidelity data from DNS, which
exists for these canonical flows – at least for mean velocity profiles and wall stresses (Yang et al., 2020b;
Chen et al., 2023; Huang and Yang, 2021; Yang et al., 2023; Nair et al., 2024). Third, it mirrors the his-
torical development of turbulence models, where insight is gained from simplified configurations before
generalisation to more complex flow scenarios. For each model problem, DeepSeek-R1 is prompted to
develop near-wall models. The proposed models are then evaluated in canonical LES settings and their
performance is used to iteratively refine subsequent formulations. In doing so, we shall see that the AI
demonstrates an emerging capability for open-ended problem solving in fluids engineering.

The rest of the paper is organised as follows. In § 2, the methodology is described. Results are
presented in § 3, followed by concluding remarks in § 4.

2. Methodology
2.1. Large language model
Our AI capabilities are driven by DeepSeek-R1, leveraging the computational power and infrastructure
of the SiliconCloud API for seamless integration and performance. DeepSeek-R1 is an LLM released
in January 2025 by DeepSeek AI (Guo et al., 2025). It is an open-weight, transformer-based model
designed to support long-form reasoning with a focus on handling complex, multi-step problems through
iterative token generation and context management. The model is built on a dense decoder-only trans-
former architecture with 61 layers and approximately 671 billion parameters (Guo et al., 2025), making it
one of the largest openly accessible models in terms of parameter count. It supports a 32 000-token con-
text window, facilitating the processing of long documents and maintaining coherence across extended
dialogues or analytical tasks. The model was pretrained on a diverse mixture of high-quality data sources,
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Figure 2. A flow diagram representing the interaction between the engineers and LLM.

including curated web documents, source code from multiple programming languages and scholarly
articles from various scientific domains, which enhances its capability in both general and technical
contexts. This was followed by extensive instruction tuning using supervised fine-tuning and reinforce-
ment learning from human feedback (RLHF) to align its outputs with user intentions while preserving
reasoning depth. The reasoning capabilities of Deepseek-R1 have been benchmarked against state-of-
the-art models across scientific question-answering tasks, maths word problems and theorem proving.
It consistently showing competitive performance, often matching or exceeding the performance of other
leading models in complex reasoning scenarios.

Figure 2 illustrates the collaborative workflow between the engineers and the LLM, outlining
the iterative process of proposal, evaluation and refinement of candidate models. When interact-
ing with the LLM, we play the role of a fluids engineer, responsible for defining the modelling
objectives and evaluating candidate solutions. The LLM, in turn, acts as the modeller, tasked with
generating modelling strategies and outlining potential implementation pathways. The interaction
begins by presenting the LLM with a flow configuration and the associated modelling challenge.
It is then prompted to propose candidate solutions, often followed by clarification prompts to elicit
additional details or justification needed for evaluation and practical implementation. In contrast to
benchmark-style evaluations, which typically involve a single round of interaction focused on veri-
fying the correctness of LLM responses, our process seeks to mimic the communication between a
turbulence modeller in academia and a fluids engineer in industry. This communication is inherently
iterative, involving multiple rounds of feedback and refinement. Here, multiple rounds of interaction
are critical: they provide opportunities for both the user and the LLM to correct omissions or mis-
understandings. For example, the instructions we initially provide may be incomplete or the models
proposed by the LLM may contain errors. These shortcomings are often corrected through sub-
sequent interactions, without explicit acknowledgment from either party. Once a potentially viable
solution is provided, we proceed to formal evaluation. Two types of evaluation are employed. The
first is based on feasibility: some solutions may require unavailable training data or demand imprac-
tical levels of manual coding, and such proposals are discarded. The second concerns accuracy,
assessed through both a priori evaluations – focused on consistency with empirical knowledge –
and a posteriori assessment via implementation and testing in CFD simulations. Each candidate model
must be rigorously evaluated through high-fidelity numerical simulation before it can be considered
a viable solution. Even if a model fails the a posteriori test, the simulation results still offer valuable
performance feedback. The feedback is subsequently used to guide the LLM in refining the candidate
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model. The iterative process terminates once a candidate model achieves satisfactory accuracy in the
target flow configurations. Further details regarding the iterative interaction and evaluation process are
provided in § 3.

2.2. Computational fluid dynamics
We solve the filtered incompressible Navier–Stokes equations, written in index notation with summation
over repeated indices:

∂j ũ j = 0, (2.1)

∂t ũi + ∂j
(
ũi ũ j

)
= −∂i

(
p̃
ρ

)
+ ν∂j∂j ũi − ∂jτi j − 2ε i jkΩ j ũk , (2.2)

where ũi and p̃ are the resolved velocity and pressure, respectively; ρ is the fluid density, ν is the kine-
matic viscosity and Ω j denotes system rotation. The subgrid-scale (SGS) stress tensor τi j is modelled
according to the Boussinesq hypothesis:

τi j = −2νt S̃i j + 1
3
τkk δi j , (2.3)

where S̃i j = 1
2

(
∂j ũi + ∂i ũ j

)
is the resolved rate-of-strain tensor and δi j is the Kronecker delta. The eddy

viscosity νt is computed using the Vreman model, whose details could be found from Vreman (2004).
Near-wall turbulence is not resolved and is modelled using a wall model. Two types are considered. The
first is the EWM (Schumann, 1975; Piomelli et al., 1989; Kawai and Larsson, 2012; Yang et al., 2017),
which imposes the LoW between the wall and the LES/wall-model matching location hwm :

τw,x/ρ= −
⎡⎢⎢⎢⎢⎣

U+| |
f (y+)

⎤⎥⎥⎥⎥⎦
2

ũLES

U| |
, τw,z/ρ= −

⎡⎢⎢⎢⎢⎣
U+| |

f (y+)

⎤⎥⎥⎥⎥⎦
2
w̃LES

U| |
, (2.4)

where the superscript + denotes normalisation by wall units, U | | is the wall-parallel velocity, ũLES

and w̃LES are the LES velocity in the streamwise and the transverse directions at the LES/wall-model
matching location. In all of our WMLESs, hwm/h ≈ 0.2 and f (y+) is Spalding’s LoW. The algebraic
EWM in (2.4) has an ODE counterpart:

d
dy

[
(ν + νt,wm )

dũ | |
dy

]
= 0, (2.5)

where

νt = [κy(1 − exp(−y+/A+))]2




dũ | |
dy





, A+ = 26 (2.6)

is the wall model eddy viscosity. The models in both (2.4) and (2.5) are equivalent. They both impose
the LoW between the matching location and the wall. In the logarithmic region, the LoW is

U+ =
1
κ

ln y+ + B, (2.7)

with von Kármán constant κ ≈ 0.41 and intercept B ≈ 5.2 (Pope, 2001). For rough-wall flows, a
roughness function ΔU+ is subtracted to reflect the downward shift in the velocity profile:

U+ =
1
κ

ln y+ + B − ΔU+. (2.8)

In addition to the EWM, the second type of wall model includes those proposed from DeepSeek-R1.
These LLM-driven closures are presented in § 3. While the details of the models differ, their imple-
mentations are rather alike, and we place the LES/wall-model matching location at hwm/h ≈ 0.2 as
well.

We focus on the model problems in Figure 1c. The flow configuration is a periodic channel. The
flow is periodic in the streamwise and spanwise directions. The wall boundary condition is supplied
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Table 1. Details of WMLESs. The friction Reynolds number is defined as Reτ = uτh/ν, where uτ is
the friction velocity, h is the channel half-height and ν is the kinematic viscosity. For cases involving
a suddenly imposed APG, Reτ is the baseline value, i.e. at the time instant when the APG is applied.
The APG strength is characterised byΠ0 = (h/τw,0)(dp/dx), where τw,0 is the wall shear stress prior
to APG application. For cases with system rotation, the dimensionless rotation number is defined
as Roτ = 2hΩ/uτ , where Ω is the rotation rate. Surface roughness is parametrised using the non-
dimensional equivalent sandgrain roughness height, k+s = ksuτ/ν. Case labels use the abbreviations
APG, ROT and RW to indicate the presence of APG, rotation and roughness, respectively. The prefix
‘R’ denotes the nominal Reynolds number and is followed by Reτ/100.

Case Reτ Lx × Ly × Lz nx × ny × nz Remark
APG channel

R5APG1 544 2πh × 2h × 2πh 64 × 64 × 64 APG channel, Π0 = 1
R5APG10 544 2πh × 2h × 2πh 64 × 64 × 64 APG channel, Π0 = 10
R5APG100 544 2πh × 2h × 2πh 64 × 64 × 64 APG channel, Π0 = 100
R10APG10 1000 2πh × 2h × 2πh 64 × 64 × 64 APG channel, Π0 = 10
R10APG100 1000 2πh × 2h × 2πh 64 × 64 × 64 APG channel, Π0 = 100

Rotating channel
R2ROT10 180 2πh × 2h × 2πh 64 × 64 × 64 Rotating channel, Roτ = 10
R2ROT22 180 2πh × 2h × 2πh 64 × 64 × 64 Rotating channel, Roτ = 22
R2ROT40 180 2πh × 2h × 2πh 64 × 64 × 64 Rotating channel, Roτ = 40
R2ROT80 180 2πh × 2h × 2πh 64 × 64 × 64 Rotating channel, Roτ = 80
R2ROT120 180 2πh × 2h × 2πh 64 × 64 × 64 Rotating channel, Roτ = 120
R4ROT10 360 2πh × 2h × 2πh 64 × 64 × 64 Rotating channel, Roτ = 10
R4ROT20 360 2πh × 2h × 2πh 64 × 64 × 64 Rotating channel, Roτ = 20
R4ROT32 360 2πh × 2h × 2πh 64 × 64 × 64 Rotating channel, Roτ = 32
R4ROT44 360 2πh × 2h × 2πh 64 × 64 × 64 Rotating channel, Roτ = 44

Rough wall channel
R60RW1 6000 2πh × 2h × 2πh 64 × 64 × 64 Sandgrain, k+s = 54.2
R60RW2 6000 2πh × 2h × 2πh 64 × 64 × 64 Sandgrain, k+s = 64.4
R60RW3 6000 2πh × 2h × 2πh 64 × 64 × 64 Grit-blasted, k+s = 24.5
R60RW4 6000 2πh × 2h × 2πh 64 × 64 × 64 Grit-blasted, k+s = 27.2
R60RW5 6000 2πh × 2h × 2πh 64 × 64 × 64 Grit-blasted, k+s = 20.1
R60RW6 6000 2πh × 2h × 2πh 64 × 64 × 64 Grit-blasted, k+s = 16.3
R25RW7 2490 2πh × 2h × 2πh 64 × 64 × 64 Truncated core, k+s = 286
R50RW8 4970 2πh × 2h × 2πh 64 × 64 × 64 Multiscale LEGO-like, k+s = 646

by a wall model. Three flow effects are studied. First, a fully developed plane channel subjected to a
suddenly imposed APG. Second, a plane channel subjected to spanwise system rotation. Third, channel
flow with roughness on the bottom wall. Reference data are available from Chen et al. (2023); Xia
et al. (2016); Flack et al. (2016); Medjnoun et al. (2021); Womack et al. (2022); Flack and Schultz
(2023). The computational grid is uniformly spaced in all directions following the standard practice
(Bose and Moin, 2014; Park and Moin, 2014; Yang et al., 2020a). Key simulation parameters, including
domain size, Reynolds number and grid resolution, are listed in Table 1. The domain size, grid spacing
and aspect ratios closely match those used in prior studies (Anderson et al., 2018; Abkar et al., 2016;
Martinez-Tossas et al., 2018; Yang et al., 2024a), ensuring the credibility of performance evaluation and
cross-study comparisons.

All simulations are performed using a finite-volume solver adapted for wall-modelled LES. The
solver builds on the SUPES-cwm code base developed by Lv et al. (2021) and Gao and Lv (2025),
which has been validated for channel flow calculations. It employs a fully conservative finite-volume
formulation, nominal third-order spatial accuracy via characteristic-variable-based reconstruction and
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Figure 3. Schematic overview of the interaction between the LLM and the user for the APG modelling
problem.

an explicit strong-stability-preserving Runge–Kutta scheme for time integration. Numerical fluxes are
computed using a hybrid scheme blending central differencing and HLLC fluxes, with dissipation con-
trolled via a blending factor. Further details of the code’s numerics could be found from Lv et al. (2021)
and Gao and Lv (2025) along with a validation, and are not repeated here for brevity.

3. Results
3.1. Adverse pressure gradient
The presence of a pressure gradient – whether favourable or adverse – modifies the velocity distribution
and the shear stress within the boundary layer, leading to history effects (Bobke et al., 2017; Chen
et al., 2023) and significant departures from the canonical LoW behaviour observed under zero-pressure-
gradient conditions (Perry et al., 2002; Volino, 2020; Pozuelo et al., 2022). This deviation complicates
near-wall turbulence modelling, which often relies on equilibrium assumptions.

In this subsection, we summarise our interactions with the LLM regarding this challenge, present the
LLM-driven modelling solutions and assess its performance. The modelling challenge was presented to
the LLM using the following prompt:

I am a fluid engineer. I use wall-modelled large-eddy simulation. I have the following flow prob-
lem: a fully developed channel flow with a suddenly imposed APG. The imposed APG is kept
constant. You can imagine that the friction on the wall will decrease. The logarithmic law based
wall model is not effective in simulating this flow. Please propose new models, taking into account
simplicity and generality.

An overview of the interaction between the LLM and the user is illustrated in Figure 3, with the initial
prompt summarised and labelled as A0. In the following, we document the communication process,
highlighting how the LLM refines its reasoning, iteratively breaks down the problem and ultimately
converges on a viable solution. The communication here uses approximately 7000 tokens.

The LLM proposes five potential modelling strategies, labelled A11 to A15 in Figure 3. Here, the
four less successful strategies are discussed first, followed by the more promising one. The first strategy,
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A11, modifies the wall function. The LLM introduces the concept of an adjusted friction velocity, on
which we prompt it to elaborate. The model takes the following form:

τw = τw,0 [1 + α dP+] , (3.1)

where τw,0 is the prediction of the EWM, dP+ is the dimensionless pressure gradient and α is a model
constant. Although the intermediate model forms are not shown here for brevity, we note that the ini-
tial model form was dimensionally inconsistent. Nonetheless, this error was corrected in subsequent
responses without explicit prompting – an encouraging behaviour akin to human model development.
Upon implementation, we observe an abrupt and unphysical change in wall shear stress upon the appli-
cation of the APG, regardless of the choice of α. Due to this fundamental misrepresentation of the flow
physics, this strategy is discarded. The third strategy, A13, introduces a relaxation time scale to the wall
stress evolution:

τn+1w = τnw + Δt
τw,0 − τnw

Tr
, (3.2)

where τnw and τn+1w denote the wall shear stress at time steps n and n + 1, Δt is the time step size, τw,0 is
the EWM prediction, and Tr is a relaxation time scale. Analysis shows that this model acts as a low-pass
temporal filter for wall shear stress, but does not effectively capture pressure gradient effects. When this
limitation is communicated to the LLM, it reformulates the model by adding a source term accounting
for the APG:

∂t τw =
τw,0 − τw

Tr
+ γuτ∂xP, (3.3)

where γ is a model constant. A posteriori tests show that the model suffers from the same issue as that
in (3.1) and is therefore discarded as well. The fourth strategy, A14, is an integral model:

∂t θ +Ue∂xθ =
τw

ρU2
e

− θ
Ue
∂xUe . (3.4)

Upon requesting clarification of the variables in the equation, we find that the model requires information
at the edge of the boundary layer, which is generally not available in WMLES and is not desirable for
practical implementation. The fifth strategy, A15, suggests a data-driven modelling approach. However,
the lack of high-fidelity training data renders this strategy infeasible within the scope of the current study.
The second strategy, A12, ultimately yields a viable solution. Upon follow-up discussions regarding the
treatment of convective terms, the LLM refines the model from A12 to A22. The model is based on
the thin boundary layer approximation, thus assuming ∂yP = 0 and neglecting the wall-normal velocity.
The final model takes the following form:

Duwm

Dt
= − 1
ρ

∂PLES

∂x
+
∂

∂y

[
(ν + νt,0)

∂uwm

∂y

]
,

Dwwm

Dt
= − 1
ρ

∂PLES

∂z
+
∂

∂y

[
(ν + νt,0)

∂wwm

∂y

]
.

(3.5)

Here, uwm and wwm are the velocity components in the x and z directions, respectively; ν is the molec-
ular viscosity and νt,0 is the eddy viscosity, modelled in the same way as in the EWM. The model solves
the velocity profiles between the LES/WM matching location and the wall in both wall-parallel direc-
tions, x and z, according to (3.5). The pressure gradients in both the x and z directions are obtained
directly from the LES. Note that the pressure gradient and the material derivative terms require no clo-
sure, although storing the velocity profiles is necessary to compute the unsteady term. The rationale
here is that history effects are largely captured by the material derivative and the pressure gradient, and
no further modelling is required. In addition to the reasoning and the model formulation, the LLM also
supplies an initial Python implementation, which – although not directly portable to our CFD code –
provides a useful starting point. It is worth noting that some candidate modifications – for instance,
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Table 2. Time to incipient separation (normalised by h/Uc,0). Relative errors compared
to DNS are also listed.

Case DNS EWM LLM-A
R5APG1 228.4 264.5 (+15.8 %) 210.6 (−7.79 %)
R5APG10 22.90 30.71 (+34.1 %) 19.30 (−15.7 %)
R5APG100 0.7644 3.086 (+303.7 %) 0.6790 (−11.2 %)
R10APG10 29.15 38.14 (+30.8 %) 26.06 (−10.6 %)
R10APG100 1.393 3.743 (+168.7 %) 1.148 (−17.6 %)

Figure 4. (a–c) Inner-scaled mean velocity profiles following the imposition of an APG: (a) R5APG1;
(b) R5APG100; (c) R10APG100. Time T is normalised by h/Uc,0, where Uc,0 is the channel centreline
velocity at t = 0. (d–f) Evolution of the wall shear stress: (d) R5APG1; (e) R5APG100; (f) R10APG100.
The dashed line corresponds to the results for the EWM. DNS reference data are shown in colour and
predictions from the model in (3.5) are labelled ‘LLM-A’.

enhancing A11 through the introduction of a relaxation time, A13 – could, in principle, address defi-
ciencies such as unphysical abrupt increases in subsequent iterations. However, during the second round
of dialogue, a viable formulation, A22, emerged. Consequently, the iterative process was terminated.

We proceed to the a posteriori test. Figure 4 presents the results; the computational set-up has already
been summarised in Table 1. Figures 4a–4c show inner-scaled mean velocity profiles at various time
instants following the application of the APG, under mild (panel a) and strong (panels b, c) APG con-
ditions at two Reynolds numbers. As expected, the EWM performs adequately under mild APG, but
deteriorates under strong APG, regardless of Reynolds number. In contrast, the model in (3.5) accu-
rately tracks the evolution of the mean flow. Figures 4d–4f show the evolution of wall shear stress over
time for the three cases shown in Figures 4a–4c. Again, while the EWM is reasonably accurate under
mild APG (panel d), it fails to capture the rapid decline in wall shear stress observed in the strong APG
cases (panels e, f). By comparison, the DeepSeek model in (3.5) consistently produces more accurate
wall shear stress predictions across all three cases. Table 2 further quantifies the time to incipient sepa-
ration for each case. It is evident that the new model substantially reduces the prediction error compared
with the baseline EWM.

3.2. System rotation
System rotation profoundly modifies the dynamics of wall-bounded turbulent flows and arises in a wide
range of applications, including turbomachinery, atmospheric flows and rotating devices. A special
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Figure 5. Schematic overview of the interaction between the LLM and the user for the spanwise rotation
modelling problem.

case that has received much attention is when the flow is subjected to spanwise system rotation which
rotates along the z axis with the Coriolis force parallel to x−y plane, where the Coriolis force induces
a wall-normal pressure gradient that leads to the formation of a ‘pressure side’ and a ‘suction side’,
with turbulence suppressed and enhanced, respectively (Johnston et al., 1972; Xia et al., 2016). This
redistribution of turbulence intensity results in substantial deviations from the classical law-of-the-wall
behaviour: on the pressure side, the mean velocity exhibits a near-linear profile instead of the canonical
logarithmic scaling (Yang et al., 2020b; Brethouwer, 2017). Consequently, the EWM no longer applies.

In this section, we engage the LLM to address this challenge. The modelling task was presented to
DeepSeek-R1 using the following prompt:

I am a fluid engineer using wall-modelled large-eddy simulation. Turbulent flow in a rotating
system has long been a challenging problem. I am currently considering a simplified case: a
fully developed plane channel flow between two infinitely large plates, where x, y and z denote
the streamwise, wall-normal and spanwise directions, respectively. A uniform volume force is
applied along the x direction and the system rotates about the z axis at an angular velocity Ω.
Are there any existing wall models that can handle this type of flow?

An overview of the interaction between the LLM and the user is illustrated in Figure 5.
Before attempting a solution, DeepSeek-R1 undertakes an extended chain of reasoning. It first anal-

yses the mean flow by invoking and simplifying the RANS equations, concluding that spanwise mean
velocities or streamwise vortices may emerge due to Coriolis–Reynolds stress interactions. It correctly
concludes that spanwise system rotation modifies turbulence anisotropically: turbulence is suppressed on
the stable (suction) side and enhanced on the unstable (pressure) side. Additionally, the altered Reynolds
stresses redistribute momentum, fundamentally modifying the mean flow structure. DeepSeek-R1 then
analyses the limitations of existing wall models. It reasons that the Coriolis force disrupts the equilibrium
state assumed in traditional EWMs. Rotation selectively suppresses or enhances turbulent fluctuations
and conventional models are unable to capture such anisotropic effects. Due to this extended reason-
ing chain, including the discussion on modelling strategies, the conversation uses approximately 21 000
tokens.

Following this analysis, DeepSeek-R1 proposes several possible solutions. The overarching principles
are similar to those observed in the APG problem. A data-driven approach (labelled B12 in Figure 5) is
proposed but ultimately discarded due to the lack of high-fidelity training data. An integral formulation,
B13, is also suggested but rejected because it requires information at the boundary-layer edge. What we
find particularly interesting in this interaction is that the LLM identifies transport-equation-based models
with rotation corrections, B14, of which we were not previously aware and which could potentially form
the basis of an effective two-layer model, but is not selected due to the significant amount of coding
required. The selected solution, B11, involves modifying the law of the wall. Initially, DeepSeek-R1
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Table 3. Bulk velocity predictions normalised by uτ . Relative errors compared with DNS
are also listed.

Case DNS EWM LLM-B
R2ROT10 17.62 21.16 (+20.1 %) 17.86 (+1.36 %)
R2ROT22 22.25 25.91 (+16.4 %) 23.89 (+7.37 %)
R2ROT80 45.56 39.10 (−14.2 %) 47.83 (+4.98 %)
R2ROT120 55.40 39.60 (−28.5 %) 52.03 (−6.08 %)
R4ROT10 20.25 24.69 (+21.9 %) 21.66 (+6.96 %)
R4ROT20 24.86 28.88 (+16.2 %) 25.57 (+2.86 %)
R4ROT32 31.24 33.41 (+6.95 %) 30.93 (−0.99 %)
R4ROT44 37.84 37.72 (−0.32 %) 37.44 (−1.06 %)

Figure 6. Mean velocity profiles in spanwise rotating channels: (a) R2ROT10; (b) R2ROT120;
(c) R4ROT20; (d) R4ROT32. Label ‘LLM-B’ corresponds to the model in (3.7).

recommends altering the logarithmic law. Upon examining the mean flow data, DeepSeek-R1 proposes
a modified law of the wall:

U+ = 2Ro+y+ + (16.5 + 60.6Ro+)/(1 + 46Ro+), (3.6)

where Ro+ is the rotation number based on wall units. Inverting the mean flow scaling in (3.7) yields a
near-wall model:

τw/ρ=

[
ULES

2Ro+y+ + (16.5 + 60.6Ro+)/(1 + 46Ro+)

]2
. (3.7)

Note that, due to the use of uτ for non-dimensionalisation, evaluating the right-hand side requires knowl-
edge of the wall shear stress, making (3.7) an implicit equation for τw . Nonetheless, one can avoid an
iterative solution by using the wall shear stress from the previous time step to evaluate the right-hand
side, following the practice of Yang et al. (2017), Yang et al. (2015), among others.

We test the model in (3.7) within the WMLES framework for plane channel flows subjected to various
levels of spanwise rotation. Figure 6 presents the mean velocity profiles for four representative cases. For
comparison, we include results from the EWM and reference DNS data. The model in (3.7) consistently
outperforms the baseline EWM and accurately captures the mean flow behaviour in spanwise rotating
channels. Additional results are provided in Table 3, listing the predicted bulk velocities normalised by
uτ . Note that a pressure gradient is imposed, the friction Reynolds number is fixed and the bulk velocity
emerges as a prediction of the model. Across all cases, the proposed model significantly improves bulk
velocity predictions relative to the EWM over a broad range of rotation numbers.

3.3. Surface roughness
Surface roughness significantly impacts boundary-layer flows, altering momentum transfer and introduc-
ing substantial drag penalties across a wide range of engineering applications, including ships, aircraft,
turbomachinery and atmospheric boundary layers (Barlow and Coceal, 2008; Bons, 2010; Schultz,
2007). Predicting the influence of roughness has been a longstanding challenge due to the diversity of
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Figure 7. Schematic overview of the interaction between the LLM and the user for the roughness
modelling problem.

roughness topographies and their complex interactions with near-wall turbulence (Chung et al., 2021).
The objective of rough-wall modelling is typically to predict quantities such as the equivalent sand-grain
roughness height ks or the roughness function ΔU+, and significant advances have been made since the
seminal work of Nikuradse (Nikuradse, 1950; Yang et al., 2023; Colebrook, 1939; Moody, 1944; Flack
and Schultz, 2014). However, incorporating these insights directly into wall modelling for LES remains
limited (Bose and Park, 2018). Here, we engage DeepSeek-R1 to explore new modelling strategies for
rough-wall effects in the context of WMLES. We initiated the discussion with DeepSeek-R1 by posing
a general question:

I am a fluid engineer and I use wall-modelled large-eddy simulation. Modelling surface rough-
ness has always been a difficult problem. What are the main approaches to rough-wall modelling?
How can we accommodate surface roughness in wall models?

DeepSeek-R1 has an awareness of the extensive literature on rough-wall turbulence and highlights
several key points. First, it notes that the effect of surface roughness is often parametrised by a roughness
function, which manifests as a downward shift of the log-law velocity profile relative to smooth-wall
flows. Second, it recognises that explicit geometric resolution of roughness in CFD simulations can
accurately capture roughness effects, but doing that can be computationally costly. Third, it identifies
machine-learning approaches that relate near-wall flow information to wall shear stress.

The full conversation involves approximately 24 000 tokens and the portion relevant to modelling
is summarised schematically in Figure 7. In this dialogue, DeepSeek-R1 identifies three key variables
for rough-wall modelling: the equivalent sandgrain roughness ks (labelled C11), wall shear stress τw
(labelled C12), and parameterizations of the roughness geometry (labelled C13). When prompted on
how to determine these quantities, the LLM recommends a data-driven approach, C14. The training
data include drag measurements, roughness geometric statistics and equivalent sandgrain roughness,
which are available from public roughness datasets (Yang et al., 2023). Upon confirming the feasibility
of this data-driven approach, DeepSeek-R1 provides detailed guidance on constructing a neural network,
selecting input and output features, and performing the training. The resulting wall model takes the form:

τw/ρ=

[
U‖

ln(hwm/ks )/κ + A

]2
, ks =ANN (Parametrisation of Roughness Geometry), (3.8)

where the parametrisation of roughness geometry involves single-point statistics such as the peak-to-
trough height, second, third and fourth-order moments of the roughness height, as well as combinations
of these variables. We note that comparing the model in (3.8) to the EWM is inappropriate, as the EWM
assumes a smooth flat plate. As a baseline for comparison, we adopt the rough-wall model proposed by
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Table 4. Predicted roughness function ΔU+ and the roughness functions measured from
experiments. Relative errors compared with experimental measurements are also listed.

Case Exp Ref LLM-C
R60RW1 6.26 8.80 (+40.6 %) 5.75 (−8.11 %)
R60RW2 6.67 9.42 (+41.2 %) 6.93 (+3.86 %)
R60RW3 4.43 5.59 (+26.1 %) 4.33 (−2.18 %)
R60RW4 4.69 5.87 (+25.1 %) 4.10 (−12.7 %)
R60RW5 3.89 4.94 (+26.9 %) 3.93 (+1.06 %)
R60RW6 3.30 4.23 (+28.3 %) 3.08 (−6.64 %)
R25RW7 10.6 13.3 (+25.3 %) 10.66 (+0.14 %)
R50RW8 12.7 15.5 (+21.4 %) 13.24 (+3.96 %)

Figure 8. Predicted mean velocity profiles for rough-wall flows: (a) R60RW1; (b) R60RW3;
(c) R25RW7; (d) R50RW8. ‘Ref’ corresponds to the roughness model of Forooghi et al. (2017). ‘LLM-C’
corresponds to the model in (3.8). The dashed black line indicates the LoW. The shaded regions
represents the uncertainty in the training data.

Forooghi et al. (2017), which is otherwise identical to (3.8) except that ks is given by

ks/krms = 3.41(1 + SK)0.61, (3.9)

where krms is the root-mean-square of the roughness height and SK denotes the skewness.
We evaluate the performance of the proposed model within the WMLES framework. Here, the sur-

face roughness is not explicitly resolved; instead, its effects on the flow are entirely modelled. Figure 8
presents comparisons of mean velocity profiles for several rough-wall cases. Results are compared
against experimental reference data from Flack et al. (2016), Flack and Schultz (2023), Medjnoun et al.
(2021), Womack et al. (2022), as well as against the baseline model. The roughness morphologies con-
sidered range from random Gaussian surfaces to regular truncated cones. We observe that the model
proposed by DeepSeek-R1 consistently yields more accurate mean velocity predictions, particularly in
the logarithmic layer. More quantitative comparisons are provided in Table 4, which lists the predicted
roughness function ΔU+ for all rough surfaces considered. The corresponding roughness morphologies
are already detailed in Table 1. Across all cases, the present model outperforms the reference model of
Forooghi et al. (2017), highlighting the effectiveness of the LLM-guided modelling approach.

4. Concluding remarks
In this study, we explored the utility of LLMs for turbulence modelling by engaging DeepSeek-R1 in a
closed-loop, iterative framework. Within this framework, DeepSeek-R1 engages a human engineer, and
proposes and refines wall models to address three challenges in near-wall turbulence modelling: APGs,
system rotation and surface roughness. Our results demonstrate that the LLM-driven models not only
rival, but in many cases outperform, baseline wall models.
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A key distinction between the present work and existing data-driven turbulence modelling efforts
lies in the role played by the AI. Conventional data-driven turbulence models are in fact human-driven:
researchers design network architectures, curate training data, and employ machine learning to optimise
weights and biases. The resulting models often function as black boxes, offering limited interpretability
or physical reasoning. In contrast, the models developed in this study were truly AI-driven. DeepSeek-R1
autonomously provided physical reasoning, logical model structures and complete modelling strategies,
resulting in models that are transparent, interpretable and grounded in physical arguments. It should be
emphasised that the a priori knowledge introduced does not predefine the model itself, but rather estab-
lishes the constraints of the problem – defining relevant variables, enforcing dimensional consistency and
ensuring adherence to fundamental physical laws. Within this constrained framework, the LLM acts as a
hypothesis-generation engine, enabling the systematic exploration of physically plausible model forms.

Equally important is the paradigm shift in how the AI is treated during the process. In most prior appli-
cations, AI tools are treated as subordinate assistants, tasked with executing narrowly defined objectives
with minimal feedback loops from a human. Here, we treat the LLM as an equal partner, engaging
in multiple rounds of iterative dialogue analogous to collaboration among human researchers. Recent
studies in human–AI co-creation suggest that enabling reciprocal communication significantly enhances
collaboration quality and creative outcomes (Rezwana & Maher, 2022). Our experience supports this
view: through sustained interaction, DeepSeek-R1 is able to correct its own errors, refine incomplete
formulations and meaningfully contribute to model development without requiring explicit correction
at each step.

The results also highlight a limitation of conventional benchmark evaluations of LLMs, which typ-
ically assess models based on a single-response correctness (Pröhl et al., 2024; Jiang et al., 2025). As
shown here, when allowed to participate in multi-turn, collaborative interactions, LLMs demonstrate
capabilities for adaptive reasoning and creative problem-solving that more closely resemble scientific
inquiry than simple information retrieval.

Despite these promising results, several limitations of the present investigation must be acknowl-
edged. First, in real engineering applications, these three effects – pressure gradient, rotation and surface
roughness – typically occur simultaneously. Current models fail in this regard. Second, the field of
LLM development is advancing rapidly. Since the release of DeepSeek-R1, several newer models have
demonstrated even stronger reasoning capabilities, making the present work an initial but already dated
baseline. Second, while DeepSeek-R1 proposed models with strong performance and clear logic, it
did not invent entirely novel modelling paradigms. The strategies it identified – including data-driven
approaches, integral methods and modified laws of the wall – have precedents in the turbulence mod-
elling literature. Nevertheless, it is important to recognise that individual researchers are typically
familiar with only a subset of these methods. The ability of the LLM to synthesise diverse approaches
and reason across multiple frameworks represents a significant augmentation of human expertise.

In all, our experiences point to a broader opportunity in applied fluid mechanics: LLMs can serve
as powerful collaborators in engineering model developments. They offer a platform for brainstorm-
ing ideas, synthesising knowledge beyond the reach of any individual researcher and refining concepts
through interactive reasoning.
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