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Abstract

We study the tail behavior of regularly varying infinitely divisible random vectors
and additive processes, i.e. stochastic processes with independent but not necessarily
stationary increments. We show that the distribution of an infinitely divisible random
vector is tail equivalent to its Lévy measure and we study the asymptotic decay of the
probability for an additive process to hit sets far away from the origin. The results are
extensions of known univariate results to the multivariate setting; we exemplify some of
the difficulties that arise in the multivariate case.
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1. Introduction

Stochastic processes with independent increments and heavy-tailed marginal distributions
have become increasingly popular for studying problems in areas such as insurance math-
ematics, mathematical finance, and communications networks. Efforts have been made to
understand the extremal behavior of such processes and to find the tail behavior of functionals
of their sample paths; see, e.g. [5], [7], and [20]. However, whereas problems concerning the
tail behavior of univariate stochastic processes have been studied successfully for quite some
time, multivariate processes have received far less attention. One possible reason is that, except
for regular variation, the univariate notions of heavy tails do not have natural multivariate
versions. In particular there is no well-established theory of multivariate subexponentiality,
although we acknowledge the developments in [6]. Heavy-tailed random vectors are therefore
often studied either under an assumption of multivariate regular variation or for a particular
choice of parametric model.

In this paper we study tails of infinitely divisible random vectors and extend well-known
univariate results on the tail behavior to the multivariate setting, under an assumption of
multivariate regular variation. We illustrate, by example, several difficulties that appear in
the multivariate setting due to the dependence structure of the random vector. Closely related
are additive processes (see [21, p. 3]), since Xt is infinitely divisible for every t ∈ [0, T ] if
(Xt )t∈[0,T ] is an additive process. Under the condition that XT be regularly varying, we study
the asymptotics of the probability of hitting sets far away from the origin during a fixed time
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Regular variation and infinite divisibility 135

interval [0, T ]. The intuitive idea is that a heavy-tailed process with independent increments
reaches a set far away from the origin by making one big jump to that set. The asymptotic
decay (as u → ∞) of the probability for an additive process to hit a set uA during an arbitrary
subset S of [0, T ] is also considered in this paper. It is worth mentioning that the heuristic
idea of making ‘one big jump’ to reach sets far away can be rigorously formulated within the
framework of regular variation on the space of functions that are continuous from the right with
left limits (càdlàg) (see [9]). This notion has also proven useful in studying the tail behavior of
functionals of sample paths of heavy-tailed multivariate stochastic processes. For more details
we refer the reader to [8], [9], [12], and [10]. Because of these recent developments, we do
not enter into a deeper study of the tail behavior of functionals of additive processes. In this
paper we choose not to work within the framework of regular variation on the space of càdlàg
functions, since it is not necessary for the problems we consider here. We also feel that this
choice makes the paper more accessible.

In Section 2 we recall the notion of multivariate regular variation. In Section 3 we give a
multivariate version of the result in [7] which says that the distribution of an infinitely divisible
random variable and its Lévy measure are tail equivalent. We discuss difficulties that necessarily
arise when going from the univariate to the multivariate setting. In Section 4 we study the tail
behavior of multivariate additive processes and give a multivariate version of the result in [22]
which says that the distribution of the supremum of a univariate Lévy process over [0, T ] is
tail equivalent to the distribution of the process at time T . Section 5 contains the proofs of our
results. In Appendix A we give useful auxiliary results that are needed in these proofs.

2. Preliminaries

We assume that all random elements considered are defined on a common probability space
(�, F , P). The σ -algebra of Borel subsets of a topological space E is denoted by B(E). For a
set A ∈ B(E), we denote by A◦ and A the interior and the closure of A, respectively. Moreover,
∂A = A \ A◦ is the boundary of A.

Regular variation of random vectors is usually formulated in terms of vague convergence of
Radon measures on R̄

d \ {0}, where R̄ = [−∞, ∞]. The space R̄
d \ {0} is equipped with the

usual topology (see, e.g. [17]), so that the Borel sets we are interested in are the usual ones, i.e.

B(R̄d \ {0}) ∩ (Rd \ {0}) = B(Rd) ∩ (Rd \ {0}),
and the Borel sets of R

d bounded away from 0 are relatively compact in R̄
d \ {0}.

An R
d -valued random vector X = (X(1), . . . , X(d)) with unbounded support is regularly

varying if there exist an α > 0, a function L that is slowly varying at infinity, and a nonzero
Radon measure µ defined on B(R̄d \ {0}) with µ(R̄d \ R

d) = 0 such that, as u → ∞,

uαL(u) P(u−1X ∈ ·) v−→ µ(·) on B(R̄d \ {0}). (2.1)

Here ‘
v−→’ denotes vague convergence; see, e.g. [13, p. 169] or [19, p. 139]. If (2.1) holds then

µ(xB) = x−αµ(B) for every x > 0 and B ∈ B(R̄d \ {0}) (see, e.g. [14, Theorem 1.14]),
and we write X ∈ RV(α, L, µ). For a Radon measure ν on B(R̄d \ {0}) we similarly write
ν ∈ RV(α, L, µ) if uαL(u)ν(u ·) v−→ µ(·) on B(R̄d \ {0}).
Remark 2.1. (i) The homogeneity property of the limit measure µ implies that µ assigns no
mass to spheres centered at the origin, i.e. sets of the form {y ∈ R

d : |y| = r} for r > 0, with
respect to any norm | · | on R

d . In particular, µ has no atoms (see [1]).
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136 H. HULT AND F. LINDSKOG

(ii) Condition (2.1) is equivalent to convergence for every set A ∈ B(Rd) bounded away from 0
(i.e. 0 /∈ A) with µ(∂A) = 0 (see [13, Theorem 15.7.2, p. 169]).

(iii) Several equivalent formulations of multivariate regular variation can be found in, e.g. [1],
[2], [14], and [17].

3. Tails of regularly varying infinitely divisible random vectors

Let X be a nonnegative infinitely divisible random variable with Lévy measure ν. It was
shown in [7] that the following statements are equivalent:

(i) P(X ≤ u) is subexponential;

(ii) ν(1, u]/ν(1, ∞) is subexponential;

(iii) P(X > u)/ν(u, ∞) → 1 as u → ∞.

In particular, X ∈ RV(α, L, µ) if and only if ν ∈ RV(α, L, µ). Satisfaction of the condition
in statement (iii) is often referred to as the distribution of X being tail equivalent to its Lévy
measure. This equivalence is fundamental when studying the extremal behavior of heavy-tailed
processes with independent increments and functionals of the sample paths of such processes
(see, e.g. [20]). The following result extends this tail equivalence to regularly varying infinitely
divisible random vectors.

Let X denote an infinitely divisible R
d -valued random vector with Lévy measure ν.

Proposition 3.1. X ∈ RV(α, L, µ) if and only if ν ∈ RV(α, L, µ).

It is worth mentioning that if the index of regular variation, α, is not an integer, then
Proposition 3.1 can easily be proved by combining results of [2] and [7]. This can be seen
from the following argument. If X ∈ RV(α, L, µ) then, for every u > 0 and x �= 0,

lim
u→∞ uαL(u) P(〈x, X〉 > u) = lim

u→∞ uαL(u) P(X ∈ uWx) = µ(Wx),

where 〈x, X〉 = x(1)X(1) + · · · + x(d)X(d) and Wx = {y ∈ R
d : 〈x, y〉 > 1}. Arguing from

Theorem 1 of [7] if µ(Wx) > 0 (i.e. the random variable 〈x, X〉 is regularly varying) and some
additional arguments if µ(Wx) = 0 (i.e. the random variable 〈x, X〉 has lighter tails), it follows
that, for every x �= 0,

lim
u→∞ uαL(u)ν(uWx) = µ(Wx).

If α is not an integer then Theorem 1.1 of [2] implies that ν ∈ RV(α, L, µ). The converse can
be shown similarly.

However, if the index of regular variation is an integer, then Proposition 3.1 cannot be proved
in this way. The reason is that if α is an integer, then regular variation of all linear combinations
does not necessarily imply multivariate regular variation. This was recently shown in [11]. It
may be noted that the random vector in the example of [11] is not infinitely divisible. However,
an example in which the random vector is infinitely divisible is easily constructed. If we let
ν be the distribution of the random vector considered in Section 2.2 of [11], then an infinitely
divisible random vector X with Lévy measure ν has the following properties:

(i) X is not regularly varying,

(ii) 〈x, X〉 is regularly varying for every x �= 0.

In Section 5 we give a direct proof of Proposition 3.1 that is valid for all α > 0.
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The following corollary is a consequence of Proposition 3.1.

Corollary 3.1. Let X be an infinitely divisible R
d -valued random vector with Lévy measure ν,

satisfying X ∈ RV(α, L, µ). If A ∈ B(Rd) is bounded away from 0 with µ(A) > 0 and
µ(∂A) = 0, then limu→∞ ν(uA)/ P(X ∈ uA) = 1.

The following example shows that the tail equivalence does not hold in general without the
condition µ(A) > 0.

Example 3.1. Let X be an R
2-valued infinitely divisible random vector with independent,

purely non-Gaussian symmetric components. Suppose that X ∈ RV(α, L, µ) with α > 1.
Then the characteristic function of X is (see [21, p. 39])

E(exp{i〈x, X〉}) =
∫

R2
(exp{i〈x, z〉} − 1)ν(dz).

Since

E(exp{i〈x, X〉}) = E(exp{ix(1)X(1)}) E(exp{ix(2)X(2)})
=

(∫
R

(exp{ix(1)z} − 1)ν1(dz)

)(∫
R

(exp{ix(2)z} − 1)ν2(dz)

)
,

where νk is the Lévy measure of X(k), k = 1, 2, it follows that the Lévy measure ν of X

concentrates on the coordinate axes. In particular, for every u > 0, ν((u, ∞) × (u, ∞)) = 0
and

P(X ∈ (u, ∞) × (u, ∞)) = P(X(1) > u) P(X(2) > u) > 0.

4. Hitting probabilities for additive processes

We consider an R
d -valued additive process X = (Xt )t∈[0,T ] (see [21, p. 3]), where T > 0

is fixed. We always assume that X denotes the unique càdlàg version of the process. Recall
that Xt is infinitely divisible for each t ∈ [0, T ] and that the process is completely determined
by a family {(At , νt , γt )} of generating triplets. As in [21, p. 53], we denote by ν̃ the measure
on B([0, T ] × R

d \ {0}) given by ν̃([0, t] × ·) = νt (·).
We assume that XT ∈ RV(α, L, µT ). By Proposition 3.1, this is equivalent to having

νT ∈ RV(α, L, µT ). First consider a Lévy process X, i.e. an additive process with stationary
increments. The Lévy measure νt of Xt is then given by νt = tν1, and the following statement
holds:

X1 ∈ RV(α, L, µ1) if and only if Xt ∈ RV(α, L, tµ1) for every t > 0.

Thus, to verify that Xt is regularly varying for arbitrary t > 0, it is enough to check that
X1 is regularly varying. For additive processes things are less straightforward. As we will
see in the next example, we can construct an additive process X = (Xt )t∈[0,T ] such that
XT ∈ RV(α, L, µT ) but Xt is not regularly varying for t < T ; in fact, for every t < T , the
process (Xs)s∈[0,t] has bounded jumps.

Example 4.1. Let ν̃ be a probability measure on [0, T ] × [1, ∞) given by

ν̃(d(t, x)) =
∞∑

k=1

k

T
1(T −T/k,T ](t)1[k,k+1)(x)αx−α−1 d(t, x).
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Let ξ be a Poisson random measure with intensity measure ν̃ and let X = (Xt )t∈[0,T ] be a
stochastic process given by

Xt =
∫

[0,t]×[1,∞)

xξ(d(s, x)), t ∈ [0, T ].

The following argument shows that X is an additive process. For any s < t with s, t ∈ [0, T ]
and t − s < 1/m, we have

ν̃([s, t] × [1, ∞)) ≤ ν̃([T − 1/m, T ] × [1, ∞))

=
∞∑

k=1

∫ T

T −1/m

k

T
1(T −T/k,T ](t) dt

∫ ∞

1
1[k,k+1)(x)αx−α−1 dx

=
∞∑

k=1

min

(
k

T m
, 1

)
(k−α − (k + 1)−α)

≤ �T m�−α +
�T m�∑
k=1

k

T m
(k−α − (k + 1)−α)

→ 0 as m → ∞,

where �m� is the integer part of m. Hence, for s < t , ν̃([s, t] × [1, ∞)) → 0 as |t − s| → 0.
Thus, for any ε > 0,

P(|Xt − Xs | > ε) ≤ P(ξ([s, t] × [1, ∞)) > 0) = 1 − exp{−ν̃([s, t] × [1, ∞))} → 0

as |t − s| → 0, i.e. X is stochastically continuous. In addition, by Proposition 19.5 of [21,
p. 123], for disjoint sets S1, . . . , Sk ∈ B([0, T ]),

∫
S1×[1,∞)

xξ(d(s, x)), . . . ,

∫
Sk×[1,∞)

xξ(d(s, x))

are independent, i.e. X has independent increments. Moreover, by construction X(ω) is right
continuous with left limits for every ω ∈ �. Finally, X0 = 0 almost surely. Hence, X is
an additive process. By Proposition 19.5 of [21], for every t ∈ [0, T ], Xt has Lévy measure
νt (·) = ν̃([0, t] × ·). Choose x, u > 0 with xu > 1 and note that

νT (xu, ∞) =
∫ ∞

xu

αy−α−1 dy = (xu)−α

and, for t < T and sufficiently large u, νt (xu, ∞) = 0.

We now study the asymptotics of the probability of hitting a set uA far away from 0 at some
t ∈ [0, T ], T > 0, i.e. we study P(Xt ∈ uA for some t ∈ [0, T ]) as u → ∞. Notice that
if the process is univariate and A = (1, ∞), then this corresponds to studying the decay of
P(supt∈[0,T ] Xt > u) as u → ∞. The intuition behind the result is that the process reaches
the set uA in one big jump. In comparison to the big jump, the process does not move much
before or after the jump. Therefore, we expect that the probability of hitting a set uA during
[0, T ] decays as the probability of being in the set at time T . This is indeed the case.
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Proposition 4.1. Let (Xt )t∈[0,T ] be an R
d -valued additive process satisfying

XT ∈ RV(α, L, µT ).

If A ∈ B(Rd) is bounded away from 0, with µT (A) > 0 and µT (∂A) = 0, then

lim
u→∞

P(Xt ∈ uA for some t ∈ [0, T ])
P(XT ∈ uA)

= 1.

Remark 4.1. (i) Notice that it is sufficient to assume that XT is regularly varying; we do not
need assumptions on the distribution of Xt for t < T .

(ii) It was shown in [22] that if (Xt )t∈[0,T ] is a univariate Lévy process and if XT is long tailed,
i.e. limu→∞ P(XT > u − y)/ P(XT > u) = 1 for every y ∈ R, then

P
(

sup
t∈[0,T ]

Xt > u
)
/ P(XT > u) → 1

as u → ∞. Hence, Proposition 4.1 holds for sets A = {x ∈ R
d : x(k) > c}, with c > 0

and k ∈ {1, . . . , d}}, under the weaker condition that the components of XT are long tailed.
However, it is not obvious for which more general sets this remains true.

There are many situations in which we need more information about the process X than
just the tail behavior of XT . For instance, if we are interested in the tail behavior of certain
functionals of the sample paths of the process, then we typically need to know something about
the tail behavior of Xt for t < T . The same is true if we are interested in the asymptotics of the
distribution of the time of the big jump that determines the extremal behavior of the process.

To address these questions we take the following approach. We assume that XT ∈
RV(α, L, µT ) and that, for each t in a set UT ⊂ [0, T ] whose complement is at most count-
able, there exists a Radon measure µt on B(R̄d \ {0}), with µt(R̄

d \ R
d) = 0, such that

uαL(u) P(u−1Xt ∈ ·) v−→ µt(·). Here µt may be the null measure for t < T . The assumption
implies that, for t < T , the random vector Xt is either regularly varying (if µt is nonzero)
with the same index α and slowly varying function L as XT , or that the vague limit of
(uαL(u) P(u−1Xt ∈ ·))u>0 as u → ∞ is the null measure, i.e. that Xt has lighter tails than
XT . Under these assumptions we can define a measure µ̃ on B([0, T ] × R̄

d \ {0}) that is
determined by µ̃([0, t] × A) = µt(A) for every t ∈ UT and A ∈ B(R̄d \ {0}). Note that
µs(A) ≤ µt(A) for every A if s < t and s, t ∈ UT , due to the independence of the increments
(see, e.g. [9, Lemma 12]), and that, by the homogeneity property of the measures µt , we have
µ̃(S × uA) = u−αµ̃(S × A) for every S ∈ B([0, T ]), A ∈ B(R̄d \ {0}), and u > 0. The
measure µ̃ can be interpreted as the limit of the rescaled Lévy measure ν̃ of X, in the following
way. Let (ν̃(u))u>0 be the collection of measures on B([0, T ] × R̄

d \ {0}) determined by
ν̃(u)([0, t] × A) = uαL(u)ν̃([0, t] × uA) for each t ∈ [0, T ] and A ∈ B(R̄d \ {0}).
Proposition 4.2. Let (X)t∈[0,T ] be an R

d -valued additive process satisfying

XT ∈ RV(α, L, µT ).

If uαL(u) P(u−1Xt ∈ ·) v−→ µt(·) on B(R̄d \ {0}) as u → ∞, for all but at most countably
many t ∈ [0, T ], then

ν̃(u)(·) v−→ µ̃(·) on B([0, T ] × R̄
d \ {0}) as u → ∞.
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If X is a Lévy process then ν̃(S×A) = Leb(S)ν1(A), where Leb denotes Lebesgue measure.
Moreover, XT ∈ RV(α, L, T µ1) implies that Xt ∈ RV(α, L, tµ1) for every t ∈ [0, T ]; hence,
µ̃(S × A) = Leb(S)µ1(A). In particular, µ̃({t} × A) = 0 for every t ∈ [0, T ].

Since additive processes are stochastically continuous (see [21, p. 3]) we always have
ν̃({t} × uA) = 0 for every t ∈ [0, T ]. However, for a general additive process, (ν̃(u))u>0 may
have a degenerate vague limit as u → ∞. One example is the additive process in Example 4.1,
for which µt is the null measure for every t < T . In that example µ̃(S × A) = δT (S)µT (A).

In connection with Proposition 4.2, we want to point out that we can construct an additive
process on [0, 1], say, for which X1 is regularly varying but (uαL(u) P(u−1Xt ∈ ·))u>0 does
not have a vague limit as u → ∞, for any t ∈ (0, 1).

Example 4.2. Let ν and ν̂ be two Lévy measures on B(Rd \ {0}) with ν(A) ≥ ν̂(A) for all
A ∈ B(Rd \ {0}). Suppose that ν ∈ RV(α, L, µ) but that (uαL(u)ν̂(u·))u>0 does not converge
vaguely as u → ∞. Let the measure ν̃ on B([0, 1] × R

d \ {0}) be given by

ν̃([0, t] × A) = t (1 − t)ν̂(A) + tν(A).

Furthermore, let ξ be a Poisson random measure with intensity measure ν̃. Then

Xt =
∫

[0,t]×Rd\{0}
xξ(d(t, x)), t ∈ [0, 1],

is an additive process and Xt has Lévy measure t (1 − t)ν̂ + tν. It follows from Proposition 3.1
that X1 ∈ RV(α, L, µ) but that (uαL(u) P(u−1Xt ∈ ·))u>0 does not converge vaguely as
u → ∞ for t ∈ (0, 1).

As already mentioned, the intuition behind Proposition 4.1 is that the process hits uA during
[0, T ] by making one big jump to this set. It is easy to determine the decay of the probability
that the process makes a jump in uA, i.e. Xt − Xt− ∈ uA, for some t ∈ [0, T ]. Consider
an additive process X with XT ∈ RV(α, L, µT ) and let A ∈ B(Rd) be a set satisfying the
conditions of Proposition 4.1. Then, with �Xt = Xt − Xt−,

lim
u→∞ uαL(u) P(�Xt ∈ uA for some t ∈ [0, T ]) = lim

u→∞ uαL(u) P(ξ([0, T ] × uA) > 0)

= lim
u→∞ uαL(u)(1 − exp{−ν̃([0, T ] × uA)})

= lim
u→∞ uαL(u)νT (uA)

= µT (A).

Under the conditions of Proposition 4.2 we can even find the asymptotics of the probability of
occurrence of a big jump at some time t within an arbitrary set S ∈ B([0, T ]) with µ̃(∂(S ×
A)) = 0. Indeed,

lim
u→∞ uαL(u) P(�Xt ∈ uA for some t ∈ S) = lim

u→∞ uαL(u) P(ξ(S × uA) > 0)

= lim
u→∞ uαL(u)(1 − exp{−ν̃(S × uA)})

= lim
u→∞ uαL(u)ν̃(S × uA)

= µ̃(S × A).

We finish with a remark that relates the result of Proposition 4.2 to regular variation on the
space D of càdlàg functions equipped with the Skorokhod J1 topology [3, p. 111].
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Remark 4.2. If the additive process (Xt )t∈[0,1] is regularly varying on the space of càdlàg
functions (see [9]), such that uαL(u) P(u−1X ∈ B) → m(B) as u → ∞, for every B ∈ B(D)

bounded away from 0 with m(∂B) = 0, then the conditions of Proposition 4.2 hold and the
limit measure m is given by

m(B) =
∫

[0,1]×Rd\{0}
1B(y1[t,1])µ̃(d(t, y)).

This representation is useful in determining the tail behavior of functionals of sample paths of
the process using the continuous mapping theorem (cf. [9]).

5. Proofs

We denote by B0,r = {x ∈ R
d : |x| < r} the open ball of radius r centered at 0. For a set B

we denote by Bc its complement. We also adopt the notation
∑0

k=1 = 0.

5.1. Proof of Proposition 3.1

Since X is infinitely divisible, there exists a Lévy process (Xt ) such that X
d= X1. The

Lévy–Itô decomposition (see [21, Theorem 19.2, p. 120]) implies that X has representation
X

d= X̃1 + J , where X̃1 and J are independent, (X̃t ) is a Lévy process with bounded jumps,
and J has a compound Poisson distribution with representation J

d= ∑N
k=1 Zk , where N is

Po(ν(Bc
0,1))-distributed, P(Zk ∈ ·) = ν(·∩Bc

0,1)/ν(Bc
0,1), and N, Z1, Z2, . . . are independent.

Note that ‘
d=’ denotes equality in distribution. Since (X̃t ) has bounded jumps, it follows from

Theorem 34 of [16, p. 25] that X̃1 has finite moments of all orders. Therefore, X̃1 will not
contribute to the tail behavior of Xt .

(i) First assume that X ∈ RV(α, L, µ). We will show that

X ∈ RV(α, L, µ)
(a)�⇒ J ∈ RV(α, L, µ)

(b)�⇒ Z1 ∈ RV(α, L, µ/ν(Bc
0,1))

(c)�⇒ ν ∈ RV(α, L, µ).

To show implication (a), we first show that (uαL(u) P(u−1J ∈ ·))u>0 is relatively compact
in the vague topology. By Theorem 15.7.5 of [13, p. 170], this is equivalent to showing that
lim supu→∞ uαL(u) P(u−1J ∈ Bc

0,r )) < ∞ for every r > 0. Choose an r > 0. We have

lim sup
u→∞

uαL(u) P(u−1X ∈ Bc
0,r/2) = lim sup

u→∞
uαL(u) P(u−1(X̃1 + J ) ∈ Bc

0,r/2)

≥ lim sup
u→∞

uαL(u) P(u−1J ∈ Bc
0,r ) P(u−1X̃1 ∈ B0,r/2)

= lim sup
u→∞

uαL(u) P(u−1J ∈ Bc
0,r ).

We conclude that (uαL(u) P(u−1J ∈ · ))u>0 is relatively compact. Let µ1 be a subsequential
vague limit such that uα

i L(ui) P(ui
−1J ∈ ·) v−→ µ1(·) as i → ∞ for some sequence (ui) with

limi→∞ ui = ∞. Since X̃1 has finite moments of all orders, for every ε > 0 we have

uα
i L(ui) P(|X̃1| > εui) ≤ uα

i L(ui) E(|X̃1|2α)

(εui)2α
→ 0 as i → ∞.
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Hence, uα
i L(ui) P(ui

−1X̃1 ∈ ·) v−→ 0 (the zero measure on B(R̄d \ {0})) as i → ∞, so by
Proposition A.1(i), below, uα

i L(ui) P(ui
−1X ∈ ·) v−→ µ1(·) as i → ∞. However, we have

assumed that X ∈ RV(α, L, µ), so µ1 = µ. Hence, implication (a) holds.
Implication (b) follows directly from Proposition A.2(ii), below.
Implication (c) follows since P(Zk ∈ · ) = ν(· ∩ Bc

0,1)/ν(Bc
0,1) and, for any relatively com-

pact set B ∈ B(R̄d \ {0}) and sufficiently large u, ν((uB) ∩ Bc
0,1) = ν(uB).

(ii) Now assume that ν ∈ RV(α, L, µ). Then, since P(Zk ∈ ·) = ν(· ∩Bc
0,1)/ν(Bc

0,1), it follows
that Zk ∈ RV(α, L, µ/ν(Bc

0,1)), because ν((uB) ∩ Bc
0,1) = ν(uB) for any relatively compact

set B ∈ B(R̄d \ {0}) and sufficiently large u. Furthermore, by Proposition A.2(i), we have
J ∈ RV(α, L, E(N)µ/ν(Bc

0,1)) and E(N)µ/ν(Bc
0,1) = µ. Since X

d= X̃1 + J (where X̃1 and
J are independent), X̃1 has finite moments of all orders, and J ∈ RV(α, L, µ), the conclusion
follows from Proposition A.1(i).

5.2. Proof of Proposition 4.1

By assumption, limu→∞ uαL(u) P(XT ∈ uA) = µT (A) > 0. Hence, P(XT ∈ uA) > 0
for sufficiently large u. Since P(Xt ∈ uA for some t ∈ [0, T ]) ≥ P(XT ∈ uA) we need only
show that

lim sup
u→∞

P(Xt ∈ uA for some t ∈ [0, T ])
P(XT ∈ uA)

≤ 1.

Set Aε = {y ∈ R
d : |y − x| ≤ ε, x ∈ A} with ε > 0 small enough that 0 /∈ Aε. Following

[9, p. 265], denote by B(p, ε, [0, T ]) the set of càdlàg functions that ε-oscillate at least p times in
[0, T ]. That is, for x ∈ B(p, ε, [0, T ]) there exist t0, t1, . . . , tp, 0 ≤ t0 < t1 < · · · < tp ≤ T ,
with |xti − xti−1 | > ε, i = 1, . . . , p. We have

P(Xt ∈ uA for some t ∈ [0, T ])
= P(Xt ∈ uA for some t ∈ [0, T ], X ∈ uB(2, ε, [0, T ]))

+ P(Xt ∈ uA for some t ∈ [0, T ], X /∈ uB(2, ε, [0, T ]))
≤ P(X ∈ uB(2, ε, [0, T ])) + P(XT ∈ uAε).

Since (Xt )t∈[0,T ] is a strong Markov process satisfying the conditions of Lemma 21 of [9]
(also see Theorem 2.5 and Lemma 2.8 of [14]), we have

lim sup
u→∞

uαL(u) P(X ∈ uB(2, ε, [0, T ])) = 0.

The Portmanteau theorem (see [13, Theorem 15.7.2, p. 169]) yields

lim sup
u→∞

uαL(u) P(XT ∈ uAε) ≤ µT (Aε).

Since µT (Aε) ↓ µT (A) = µT (A) as ε ↓ 0, we find that

lim sup
u→∞

uαL(u) P(Xt ∈ uA for some t ∈ [0, T ]) ≤ µT (A).

Hence,

lim sup
u→∞

P(Xt ∈ uA for some t ∈ [0, T ])
P(XT ∈ uA)

= lim sup
u→∞

uαL(u) P(Xt ∈ uA for some t ∈ [0, T ])
uαL(u) P(XT ∈ uA)

≤ 1.
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5.3. Proof of Proposition 4.2

Let UT ⊂ [0, T ] contain those t ∈ [0, T ] for which uαL(u) P(u−1Xt ∈ · ) v−→ µt(·). The
proof consists of two steps. First we show that

(a) for every t ∈ UT , uαL(u)νt (u·) v−→ µt(·) on B(R̄d \ {0}) as u → ∞.

Then we construct a convergence-determining class C for vague convergence to µ̃, and show
that

(b) for every C ∈ C, ν̃(u)(C) → µ̃(C) as u → ∞.

If µt is nonzero then (a) follows from Proposition 3.1. Suppose that µt = 0. To avoid
trivialities we may assume that νt has unbounded support. By the Lévy–Itô decomposition,
we have Xt

d= X̃t + ∑Nt

k=1 Zk , where the Zk are mutually independent, identically distributed,
and independent of Nt , with

P(Z1 ∈ ·) = νt (· ∩ Bc
0,1)/νt (B

c
0,1).

For every r > 0, we have

0 = lim sup
u→∞

uαL(u) P(u−1Xt ∈ Bc
0,r/2)

≥ lim sup
u→∞

uαL(u) P

(
u−1

Nt∑
k=1

Zk ∈ Bc
0,r

)
P(u−1X̃t ∈ B0,r/2)

= lim sup
u→∞

uαL(u) P

(
u−1

Nt∑
k=1

Zk ∈ Bc
0,r

)

≥ lim sup
u→∞

uαL(u) P

(
u−1Z1 ∈ Bc

0,2r , u−1
Nt∑

k=2

Zk ∈ B0,r

)

= lim sup
u→∞

uαL(u) P(u−1Z1 ∈ Bc
0,2r )

= lim sup
u→∞

uαL(u)νt (uBc
0,2r ).

Hence, uαL(u)νt (u·) v−→ 0 as u → ∞. This completes the proof of part (a).
Now consider part (b). First we have to find an appropriate convergence-determining class

C. If WT is a subset of (0, T ) with the property that its complement is at most countable, then
a convergence-determining class is given by

C = {[s, t] × A : s, t ∈ WT ∪ {0, T }, A ∈ B(R̄d \ {0}) is relatively compact, µT (∂A) = 0}.
To specify WT , let

VT = {t ∈ (0, T ) : µ̃({t} × Bc
0,1) = 0}.

Since µ̃([0, T ] × Bc
0,1) < ∞, it follows that the complement of VT is at most countable. Now

let WT = UT ∩ VT . We note that, for every relatively compact set A ∈ B(R̄d \ {0}), there
exists an r > 0 such that A ⊂ Bc

0,r , and by the homogeneity property of µ̃ we have

µ̃({t} × A) ≤ µ̃({t} × Bc
0,r ) = r−αµ̃({t} × Bc

0,1) = 0 for every t ∈ VT .
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Finally, we show convergence of sets in C. Let [s, t]×A ∈ C. Notice that, since µT (∂A) = 0,
it follows by construction that µt(∂A) ≤ µT (∂A) = 0 for t < T . Since ν̃({s} × uA) = 0, we
have

ν̃(u)([s, t] × A) = uαL(u)ν̃([0, t] × uA) − uαL(u)ν̃([0, s] × uA)

→ µ̃([0, t] × A) − µ̃([0, s] × A)

as u → ∞. Since s ∈ VT implies that µ̃({s} × A) = 0, we conclude that

ν̃(u)([s, t] × A) → µ̃([s, t] × A)

as u → ∞. We complete the proof by showing that (b) implies that ν̃(u) v−→ µ̃ on B([0, T ] ×
R̄

d \ {0}) as u → ∞. For every relatively compact set B ∈ B([0, T ] × R̄
d \ {0}), there exists

an r > 0 such that
lim sup
u→∞

ν̃(u)(B) ≤ lim sup
u→∞

ν̃(u)([0, T ] × Bc
0,r )

= lim sup
u→∞

uαL(u)νT (uBc
0,r )

= µT (Bc
0,r )

< ∞.

It follows that (ν̃(u))u>0 is vaguely relatively compact. Moreover, we have shown that any two
subsequential vague limits must agree on the π -system C. Since C generates the σ -algebra
B([0, T ] × R̄

d \ {0}), applying Theorem 10.3 of [4, p. 163] completes the proof.

Appendix A. Sums of regularly varying random vectors

In this section we will derive some useful results concerning sums of regularly varying
random vectors.

Proposition A.1. Let X be an R
d -valued random vector in RV(α, L, µ).

(i) Let X̃ be an R
d -valued random vector independent of X. If X̃ satisfies

uαL(u) P(u−1X̃ ∈ ·) v−→ µ̃(·)
on B(R̄d \ {0}) as u → ∞, for some Radon measure µ̃ (possibly the null measure) with
µ̃(R̄d \ R

d) = 0, then X + X̃ ∈ RV(α, L, µ + µ̃).

(ii) If, for some k ≥ 1, there exist independent, identically distributed random vectors Xi ,
i = 1, . . . , k, such that X

d= X1 + · · · + Xk , then Xi ∈ RV(α, L, µ/k) for i = 1, . . . , k.

Remark A.1. A statement similar to (i), but for R
d+-valued random vectors, was proved in

Proposition 4.1 of [18].

Proof of Proposition A.1. (i) Let ε > 0 and note that, by Remark 2.1(i), µ(∂B0,ε) =
µ̃(∂B0,ε) = 0. Since

uαL(u) P(u−1(X, X̃) ∈ Bc
0,ε × Bc

0,ε) = uαL(u) P(u−1X ∈ Bc
0,ε) P(u−1X̃ ∈ Bc

0,ε) → 0

as u → ∞, it follows that (X, X̃) ∈ RV(α, L, µ̂), where µ̂ is a Radon measure on B(R̄2d \{0})
that concentrates on ({0} × R

d) ∪ (Rd × {0}). Let T : R
2d → R

d be the linear transformation
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T (x, x̃) = x + x̃. By Proposition 3.18 of [19, p. 148], X + X̃ ∈ RV(α, L, µ̂ ◦ T −1(· ∩ R
d)).

Moreover, for any B ∈ B(R̄d \ {0}),

µ̂ ◦ T −1(B ∩ R
d) = µ̂({(x, x̃) : x + x̃ ∈ B ∩ R

d})
= µ̂({(x, 0) : x + 0 ∈ B ∩ R

d}) + µ̂({(0, x̃) : 0 + x̃ ∈ B ∩ R
d})

= µ(B) + µ̃(B).

(ii) Since X ∈ RV(α, L, µ) it follows that, for any subsequence (uj ) with limj→∞ uj = ∞,
we have uα

j L(uj ) P(u−1
j X ∈ ·) v−→ µ(·) on B(R̄d \{0}). Hence, it follows from part (i) that any

subsequential vague limit µ1 of (uαL(u) P(u−1X1 ∈ ·))u>0 must satisfy µ1 = µ/k. Hence,
we need only show that (uαL(u) P(u−1X1 ∈ ·))u>0 is relatively compact in the vague topology.
By Theorem 15.7.5 of [13, p. 170], this is equivalent to showing that

sup
u>0

uαL(u) P(u−1X1 ∈ B) < ∞

for every relatively compact set B ∈ B(R̄d \ {0}). In turn, this is equivalent to showing that
lim supu→∞ uαL(u) P(u−1X1 ∈ Bc

0,r ) < ∞ for every r > 0. Let r > 0 and ε ∈ (0, r/k).
Then

lim sup
u→∞

uαL(u) P(u−1X ∈ Bc
0,r−kε)

= lim sup
u→∞

uαL(u) P(u−1(X1 + · · · + Xk) ∈ Bc
0,r−kε)

≥ lim sup
u→∞

uαL(u) P(u−1X1 ∈ Bc
0,r , u−1Xj ∈ B0,ε for j = 2, . . . , k)

= lim sup
u→∞

uαL(u) P(u−1X1 ∈ Bc
0,r ) P(u−1X1 ∈ B0,ε)

k−1

= lim sup
u→∞

uαL(u) P(u−1X1 ∈ Bc
0,r ).

Hence, lim supu→∞ uαL(u) P(u−1X1 ∈ Bc
0,r ) < ∞, which shows the required relative com-

pactness. This completes the proof.

Above we considered a sum of a deterministic number of terms. We will now consider the
case with a random number of terms.

Proposition A.2. Let (Xk)k≥1 be a sequence of independent, identically distributed R
d -

valued random vectors, and let N ≥ 0 be an integer-valued random variable satisfying∑∞
n=1 P(N = n)(1 + ε)n < ∞ for some ε > 0. Suppose that N and (Xk)k≥1 are independent

and that N is not almost surely 0.

(i) If X1 ∈ RV(α, L, µ) then
∑N

k=1 Xk ∈ RV(α, L, E(N)µ).

(ii) If
∑N

k=1 Xk ∈ RV(α, L, µ) then X1 ∈ RV(α, L, µ/E(N)).

Proof. (i) Take a relatively compact set B ∈ B(R̄d \ {0}) with µ(∂B) = 0. Since

µ(R̄d \ R
d) = 0,
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we may without loss of generality take B ⊂ R
d . Furthermore, since B ⊂ Bc

0,r for some r > 0,
since

uαL(u) P

(
u−1

N∑
k=1

Xk ∈ B

)
=

∞∑
l=1

uαL(u) P

(
u−1

l∑
k=1

Xk ∈ B

)
P(N = l)

≤
∞∑
l=1

uαL(u) P

(
u−1

l∑
k=1

|Xk| ≥ r

)
P(N = l), (A.1)

and since the nonnegative random variables |Xk| are regularly varying, it follows from
Theorem 3 of [7] that (A.1) converges to E(N)µ(Bc

0,r ). Using Pratt’s theorem (see [15])
and Proposition A.1(i), we conclude that we may interchange the order of the summation and
the limit in the following, to obtain

lim
u→∞ uαL(u) P

(
u−1

N∑
k=1

Xk ∈ B

)
= lim

u→∞

∞∑
l=1

uαL(u) P

(
u−1

l∑
k=1

Xk ∈ B

)
P(N = l)

=
∞∑
l=1

lim
u→∞ uαL(u) P

(
u−1

l∑
k=1

Xk ∈ B

)
P(N = l)

= E(N)µ(B).

(ii) We first show that (uαL(u) P(u−1X1 ∈ ·))u>0 is vaguely relatively compact. Since, for
every r > 0,

lim sup
u→∞

uαL(u) P(u−1X1 ∈ Bc
0,r )

= lim sup
u→∞

uαL(u) P(u−1X1 ∈ Bc
0,r ) P

(
u−1

N∑
k=2

Xk ∈ B0,r/2

)

= lim sup
u→∞

uαL(u) P

(
u−1X1 ∈ Bc

0,r , u−1
N∑

k=2

Xk ∈ B0,r/2

)

≤ lim sup
u→∞

uαL(u) P

(
u−1

N∑
k=1

Xk ∈ Bc
0,r/2

)

< ∞,

it follows that lim supu→∞ uαL(u) P(u−1X1 ∈ B) < ∞ for every relatively compact set
B ∈ B(R̄d \ {0}), which shows the required vague relative compactness. We will show that
any two subsequential vague limits of (uαL(u) P(u−1X1 ∈ ·))u>0 coincide and are equal
to µ/E(N). Suppose that, as j → ∞, uα

j L(uj ) P(u−1
j X1 ∈ ·) v−→ µ1(·) on B(R̄d \ {0}) for

some Radon measure µ1 and some sequence (uj ) with limj→∞ uj = ∞. Choose a relatively
compact set B ∈ B(R̄d \ {0}) with µ1(∂B) = µ(∂B) = 0. We have

uα
j L(uj ) P

(
u−1

j

N∑
k=1

Xk ∈ B

)
=

∞∑
l=1

uα
j L(uj ) P

(
u−1

j

l∑
k=1

Xk ∈ B

)
P(N = l)

︸ ︷︷ ︸
fj (l)

→ µ(B)
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as j → ∞ and, for some r > 0,

uα
j L(uj ) P

(
u−1

j

N∑
k=1

Xk ∈ B

)
≤ uα

j L(uj ) P

(
u−1

j

N∑
k=1

Xk ∈ Bc
0,r

)

=
∞∑
l=1

uα
j L(uj ) P

(
u−1

j

l∑
k=1

Xk ∈ Bc
0,r

)
P(N = l)

︸ ︷︷ ︸
Gj (l)

→ µ(Bc
0,r )

as j → ∞. By Proposition A.1(i) (the same proof applies in this case), limj→∞ fj (l) =
l P(N = l)µ1(B) and limj→∞ Gj(l) = l P(N = l)µ1(B

c
0,r ). Moreover, fj ≤ Gj for every

j and, by assumption, limj→∞
∑∞

l=1 Gj(l) = µ(Bc
0,r ) < ∞. Hence, Pratt’s theorem applies

and yields limj→∞
∑∞

l=1 fj (l) = E(N)µ1(B). However,

lim
j→∞

∞∑
l=1

fj (l) = lim
j→∞ uα

j L(uj ) P

(
u−1

j

N∑
k=1

Xk ∈ B

)
= µ(B).

Since the relatively compact sets B ∈ B(R̄d \ {0}) with µ1(∂B) = µ(∂B) = 0 determine a
Radon measure on B(R̄d \ {0}), we have µ1 = µ/E(N). This completes the proof.
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