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In a recent study, Lawson & Dawson (J. Fluid Mech., vol. 780, 2015, pp. 60–98)
present experimental results on the fine-scale structure of turbulence, which are
obtained with a novel variant of particle image velocimetry, to elucidate the relation
between the small-scale structure, dynamics and statistics of turbulence. The results
are carefully validated against direct numerical simulation data. Their extensive study
focuses on the mean structure of the velocity gradient and the pressure Hessian fields
for various small-scale flow topologies. It thereby reveals the dynamical impact of
turbulent strain and vorticity structures on the velocity gradient statistics through
non-local interactions, and points out ways to improve low-dimensional closure
models for the dynamics of small-scale turbulence.
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1. Introduction

The investigation of the fine-scale structure of fully developed turbulence has been
at the heart of turbulence research ever since the early days of the field. The kinetic
energy dissipation, for example, is at the centre of the celebrated Kolmogorov
phenomenology. The considerable spatial fluctuations of the energy dissipation,
taken into account in the extended phenomenology from 1962, are a signature of
the intermittent nature of turbulence. Intermittency has been observed in countless
experimental and numerical studies and marks one of the central challenges in
deriving a statistical theory of fully developed turbulence. It is also thanks to
pioneering numerical work that we now know that intermittency manifests itself
in coherent small-scale structures, such as vortex tubes and strain sheets. In fact,
turbulence can be envisioned as the entangled dynamics of such structures throughout
their lifetime, starting from their births out of instabilities, through mutual advection
and straining until their deaths by viscous decay.
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Comprehensive information on the fine-scale structure of three-dimensional turbu-
lence is encoded in the velocity gradient field Aij(x, t)= ∂ui(x, t)/∂xj. Understandably,
velocity gradients are notoriously hard to measure experimentally owing to the
dimensionality of the field and the necessity to accurately resolve the finest scales of
turbulent motion. The dynamical equation of the velocity gradient field is obtained
by taking the spatial gradient of the Navier–Stokes equation, thereby highlighting
smaller-scale features of the flow. The gradient dynamics, of course, displays the same
mathematical intricacies as the velocity dynamics such as nonlinearity, non-locality
and their interplay with viscous dissipation. However, the amplification or depletion
of velocity gradients induced by the nonlinear advective term in the Navier–Stokes
equation as well as the isotropic part of the pressure Hessian takes a particularly
simple, local form of a quadratic nonlinearity. In two seminal works by Vieillefosse
(1982) and Cantwell (1992) it was shown analytically that the local nonlinearity,
when considered as the only dynamical effect, leads to an unphysical blowup of the
velocity gradients in a finite time. An important lesson learned from these works is
that non-local pressure and viscous effects are necessary to regularize the dynamics
and to prevent the finite-time singularity. While the viscous contribution is qualitatively
well understood, for example in terms of the linear diffusion model by Martin, Dopazo
& Valino (1998), it remains one of the central challenges to understand the non-local
pressure contribution to the velocity gradient tensor dynamics arising through the
deviatoric part of the pressure Hessian.

Recent years have brought significant progress in terms of experimental
measurements of velocity gradients as well as in terms of phenomenological
models capturing features of the dynamics, as summarized in the reviews by
Wallace & Vukoslavcevic (2010) and Meneveau (2011), respectively. With their
recent work, Lawson & Dawson (2015) push the state of the art of this exciting
subfield of turbulence research one step further in three respects. By a sophisticated
experimental set-up, they were able to obtain high-fidelity, volumetric and time-
resolved measurements of the velocity gradient and pressure Hessian fields which give
novel insights into the statistical signatures of the small-scale structure of turbulence.
All of their results are furthermore carefully compared to publicly available direct
numerical simulation (DNS) data from the Johns Hopkins turbulence database (Li
et al. 2008). Finally, they use their results to confirm a recent closure theory for the
pressure Hessian introduced by Wilczek & Meneveau (2014) and furthermore make
suggestions for future improvements.

2. Overview

The main question pursued by Lawson & Dawson (2015) is how the small-scale
structure, dynamics and statistics of turbulence are interrelated, a long-standing
and fundamental question in the field. To contribute to the answer, they acquire
experimental data from a comparably large French washing machine set-up, consisting
of a dodecagonal water tank of 2 m in height and 2 m in diameter equipped with
two slowly turning, counter-rotating impellers at the top and at the bottom. This
generates an axisymmetric turbulent flow at Reλ ≈ 180 with a Kolmogorov length
scale of η≈ 0.93 mm and a Kolmogorov time scale of τη ≈ 0.88 s. The advantage of
such a large experimental set-up is that even the finest scales of turbulence are still
accessible to particle image velocimetry (PIV) techniques. For the current study, a
hybrid PIV method recently introduced by Lawson & Dawson (2014) is used, which
combines scanning PIV with tomographic reconstruction. The experimental results
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(a) (b)

FIGURE 1. Conditional Q field for a strain-dominated region in the eigenframe of the
strain tensor. (a) DNS data and (b) experimental data. Figures from Lawson & Dawson
(2015), reused with permission of the authors.

are compared with those obtained from a publicly available dataset of homogeneous
isotropic turbulence obtained by DNS at Reλ ≈ 433 (Li et al. 2008), showing good
qualitative and quantitative agreement despite the Reynolds-number disparity.

To reduce the complexity of the information contained in the velocity gradient
field, it is common practice to study two of the, in the case of isotropic turbulence,
five independent invariants of the velocity gradient tensor, Q = −Tr(A2)/2 and
R=−Tr(A3)/3. Here Q can be understood as characterizing the competition between
enstrophy and strain, whereas R represents the competition between enstrophy
production and strain production. The second invariant, Q, is intimately related
to the pressure, as can be seen from the Poisson equation 1p= 2Q obtained from the
Navier–Stokes equation. The pressure field therefore can be understood as a non-local
functional of the Q field.

With their technique, the authors were able to acquire a large number, O(103), of
statistically independent spatio-temporal measurements. Each of these short ‘movies’
of a measurement volume of 135η × 134η × 25.4η consists of 10 snapshots in time,
separated by 0.068τη. One such snapshot is visualized in the figure accompanying the
title. It shows vorticity-dominated (Q> 0) regions in red as well as strain-dominated
(Q< 0) regions in blue. The visualization demonstrates that the tube- and sheet-like
structures of the enstrophy and strain fields live in close neighbourhood.

To make contact to the statistics of small-scale turbulence, the authors pick a
number of points in the R–Q plane, representative of various flow topologies, and
investigate the mean Q field under these conditions. One such conditional Q field is
depicted in figure 1 for a flow configuration that is dominated by strain and strain
production. As expected, the central region in this plot is occupied by a strain structure
(blue), which is elongated along the intermediate strain eigendirection. Interestingly,
such straining regions are, on average, flanked by an asymmetric quadruplet of
vorticity-dominated structures (red) elongated in the same direction, which form a
45◦ configuration with the compressional and extensional axes. A striking agreement
between experiment and simulation is observed. This statistical analysis not only
confirms the above qualitative observation that strain and enstrophy live side by side,
but also gives a precise quantification of their average arrangement. The authors then
investigate in great detail how these turbulent structures prevent the blowup induced
by the local nonlinearity through the non-local part of the velocity gradient dynamics.

The direct, non-parametric estimates of the conditional Q field are critically
compared with a parametrized estimate, which retains terms up to second order
in the velocity gradient weighted by scalar ‘correlation functions’ encoding the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

53
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.536


4 M. Wilczek

spatial dependence. This so-called stochastic estimation put forward by Adrian (1994)
and coworkers is extremely helpful to improve the statistical convergence of such
complex statistical quantities. Lawson & Dawson (2015) extend this idea further
by making contact to a recent closure theory suggested by Wilczek & Meneveau
(2014), which quantifies non-local pressure Hessian effects on the velocity gradient
statistics starting from the assumption of Gaussian velocity fields and subsequently
taking into account non-Gaussian features by calibration against DNS data. When
restricted to time-reversible terms, as dictated by the Gaussian closure assumption,
their experimental data confirm the recent theoretical result. At the same time, the
more general stochastic estimation also suggests the inclusion of irreversible terms,
which points at a subtle but potentially important refinement of the closure model.

3. Future

Over the past 25 years we have seen a rapid evolution of experimental and
computational techniques to study turbulent flows. Experiments now can gather fine-
scale information on turbulence which previously was only accessible to numerical
simulations. With the increase of computational power, numerical simulations on the
other hand now can forge into Reynolds-number ranges previously only accessible to
experiments. The contribution by Lawson & Dawson (2015) is an inspiring example
for these recent developments and highlights the synergetic potential of experimental,
numerical and theoretical techniques that are now in the hands of the community. It
appears likely that precise comparisons of numerical and experimental data will further
evolve to become a standard procedure in the field, providing not only confidence
in the characterization of the subtle details of turbulent flows, but also a testbed for
novel theoretical approaches and reduced models. With these latest developments,
establishing a quantitative connection between the small-scale coherent structure and
the intermittent and non-Gaussian statistical properties of turbulence may have finally
come within reach.
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