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Abstract

In chemical process engineering, surrogate models of complex systems are often necessary for tasks of domain
exploration, sensitivity analysis of the design parameters, and optimization. A suite of computational fluid dynamics
(CFD) simulations geared toward chemical process equipment modeling has been developed and validated with
experimental results from the literature. Various regression-based active learning strategies are explored with these CFD
simulators in-the-loop under the constraints of a limited function evaluation budget. Specifically, five different sampling
strategies and five regression techniques are compared, considering a set of four test cases of industrial significance and
varying complexity. Gaussian process regression was observed to have a consistently good performance for these
applications. The present quantitative study outlines the pros and cons of the different available techniques and
highlights the best practices for their adoption. The test cases and tools are available with an open-source license to
ensure reproducibility and engage the wider research community in contributing to both the CFD models and
developing and benchmarking new improved algorithms tailored to this field.

Impact Statement

The recommendations provided here can be used for engineers interested in building computationally inexpen-
sive surrogate models for fluid systems for design or optimization purposes. The test cases can be used by
researchers to test and benchmark new algorithms for active learning for this class of problems. An open-source
library with tools and scripts has been provided in order to support derived work.

1. Introduction

Process models are used in the design and operation stages of a process plant for a wide array of tasks
including design optimization, sensitivity analysis and uncertainty quantification among others (McBride
and Sundmacher, 2019).Most common processmodels use regression, where a variable of interest (e.g., a
drag, or heat transfer coefficient) can be mapped as some function of operating conditions, fluid
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properties, and/or geometric parameters. Usually, experimental tests are performed in down-scaled versions
of the system of interest, and the measurements are used to develop regression functions on an ad hoc basis.
Computational fluid dynamics (CFD) simulations are an attractive tool to complement such a methodology
as once a model has been set up and validated, parametric analysis can be easily performed manually or
automatically. Additionally, numerical computations allow for the exploration of parameters that could not
be easily replicated in laboratory conditions due to infrastructure or measurement limitations.

Despite the aforementioned advantages, realistic CFD simulations suffer frommajor limitations in terms
of computational cost. Simulating moderately sized industrial systems may take hours to days on high-
performance computing clusters, which means that in practice the total number of simulations in a given
study will rarely be greater than a few dozen. The regression algorithm should therefore have the highest
possible sample efficiency, that is, be able to provide good estimates of interpolated values with the lowest
number of simulations possible. Traditional techniques used in the design of computational experiments
include Latin hypercubes, Hammersley sequence sampling, orthogonal arrays and uniform designs
(Simpson et al., 2001). These methods aim to distribute the input features such that the space of parameters
is filled as “evenly” as possible. In the context of machine learning, different strategies have been used for
dealing with small sample regression problems where obtaining samples is costly. They include transfer
learning, semi-supervised learning, and active learning (Wu et al., 2019) among others. This studywill focus
on the last strategy, since it requiresminimal interference on the surrogate development algorithm and is also
agnostic of the underlying CFD model. Note, however, that these techniques are not necessarily exclusive,
and combinations of methods could also be explored for further improvements.

Active learning consists of a mathematical criterion, a sampling strategy, to select the most “infor-
mational” parameters from a pool of possibilities. In the present case, this consists of selecting the next
expensive simulation to be performed and is decided algorithmically, possibly making use of the
underlying structure of the solution estimated with previous results. This avoids an extremely expensive
grid search of all parametric permutations, a procedure that is infeasible in moderately complex systems.
Such grid search techniques suffer from the “curse of dimensionality,” where the number of possible
combinations of simulations increases exponentially with respect to the increase in dimensionality,
making such techniques computationally intractable. Active learning techniques for regression problems
have been the subject of relatively few studies, when compared to classification tasks. Ray-Chaudhuri and
Hamey (2002) utilized the “query-by-committee” scheme for active learning with a neural network.
Several copies of the model were trained on random subsets of the data and the discrepancy of the
predictions was used as a criterion for selecting samples. Cai et al. (2013) proposed an active learning
algorithm which selects the examples expected to affect the predictions the most. The expected change is
estimated based on the comparison between models, which were trained in subsets of the data. O’Neil
(2015) compared active learning techniques in the context of linear regression models. From all the
schemes investigated, only the diversity-based approach was found to significantly outperform the
baseline results. Wu et al. (2019) analyzed the performance of six sample selection algorithms for
regression, of which two were proposed by the author, on datasets from various domains. The five active
learning techniques were found to outperform random selection consistently. The strategy based on
greedy sampling of both inputs and output was verified to be particularly effective.

However, there does not seem to be a generic active learning strategy which can outperform all others
for every class of problems. On the other hand, empirical and systematic comparison of algorithms in
different domains of knowledge may be useful for a practitioner interested in applying such techniques to
a specific class of problems. The present idea is to build a set of industrially relevant problems which are
generic enough to cover similar types of CFD problems and benchmark different active learning
algorithms to assess their efficacy and provide directions for best practices to users in similar domains.
In the present work, a methodology for generation of surrogate models based on CFD simulations is
explored and evaluatedwith a set of test cases from the literature. The library developed for benchmarking
is available on GitHub1 under an MIT Licence, which allows users to freely “use, copy, modify, merge,

1 https://github.com/ImperialCollegeLondon/al_cfd_benchmark.
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publish, distribute, sublicense, and/or sell copies of the software.” This includes functions for selecting
between different strategies, preparing and extracting results from CFD cases and calculating errors, as
well as case setups and plotting scripts.

The remainder of this article is organized as follows: in Section 2, the surrogate model development
algorithm will be presented, along with the specific regression and sampling techniques which were
evaluated. Following that, Section 3 will introduce the test cases used in the present work and Section 4.1
will detail the methodology used for comparison between methods. Finally, Section 4.2 will present the
results of the analysis, along with general conclusions and recommendations for the engineering
applicability of the methodology.

2. Surrogate Modeling Framework

The objective of the surrogate model approach is to develop computationally inexpensive statistical
model which, following a systematic calibration can reproduce key predictions of a complete CFD
simulation at a fraction of the computational cost. Mathematically, the aim is to find a regressor f ⋆ xð Þ that
approximates a function f xð Þ for the domain x∈ xmin,xmax½ �, based on a limited number Ns of function
evaluations f xið Þf g, i∈ 1,Ns½ �. Since the toolbox is designed generically to evaluate the sampling criterion
and choose from a discrete pool of parameters, the domain is divided into a fine grid of possible
simulation conditions. An initial set of working conditions xif g, i∈ 1,N0½ � is chosen with a fixed
initialization strategy, and the respective simulations are performed in order to obtain a set of initial
responses. A regressionmodel is built based on these results. Following that, a sampling algorithm selects
a new operating condition (e.g., from the available pool) to be evaluated. This is repeated until Ns

simulations have been performed. This workflow is shown in Figure 1. Alternatively the stopping
criterion could be defined based on some measure of estimated uncertainty. For benchmarking purposes,
however, the procedure presented here seemsmore appropriate, allowing for a direct comparison between
different methods given a fixed number of simulations.

2.1. Regression techniques

Five regression techniques of varying complexity were chosen for evaluation. The key concepts will be
introduced here; for details on each model we refer the reader to Hastie et al. (2009). The implementations
were provided in the scikit-learn package (Pedregosa et al., 2011). Most of these techniques depend on
hyperparameters—parameters the values of which are set before the training process begins. These need
to be adjusted through empirical rules and systematic testing. In order to keep the procedure of this work
simple and relevant to engineering applications, we forfeited fine-tuning of default parameters whenever
possible, restricting the analysis to the defaults provided by the software. These settings have been shown
toworkwell across awide range of problem domains and have hence been recommended as defaults in the
popular software implementations. As such, they would also be the default choice to a user applying such
active learning techniques to a new CFD model with minimal prior insight regarding the choice of
hyperparameters. Therefore, the results of each method should not be seen as best case scenarios, but
instead as a typical results.

2.1.1. Linear regression
The most basic kind of regression is a linear model, given by:

f ⋆ xð Þ¼ a �xþb, (1)

where a and b are coefficients to be adjusted based on observations.
Linear regression can often describe the behavior of functions over small ranges, but eventually

becomes too limited to describe data from real systems. It is included here as a baseline for comparison to
more sophisticated models.
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2.1.2. Gaussian process regression
Gaussian process (GP) regression is a nonparametric Bayesian technique, which provides the regression
as a distribution over functions. As such, predictions are also characterized by amean value and a standard
deviation. The mean values of the predictions are given by:

f ⋆ xð Þ¼
XNt

i¼0

wik xi,xð Þ, (2)

where xi are the parameters used for training andNt is the total number of observations. The weightswi can
be calculated with the knowledge of the kernel function kðxix jÞ and the responses f xið Þ. A kernel function
kðxix jÞ must be chosen to generate the covariance matrix, which defines the smoothness of the regression
function. Here, three alternatives will be compared: the radial-basis function (RBF), Matérn, and cubic
kernels (Rasmussen and Williams, 2005). The RBF kernel is a popular choice for GP models, given by:

k xi,x j
� �¼ exp �1

2
d xi=l,x j=l
� �2� �

, (3)

where d is the Euclidean distance between the vectors and l is a length-scale hyperparameter, which
should be strictly positive. The Matérn kernel is a generalization of the RBF kernel. It is defined by an
additional parameter νM . In the particular case of νM ¼ 5=2, the obtained functions are twice differentiable,
and the kernel is given by:

k xi,x j
� �¼ 1þ

ffiffiffi
5

p
d xi=l,x j=l
� �þ5

3
d xi=l,x j=l
� �2� �

exp �
ffiffiffi
5

p
d xi=l,x j=l
� �� �

: (4)
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Figure 1. Workflow utilized for building the surrogate models for computational fluid dynamics (CFD)
simulations through the active learning methodology.
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In the present models, the initial length scale l was set to 0:1. The cubic kernel is given by:

k xi,x j
� �¼ σ20þxi �x j

� �3
, (5)

where σ0 is a hyperparameter. The parameter estimation was performed using an optimization algorithm
(L-BFGS-B, a variation of the Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm; Zhu
et al., 1997).

2.1.3. Random forest regression
In a random forest regression, the response is obtained from a combination of the predictions of several
decision trees, which are trained on random subsets of the complete dataset. The technique has become
very popular for nonlinear regression, scaling well to many input parameters and large amounts of data. It
also allows for an inspection of the importance of individual features in the results, which can be useful for
interpretability. The number of trees was set to 10.

2.1.4. Support vector regression
Support vector regression relies on projecting the input data onto a reproducing kernel Hilbert space,
where a linear regression is then performed. Here, the frequently adopted RBF kernel (Equation 3)
was used.

2.1.5. Multilayer perceptron
Amultilayer perceptron is a type of neural network composed of a sequence of layers of neurons. A series
of linear operations and nonlinear activation functions is applied to the input vector as it passes through the
network, until a single output vector is obtained. Since data are scarce in the cases considered here, a single
hidden layer with 10 neurons was used. The stochastic optimization algorithm Adam (Kingma and Ba,
2014) was used for weight adjustment.

2.1.6. Summary
A summary of the total number of adjustable parameters for each technique, with the configurations
presented before, is shown in Table 1. Here,N f is the number of features in the input vector. In a situation
of scarce data, as examined here, the computational cost of fitting the parameters is negligible in
comparison to the data collection. In scenarios of abundant data, on the other hand, the scalability of
each method in respect to Nt may be a matter of concern.

2.2. Sampling strategies

Five sampling strategies were compared: random sampling, three variations of greedy sampling presented
byWu et al. (2019) and a strategy based on the estimation of prediction variance, specific toGPmodels. The
active learning strategies were implemented using themodAL Python package (Danka and Horvath, 2018).

Table 1. Number of fitting parameters used in each regression technique.

Method Number of parameters

Linear N f coefficients, 1 intercept

GP Nt coefficients, 1 hyperparameter

Random forest 10 decision trees, variable number of leaves

Support vector Nt coefficients, 1 intercept

Multilayer perceptron 10 N f þ1
� �

weights, 11 intercepts

Data-Centric Engineering e7-5

https://doi.org/10.1017/dce.2020.8 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2020.8


2.2.1. Random sampling
Random sampling is commonly used as a base reference for comparing against other methodologies.
Since it does not require any kind of modeling, it has negligible computational overhead, and is readily
parallelizable. However, the fact that it neglects the underlying structure of the response space means that
for complex functions it might require a very large number of function evaluations to converge. Samples
are randomly chosen from the pool:

xif g 	!R xs: (6)

2.2.2. Greedy sampling on the inputs
Greedy sampling on the inputs seeks to sample the locations which maximize the exploration of the input
space, ignoring outputs. It is not dependent on a regression model for estimation of outputs, which means
that the computational overhead is low. The distance d in feature space of an unlabeled instance xi to the
already labeled positions x j is given by:

dx xið Þ¼ min
j
kxi�x jk: (7)

For greedy sampling on inputs, each sample is selected according to:

xs ¼ argmax
xi

dx xið Þ: (8)

This methodology can be characterized as a passive sampling scheme, since the selection does not
require values of the output variables, meaning that it shares some of the same advantages of the random
scheme. As the points are added gradually, the distribution of points generates a hierarchical grid
somewhat similar to the one generated by a grid search.

2.2.3. Greedy sampling on the output
In contrast to the previous strategy, greedy sampling on the output aims to find the unlabeled instance that
maximizes the distance of estimated responses to the previously observed function values. The distance of
an unlabeled instance in output space is given by:⋆

d f xið Þ¼ min
j
∣ f ⋆ xið Þ� f x j

� �
∣: (9)

The next sample is selected according to:

xs ¼ argmax
xi

d f xið Þ: (10)

This strategy will lead to a large number of samples in the regions where the response function varies
rapidly, but potentially small exploration of the parameter space. In the case of multimodal functions, for
example, this could lead to important features being missed in the sampling procedure.

2.2.4. Greedy sampling on both inputs and output
The greedy algorithm based on inputs and outputs is a combination of the previous criteria. The distances
in both feature and response spaces are combined. The next sample is selected according to:

xs ¼ argmax
xi

dx xið Þd f xið Þ: 11

The distances in input and output spaces are calculated as shown before. The product of distances is
used here instead of a weighted sum so that the resulting function is independent of the scales of the inputs
and output.

2.2.5. Variational sampling
In the case of GP regressors, the standard deviation σ⋆ of the predictive distribution may be used as a
criterion for choosing sampling locations. In this case, the sample is chosen with:
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xs ¼ argmax
xi

σ⋆ xið Þ: 12

The standard deviation does not depend directly on the response values obtained at the training stage,which
is a characteristic of theGaussian distribution (Rasmussen andWilliams, 2005).However, these values are still
utilized for the optimization of the kernel’s hyperparameters, which affect in turn the expected covariance.

2.3. Computational fluid dynamics simulations

In order to quantify the performance of the systems analyzed here, the flow field inside the domain of
interest has to be characterized. Engineering quantities such as pressure and shear stresses, for example,
can be obtained from the knowledge of velocity and pressure fields, along with the fluid properties. The
core equations to be solved are the continuity and momentum balance equations (Batchelor, 2000). The
continuity equation for incompressible flows is given by:

∇ �u¼ 0, 13

while the momentum equation is expressed by:

∂u
∂t

þ∇ � u⊗uð Þ�∇ � νapp∇u
� �¼�∇p, 14

where u is the velocity, p is the static pressure divided by the constant fluid density, νapp is the apparent
kinematic viscosity, and t denotes time; gravitational forces have been neglected. We consider, for
generality, that the apparent kinematic viscosity follows a power law νapp ¼ k _γj jn�1, where k is the
consistency and n is the flow index. The Newtonian behavior of the fluid, as assumed in test Cases 1 and
2, can be recovered by setting the value of n to unity in which case we set k� ν, a constant. In
nondimensional form, Equations (13) and (14) may be rewritten as:

∇ �u⋆ ¼ 0 15

and

∂u⋆

∂t
þ∇ � u⋆⊗u⋆ð Þ� 1

Re
∇ � νapp

νref
∇u⋆

� �
¼�∇p⋆, 16

where Re (¼UL=νref ) is a Reynolds number in which L andU represent characteristic length and velocity
scales, the choice of which is case dependent; here, t and p were scaled on L=U and ρU2, respectively,
wherein ρ denotes the fluid (constant) density. The reference viscosity is taken to be νref ¼ k U=Lð Þn�1.

In the case of turbulent flows, two-equation models based on the turbulent viscosity are used such as
the k-ε model (Launder and Spalding, 1974). The simulations were performed with OpenFOAM-6 with
two-dimensional setups, except for the last test case, which is fully three-dimensional (3D). In the case of
axisymmetric flows (Cases 1 and 2), the geometry is defined as a wedge of small angle and thickness of a
single cell in the out-of-plane direction. All simulations utilized second-order discretization schemes for
the spatial terms, and steady state was assumed. If the mixing performance is to be evaluated (as in test
Case 1), a transport equation for a passive scalar c can also be solved:

∂c
∂t
þ∇ � ucð Þ�∇ � νeff

Sc
∇c

� �
¼ 0, 17

where the turbulent viscosity, νeff , is provided by the turbulence model and the Schmidt number, Sc, is
taken to be unity.

3. Case Definitions

3.1. Case 1: flow through a static mixer

Industrial high efficiency vortex static mixers are commonly used for turbulent mixing along pipelines
(Thakur et al., 2003; Eissa, 2009). The first case in this study aims to model the geometry of such a mixer.
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The fluid enters the domain through the leftmost boundary, where a passive scalar is inserted in part of the
domain. As it goes across the device, turbulent mixing takes place, eventually leading to a nearly uniform
concentration of the tracer on the cross-section. To evaluate the mixing performance of the device,
Equation (17) was solved along with the flow equations, as mentioned previously. The two-dimensional
geometry of the static mixer is shown in Figure 2. For the surrogate model, we mainly focus on two of the
parameters: blade length to diameter ratio (L=D) from 0.2 to 0.3, and blade angle (θ) from 0.8 to 1.57 rad.
The Reynolds number, Re (¼UD=ν), is kept constant at 105, where U is the constant speed of the fluid
that enters themixer from the left boundary, where a uniform velocity profile is imposed; note that here we
consider the fluid to be Newtonian with a constant kinematic viscosity, ν. For all the walls in contact with
the fluid (e.g., upper wall of the wedge, and blade walls), a no-slip condition is imposed. For scalar
transport, the tracer injection at the inlet is set as a step profile similar to the one presented by (Eissa, 2009).
The turbulence model used is the standard k-ε (Launder and Spalding, 1974), and a turbulence intensity of
5% was set for the inlet. To determine the mixing performance, cv at the outlet is calculated, which
corresponds to the variance of the tracer concentration at the outlet:

cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� cð Þ2

q
c

, (18)

where the average concentration, c, is computed over the outlet area.
In order to assure that the results were valid in awide range of conditions, the wall boundary conditions

utilized for ε, k, and νt were set to, respectively epsilonWallFunction, kLowReWallFunction, and
nutUSpaldingWallFunction, which automatically switch between low- and high-Reynolds number
formulations as needed.

Figure 3 shows the nondimensional velocity magnitude, turbulent kinetic energy, and concentration
fields obtained for a geometry similar to the one presented by Eissa (2009), with an angle of θ¼ π=4.
Despite the fact that the current results were generated using a two-dimensional formulation, they are
nonetheless in qualitative agreement with the results of Eissa (2009) and Bakker and Laroche (2000). One
major discrepancywith the work by Eissa (2009) is the cross-sectional vortices generated at the blade tips.
In order to reproduce those more accurately, it is possible for us to deploy more sophisticated turbulence
models, or large eddy simulations, to better capture these phenomena, but this is not the focus of the
present work.

3.2. Case 2: orifice flow

Flow through an orifice is a common occurrence in industry with applications that include pipeline
transportation of fluids, and flow in chemical reactors and mixers wherein orifice flows are used for the
purpose of flow rate measurement and regulation. Here, pressure drop across the orifice as a function of
system parameters is investigated. As the shape is symmetrical in both the radial and axial directions, the
computational domain is a pipe sector, as shown in Figure 4. A uniform velocity profile is considered for
the inlet boundary, and no slip conditions are applied for the wall. At the outlet, a constant pressure is

Figure 2. Schematic representation of the static mixer geometry used in Case 1 with side- and front-views
shown in (a) and (b), respectively.
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assumed.When creating the surrogate model, the geometry of the orifice is allowed to vary, such that each
configuration is defined by the area ratio d=Dð Þ2 and length to diameter ratio s=d. The Reynolds number
Re , given here byUD=ν, is taken to be constant and equal to 105. The flow field simulated in OpenFOAM
is using the SST k-ω model (Menter et al., 2003). A turbulence intensity of 2% was assumed for
calculation of turbulent kinetic energy at the inlet, and this value was used along with a prescribed
mixing length for definition of the specific turbulence dissipation value. The chosen mesh resolution
resulted in a total of 5:1�104 cells for a setup with area ratio d=Dð Þ2 ¼ 0:54 and length to diameter ratio
s=d¼ 0:2 (see Figure 11). Mesh refinement is utilized to increase the mesh density close to wall while
reducing computational cost simultaneously. A mesh-refinement study has been conducted to prove that

Figure 3. Computational fluid dynamics simulation of turbulent scalar transport through a static mixer
using the k-ε model (Launder and Spalding, 1974) for Case 1 showing steady, two-dimensional

nondimensional velocity magnitude (a), turbulent kinetic energy (b), and scalar concentration (c), fields,
generated with Re ¼ 105, L=D¼ 0:3, and θ¼ π=4. The scale bars represent the magnitude of the fields

depicted in each panel.

Figure 4. Schematic representation of the orifice geometry used in Case 2 with side- and front-views
shown in (a) and (b), respectively.
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the solutions obtained are mesh-independent. The difference in pressure drop across the vena contracta
between 2:5�104 cells and 5:1�104 cells is less than 2% as well as the difference between 5:1�104

cells and 105; thus the setup for 5:1�104 cells was deemed to produce simulation results that are
unaffected by mesh resolution.

Since the change in geometry is expected to have an impact on the mesh requirements for the wall, the
boundary conditions forω, k, and νt were set to, respectively omegaWallFunction, kLowReWallFunction,
and nutUSpaldingWallFunction, which are able to deal with low- and high-Reynolds number scenarios as
needed.

In Figure 5, we compare our results with the of experimental data of Fossa and Guglielmini (2002)
for the local pressure drop across the orifice as a function of the flow Reynolds number. Inspection of
Figure 5 reveals excellent agreement—with maximum deviations of 7.9%—which inspires confidence in
the reliability of the present numerical predictions.

3.3. Case 3: flow in an inline mixer (2D)

The third case is representative of flow of Newtonian and power-law fluids in an inline mixer reported by
Vial et al. (2015). This setup utilizes a two-dimensional geometry, neglecting the effect of the flow in the
axial direction. The geometry and key variables are shown in Figure 6. The impeller rotates in the counter-
clockwise direction around the z-axis, while the outer tank wall is kept fixed. For further efficiency gains
in the simulation, a periodic symmetry is prescribed in the tangential direction. For this system, the power
number (per nondimensional length Le=d) Np,2D is chosen as the main variable of interest. It is given by:

Np,2D ¼ 2πT2D

N2d4
, (19)

where T2D is the torque applied per fluid mass andN is the rotation speed. Through dimensional analysis,
it can be shown that this value is a function of the Reynolds number, Re (¼ d2πN 2�nð Þd2=k), nondimen-
sional gap between rotor and stator α (¼ D�dð Þ=D), flow index n, and number of blades Nb.

The simulations performed were two-dimensional. Vial et al. (2015) reported that this simplification
was adequate to describe the behavior of the system as long as the flow was in the laminar regime and the
nondimensional gap between rotor and stator was kept below 0:2. Thus, these restrictions were considered
in the choice of parameter ranges. Similarly to the original study, the computational domain consisted of a
single blade, and cyclic boundaries were applied for the tangential direction. No-slip conditions were

Figure 5. A comparison of the current predictions of pressure drop across the orifice as a function of the
local Reynolds number with the experimental data of Fossa and Guglielmini (2002) with d=Dð Þ2 ¼ 0:54

and s=d¼ 0:20 (see Figure 4b).
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considered for the walls, and the rotation effect was included through the Single reference frame (SRF)
model. Further details about the SRF methodology can be found in Wilhelm (2015).

All computations were performed with a quadrilateral mesh with circumferential resolution Δs=Ds ¼
0:005 and radial resolutions Δri=Ds ¼ 0:005 and Δro=Ds ¼ 0:002 at the rotor and stator regions,
respectively. The difference in the power number obtained with a finer mesh, with double the resolution,
was 0.3%. Table 2 shows the comparison of the power coefficient kp (¼Np,2DReLe=d) calculated here and
the results obtained by Vial et al. (2015) through experiments and two-dimensional simulations. The
agreement is very good.

3.4. Case 4: flow in an inline mixer (3D)

The final test case is a 3D version of the inline mixer presented before. Here, besides the rotation around
the z-axis, we also take into account the flow along that direction, as well as the finite length of the blades.
The newly introduced variables are illustrated along with the general geometry in Figure 7.

Besides the parameters defined before, this setup introduces two new parameters to the input: the axial
Reynolds number Re ax (¼ dUN 1�nð Þd=k), and the nondimensional length Le=D, for a total of six
parameters. The mesh utilized for the 3D case was less refined than for the two-dimensional setup, with
circumferential resolution Δs=Ds ¼ 0:01, radial resolutions Δri=Ds ¼ 0:01 and Δro=Ds ¼ 0:005 at the
rotor and stator regions, respectively, and axial resolution Δz=Ds ¼ 0:01. The power number difference to
a mesh with double the resolution was 1.2%. The power coefficient numbers obtained with this setup and
the comparison to the experimental values are shown in Table 2. The values are well within the
experimental uncertainty of the measurements.

3.5. Summary of regression variables

Table 3 shows a summary of the parameters considered for the surrogatemodels, alongwith the respective
output variables. Note that all variables are nondimensional, in order to enforce similarity constraints. The
variables that could vary over several orders of magnitude were represented in logarithmic form.

Table 2. Comparison between present results for power coefficient, α, and those reported by Vial et al. (2015).

α Exp. (Vial et al., 2015) Vial et al. (2015)—2D Present—2D Present—3D

0.057 3100�400 3,000 2,950 3,030

0.2 2000�300 1,680 1,690 1,800

Figure 6. Schematic representation of the geometry used in Case 3, two-dimensional flow in
an inline mixer.
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Table 4 presents the comparison between the average computational costs of the test cases, including
the time to both generate the parameterizedmesh aswell as to calculate the solution of the flow. The values
range from a few minutes to 1 h, and are directly related to the size of the grid that is required.

4. Results and Discussion

4.1. Performance evaluation methodology

Before the active-learning techniques are employed, an initial version of the regression model must be
calibrated. All methods are initialized with the procedure proposed by Wu et al. (2019): the first point is
located at the centroid of the parameter space, followed by N0�1 locations selected with the passive
strategy of greedy sampling on inputs. We set the total number of initial simulations N0 to be equal to
4Nfeatures in Cases 1 and 2, 2Nfeatures in Cases 3 and 6 in Case 4.

In order to quantify the global interpolation performance of each algorithm, a set ofNe simulationswith
parameters xi is performed, independent of the ones used in the development of the surrogate model, to be
used as “ground truth.” The average relative error is given by Equation (20):

Figure 7. Schematic representation of the geometry used in Case 4, three-dimensional flow in an
inline mixer.

Table 3. Features and responses utilized in each of the three test cases.

Case 1 2 3 4

x1 L/D (d/D)2 log Re log Re

x2 θ s/D α α

x3 – – n n

x4 – – Nb Nb

x5 – – – Re ax

x6 – – – Le=D

f (x) log cv ΔP
ρU 2 logNp,2D logNp,2D
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ε⋆ ¼ 1
Ne

XNe

i¼0

∣f xið Þ� f ⋆ xið Þ∣
∣f xið Þ∣ : (20)

The positions xi for error estimations were chosen randomly, with the total number of simulations Ne

set to 100. Additionally, for the techniques that are stochastic—either due to the regression or sampling
methods—10 repetitions were performed. Results are presented in the form of a mean value and a
confidence interval of 95% based on the t-distribution. Due to the very high computational cost of the full
3D computations, we have utilized a single repetition of each for Case 4, such that no confidence bars are
provided.

4.2. Discussion

Figure 8 presents a qualitative comparison of the interpolation obtained for Case 1 using the regression
techniques presented in Section 2.1. In order to better isolate effects, a fixed samplingmethodwas used for
these results: in this case, greedy I/O, based on the recommendation ofWu et al. (2019). The predictions of
all methods are found to be qualitatively very similar. The notable outlier is the random forest regression
—although the predicted values are reasonable, the surface is non-smooth, since the values originate from
a combination of decision trees. It is important to highlight that, despite using the same sampling strategy,
the sampling locations for each regression method may be different, since they also depend on the
predicted values provided by the regression.

In Figure 9, a qualitative visual comparison between sampling strategies for case 1 is presented. Based
on preliminary performance tests which indicated it performed well in quantitative tests, the fixed
regression strategy chosen here was a Gaussian process with the Matérn 5/2 kernel. A good sampling
strategy should be able to adapt to both the situation of “effect sparsity”—where only some of the
parameters significantly affect the solution—as well as the situation where all inputs have equal
importance (Morris and Mitchell, 1995). As such, sampling positions should be spread out enough so
as to fully capture the main features of the response surface, while simultaneously avoiding unnecessary
computations in regions of low gradient. The greedy input and variational methods provide a uniform
coverage of the domain, while the greedy output sampling is heavily biased towards the center and top
right regions. The greedy I/O, as a mix of two criterion, has a somewhat attenuated bias.

Figure 10 presents the calculated interpolation error for each regression strategy. The relative errors are
high for Case 2 since the response function has values close to zero in a large part of the domain, but the
trends are somewhat consistent between all cases. Since it has very few degrees of freedom, the strategy
employing linear regression rapidly stagnates after a small number of simulations. Similarly, the
performance of the multilayer perceptron does not improve significantly as samples are added; most
likely, this can be attributed to overfitting due to the quite limited number of data points. The Gaussian
process regression performs well in all three cases, while Support Vector regression has mixed results: the
performance is satisfactory for Cases 1 and 3 but poor for Case 3. Finally, it is noticeable that, in general,
the curves are nonsmooth and nonmonotonic, meaning that there is room for significant optimization with
the choice of sampling quantity and locations.

Figure 11 show the progress of the estimated error as the number of simulations increases, for different
sampling strategies. For Cases 1 and 2, most of the examined strategies had performance comparable or

Table 4. Typical computational cost of individual simulations of each test case.

Case Number of cores Time [s]

1 1 260

2 1 1,070

3 1 1,020

4 192 3,430
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slightly better than the random baseline. For the latter, in particular, the errors obtained with the
variational, greedy I and greedy I/O strategies were lower than half of the baseline values, with more
than approximately five samples. For Case 3, the variational and greedy I significantly outperformed
random sampling in the range of 5–30 samples. Despite the relatively low dimensionality of the the cases

(a) GP (Matérn 5/2) (b) GP (Cubic)

(c) GP (RBF) (d) Multilayer perceptron

(e) Random forest (f) Support vector

Figure 8. Comparison between regressions for case 1, with 20 samples. Circles indicate sampling
locations.
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that were examined, some positive effect may be observed already with the use of the passive or active
strategies, especially at low numbers of samples.

The scalability of the techniques to more complex systems can be evaluated by analyzing Figure 12,
which presents the performance of the regression and sampling techniques as a function of the number of
simulations performed on Case 4. The general trend is somewhat similar to the one observed for Case 3, a
similar mixer setup. However, due to the limited samples and larger parameter space, instances of severe

(d) Greedy input/output(c) Greedy output

(e) Variational

(b) Greedy input(a) Random

Figure 9. Comparison between sampling strategies for Case 1, with 20 samples. Circles indicate sampling
locations and numbers indicate the sampling order (positions used for initialization are unlabeled).
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overfitting are observed in some situations, leading to predictions outside of the training data to be
completely erroneous. In fact, the only sampling technique that seems to be able to provide reasonable
predictions for the GP model is the GIO algorithm.

Figure 10. Error as a function of number of samples beyond the ones used for the initialization for
different regression strategies, for case 1 (top), case 2 (middle) and case 3 (bottom).
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The overfitting problem is illustrated explicitly in Figure 13, which compares the predictions for
training and test data, for two different sampling methodologies. The GP fit is quite flexible and able to
reproduce the set of training data very well. In complex cases, however, the hyperparameter optimization
may lead to length scales which are too small, such that the regression function collapses into a

Figure 11. Error as a function of number of samples beyond the ones used for the initialization for
different sampling strategies, for Case 1 (top), Case 2 (middle), and Case 3 (bottom).
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Figure 12. Error of the regressions developed for Case 4 as a function of number of samples beyond the
ones used for the initialization, for different regression strategies (top), and different sampling strategies

(bottom).

Figure 13. Comparison between predicted and reference values for the GP52 regression with GIO
(a) and variational sampling (b) generated with 20 samples for Case 4.
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(a) Case 1; 5 samples

(c) Case 2; 5 samples

(e) Case 3; 5 samples

(b) Case 1; 20 samples

(d) Case 2; 20 samples

(f) Case 3; 20 samples

Figure 14. Comparison between predicted and reference values for each Cases 1–3, with 5 (left) or
20 samples (right). Dashed lines represent a 20% error.
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combination of singularities around the training data. This results in meaningless values for any new data
outside the immediate neighborhood of the training set. Although this could be addressed through fine
tuning of the algorithm, it would require a case-by-case analysis. In this case, the GIO strategy seems to
achieve a balance between density and coverage of the sampling space, leading to a smoother conver-
gence of the length scale to an adequate value.

Similar comparisons of predictions and reference values are shown for the other cases on Figure 14.
Systematic deviations may be observed in some situations for variational, GI, and GO sampling. Using a
more balanced sampling approach such asGIO,which does not focus on one specific area of the parameter
space seems to aid the most stable result outcome without the need of additional fitting procedures.

A summary of the error values obtained with each sampling strategy, for selected numbers of samples
(5, 10, or 20), is shown in Table 5. The active learning strategies managed to outperform random sampling
in most of the chosen configurations. The variational method, based on estimates of standard deviation
provided by theGP, presented the best performance onCases 1 and 3, followed closely by the greedy input
passive sampling. OnCase 2, the latter performed particularly well, although the variational approach also
presented satisfactory results in the case of 10 and 20 samples. Greedy sampling on the outputs strategy
proved inconsistent across the three two-dimensional cases, where it performed particularly bad for Case
2. Once more the last remaining greedy strategy (GIO) proved to work persistently across the first three
cases, whereas for Case 4 it was the only algorithm that provided satisfactory results. In the 3D case GIO
outperformed random sampling for low query numbers, whereas the latter began to be increasingly
competitive as the number of samples was increased.

5. Final Remarks and Future Directions

We have evaluated different active-learning strategies for the development of surrogate models based on
CFD simulations. The procedure was applied to a selection of industrially-relevant flow cases, and an

Table 5. Error for different sampling strategies, for 5, 10 or 20 queries.

Case Queries

Strategy

V GI GO GIO R

1 5 1 0.96 1.2 1 1.6 [1.2–2.0]

10 0.71 0.73 0.53 0.73 1.3 [0.97–1.7]

20 0.54 0.66 0.7 0.58 1.3 [0.85–1.7]

2 5 26 13 32 19 23 [15–30]

10 11 6.8 34 20 15 [11–18]

20 6.7 5 37 6.4 7.5 [6.5–8.5]

3 5 25 26 36 38 31 [26–37]

10 18 24 25 28 28 [24–33]

20 11 16 18 14 26 [22–29]

4 5 100 100 100 12 14

10 100 100 100 7.7 9.9

20 100 100 100 6.4 5.5

Bold values represented the best performance in each configuration.
Abbreviations: GI, greedy sampling on the inputs; GIO, greedy sampling on both inputs and output; GO, greedy sampling on the output; R, random;
V, variational.
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extensive comparison between different regression and sampling algorithms was performed. In general,
one active learning strategy (GIO) proved to work consistently across all cases, outperforming random
sampling in most instances. This strategy proved superior to other active learning strategies particularly
for Case 4, where it provided meaningful results without the need for additional fine tuning of the fitting
algorithm. For the lower dimensional (Cases 1–3), two active-learning strategies (variational and greedy
sampling on inputs) outperformed random sampling for all cases considered.

The very small sample sizes, in this study, due to the restriction on the number of queries ensures that
only a limited part of the parameter space for low-dimensional cases is explored, which is also the case in
high-dimensional problems even with increased samples. Hence potentially similar results could hold for
higher-dimensional problems, but this needs to be quantified in future studies. Using the methodology
presented here, further benchmarks need to be developed for other classes of flowproblems, involving, for
example, discontinuous parameter spaces and/or noisy or stochastic results. The algorithms could also
take into account the non-uniform computational cost of the simulations using an approach similar to that
followed by Snoek et al. (2012). To improve upon the present results in future work, the CFD-agnostic
active-learning schemes employed in the present paper might need to incorporate physical insights and
case-specific knowledge.
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Appendix

Mesh Study of Cases 1 and 2
For Case 1, the effect of mesh resolution on the concentration field along the symmetry axis is presented in Figure A1. The chosen
resolution proves sufficient for capturing the solution accurately without requiring excessive time for computation. For the base
case, themesh adopted had an average y+ of 38.7 and 22.3 andmaximumof 80.8 and 67.4 for walls and blades, respectively, which is
adequate for the high-Reynolds model.

For Case 2, the pressure profiles along the symmetry axis for different mesh resolutions are presented in Figure A2. The results
are nearly indistinguishable between the three meshes.

Figure A1. Effect of mesh resolution on concentration profile along the symmetry axis.

Figure A2. Effect of mesh resolution on pressure profile along the symmetry axis.
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