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The emerging area of two dimensional (2D) materials has attracted a great deal of scientific attention in 

recent years. Like graphene, these materials can be exfoliated to single atom thickness and can then be 

mechanically layered together to create new van der Waals crystals with bespoke properties. However 

the performance of such materials is strongly dependent on the quality of the crystals and the interfaces 

between different crystals. Cross sectional imaging using atomic resolution transmission electron 

microscopy (TEM) and scanning transmission electron microscopy (STEM) is the only technique able to 

characterize the nature of buried interfaces in these engineered van der Waals crystals [1].  

 

We have been developing specimen preparation and image analysis methods for investigating the 

structure of 2D crystal heterostructures at the atomic scale [1,2]. I will present work demonstrating that 

cross sectional STEM imaging, coupled with energy dispersive X-ray (EDX) and electron energy loss 

(EEL) spectrum imaging, can be used to provide new insights to interpret the optical and electronic 

properties of such systems [1,2]. For example, we have studied light emitting diode (LED) devices 

(Figure 1), produced by mechanical exfoliation and subsequent stacking of up to 13 different 2D 

crystals, including MoS2 or WS2 monolayer quantum wells [3]. Using cross sectional STEM EDX and 

EEL spectrum imaging we reveal that the crystal interfaces of such devices are atomically flat and 

provide detailed structural information regarding the thickness of individual layers which is essential to 

understanding the photoluminescence and electroluminescence results obtained.  

 

We have also applied this cross sectional imaging technique to 2D crystal heterostructures where 

individual planes of atoms have been effectively removed to produce nanochannels. I will demonstrate 

recent work where cross sectional imaging has aided the development of such capillary systems and the 

application of these nanochannels to help understand water flow at the nanoscale. Specifically 

characterizing the unexpectedly high fluid flow rates that are observed for few atomic layer graphene 

channel heights compared to larger channels [4]. We further use atomic resolution TEM imaging to 

reveal how confinement in such channels provides high pressure which can drive chemical 

transformations in aqueous salts [5].  

 

Like our artificial 2D crystal heterostructures, some natural mineral phases are also composed of 

incommensurate 2D layers. I will present recent results showing the exfoliation of one such crystal, 

Franckeite, and the characterization of the excellent electrochemical properties for the exfoliated flakes, 

which offer greater promise for energy storage applications than traditional transition metal 

dichalcogenides (Figure 2) [6]. Finally I will discuss an exciting new area of 2D materials research 

which is developing around 2D crystals that are unstable in air. By harnessing the environmental 

protection provided by graphene encapsulation we can image air sensitive 2D materials like black 
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phosphorus [7]. Using TEM combined with density functional theory we provide the first 

characterisation of atomic substitutional defects in the air sensitive monolayer superconductor NbSe2 as 

a first step to understanding the unexpected properties of this material [8,9].  

 

  
Figure 1.  Cross sectional STEM imaging and EEL spectroscopy of a WS2 quantum well inside a boron 

nitride, graphene, boron nitride double sandwich. Similar to those described in ref [3]. 

 

 

  
Figure 2.  Cross sectional STEM imaging and EDX spectroscopy of a Franckeite crystal exfoliated to 

few layer thickness [6]. 
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