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1. We suppose that 0 < sn < 1 for every n, and denote by n(a, 0) the 
number of s0, Si, s2, . . . , sn which fall in the interval 0 < a < x < / 3 < l . 

If there exists a function git), 0 < / < 1, such that 

(1) l i m ^ ^ = g ( / ? ) - g ( a ) 

for every interval (a, /3] with 0 < (3 — a < 1, the sequence (sn) is said to 
have a distribution function g(t), 0 < / < 1, in the interval [0, 1], (see 9, 
p. 87). It follows from (1) that the function g(i) is monotonie non-decreasing 
with g(0) = 0 and g(l) = 1. 

In the special case when g(t) = t for every / i n [0, 1], the sequence (sn) is 
said to be uniformly distributed in [0, 1]. H. Weyl (8, 14) proved that if a 
sequence (sn) is uniformly distributed in [0, 1] then for every Riemann inte-
grable function fix) with 0 < x < 1, the following relation holds: 

(2) H m - ^ - r E / f e ) = f f(x)dx. 

We now state: 

THEOREM 1. Let A = (amn) be a regular matrix, and let (sn) be a real sequence 
such that \sn\ < B for every n. Suppose that {x{n))> (n = 1, 2, . . .) is the sub
sequence of positive integers such that sX(n) < x and let 

oo 

gm(x) = 2 3 0<m,x{n)-

U & W tends to a limit g(x) as m —» oo for all x in [-B, B], then 
oo nB 

(3) lim 2 am,nf(sn) = I f(x)dg(x) 
ra->oo 71=1 *^— B 

for every continuous function f(x) defined on [ — B,B], the integral being a Rie-
mann-Stieltjes integral. 

This theorem was proved by Henstock in the case fix) = x (see 2, 5). The 
first half of the proof is identical with Henstock's, but we include it for a 
later reference. 

Proof. Since iamn) is a regular matrix, we have 
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Z km,»I < M 
n=l 

for every m > 1; thus gm(x) exists for each m and x. Also gm( —5) = 0, 
gm{B) = Y*amn- Let ;y > x, then {x(w)} is a subsequence of {y(n)}, so that 

oo oo 

(4) \gm(y) - gm(x)\ < X) km,»(n)| ~ S \a>m,x{n)V 
rz=l w=l 

Hence, the variation of gm(x) in [ — 5 , B] is less than or equal to 
oo 

X km.nl < M 
7 1 = 1 

for all m\ moreover, the Riemann-Stieltjes integral 
• B 

f(x)dgm{x) s exists for all continuous/(x). 
Now let us select an arbitrary e > 0 and subdivide [ — B,B] by means of 

the points {xt} (i = 0, 1, . . . , k) into subintervals [xu xi+i] so small that the 
oscillation of f(x) is less than e/M on every interval [xu xi+1]. Then if X P ( 0 
denotes summation over all integers p{i) in {xt(n)} that are not in {xi-i(n)}, 
we have 

oo k 

Y^am,nj{sn) - X). f(Xi){gm(Xi) ~ gro(*i-l)} 

k 

i=l p(i) 

z=l p(i) -LVJ-

Hence we have: 

(5) J2am,nf(sn)= I f(x)dgm(x). 
n=l *J-B 

From (4) we have that the variation of gm(x) is less than M for all m, and 
so using a theorem of Helly (see 10, p. 232), 

J B r*B 

f{x)dgm{x) = f(x)dg(x) 
„^uu -B *J -B 

and our theorem follows directly from (5) and (6). 
A submatrix of a regular matrix is formed by removing rows from the 

original matrix. It is clear that if (sn) is bounded and not A-summable there 
will be many different submatrices of A which sum (sn). We now prove: 

PROPOSITION 1. If \sn\ < B, there is a submatrix of A = (amn) which sums 
(sn) and {f(sn)}, where f(x) is any continuous function on the interval [-B, B]. 
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Proof. From (4) we have that the functions gm(x) are of uniformly bounded 
variation and uniformly bounded. Hence, we can apply a second theorem of 
Helly's (see 10, p. 222) to find a subsequence {gmA(x)} that converges every
where in [ — B, B] to a function of bounded variation g(x). If we apply Theorem 
1 to this submatrix, we have proved our assertion. 

Suppose it is known that (3) is true for every continuous function fix) and 
some fixed function g(x). What can be said about the nature of g(x)f We 
now prove: 

PROPOSITION 2. If (3) is true for some g{x) and every continuous function 
fix) in [ — B,B] then there is a subsequence of the integers {mk} such that 
(7) g(x) = lim gmkix) 

for all values of x with the exception of a countable set. 

Proof. By Proposition 1, we can select a subsequence {mk} in such a way 
that 

g'{x) = \\mgmkix) 
ft->oo 

for all x. Also, from Proposition 1, 

lim X) amknfisn) = I f{x)dgfix). 
Jc^oo *> -B 

Since submatrices of a regular matrix A sum all y4-summable sequences to 
the same value, 

fBf(x)d[g(x) - g'(x)} = 0 
*> -B 

for every continuous fix) on [ — B,B], From this relation and a theorem of 
F. Riesz, (13, p. 243), our conclusion follows. 

If a bounded sequence isn) has a finite set of limit points, Cooke and Barnett 
(2, 1) showed that isn) is summed by the regular matrix A = iamn) if a certain 
finite set of sequences of O's and l's is ^4-summable. The particular members 
of this finite set depend on the limit points of the sequence. For the case 
fix) = x, Theorem 1 is an extension of this idea to the case of the general 
bounded sequence. Henstock (5) showed that if lim gmix) exists for a countable 
everywhere-dense set of x, then isn) is ^4-summable; this is an improvement 
on the non-countable set implied in Theorem 1. We now prove a theorem 
which complements another of Henstock's (see 5, p. 31). 

THEOREM 2. If antk > 0 and lim gmix) exists for an everywhere-dense set in 
[ — B, B], then a gix) exists such that 

lim ]T amnfisn) = I fix)dgix) 
m->oo *J —B 

for every continuous function fix) in [ — B, B]. 
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Proof. From the properties of a regular matrix it is clear that 

Y\mgm{x) 

will exist at x = — B and x — B. Now if amn > 0 and lim gm(x) exists on an 
everywhere-dense set, then if x± > x2 we have lim gm(xi) > limgm(x2). We 
may complete the definition of g(x) by writing 

g(x) = l imgO) 

when w approaches x over points of the everywhere-dense set which are less 
than x. The function g(x) is now defined for all values of x in [-B, B]; it is 
clearly non-decreasing. Our theorem now follows from a theorem due to 
Hilbert (13, p. 245), and a reference to (4). 

2. Let (sn) be a sequence of numbers satisfying 0 < sn < 1 for every 
n = 1, 2, 3, . . . , then (sn) is said to be well distributed if and only if 

-j n+p 

lim - X) I[a,b](sk) = o - a 
V^co V k=n+l 

holds uniformly in n for every interval [a, b], I[a,b](x) being the characteristic 
function of the interval [a, b] (see 12). Clearly all well-distributed sequences 
are also uniformly distributed, where uniform distribution is defined in § 1 
(see also 14). 

In this paragraph and in the remainder of the paper, we shall use the 
notation {6} for 6 — [6], where [0] is the largest integer less than or equal 
to 6. Where there is no possibility of confusion we shall write {sn} for ({sw}). 
From the sequence (sn) we define another one (an/n) as follows: 

Y T ~\~ 1 
(8) an = r where - < {sn) < , 

n n 
for n = 1, 2, 3, . . . and 0 < r < n — 1. We also write 

(9) « = Z . ! T . 0 < « < 1 . 

From (8) it is clear that 

lim 

~\ n\ 

On 

n = 0. 

However, it is shown in (6) that if lim \{sn) — {tn}\ = 0, then both of the 
sequences {sn} and {tn} are either well distributed or not well distributed. 
Hence the sequence {sn} is well distributed if and only if (an/n) is well distri
buted. On the other hand it is shown in (6) that the sequence (an/n) is well 
distributed if and only if the sequence {n\ a] is well distributed. This means 
that corresponding to every sequence {sn} there is a number a, 0 < a < 1 
such that {sn} is well distributed if and only if the sequence {n\ a} is well 
distributed. A similar situation holds with respect to uniform distribution as 
may be seen from the theorem proved in (6). 
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T h e following theorem is due to Weyl (see 8 or 14). 

T H E O R E M 3. / / g(x) has the positive integers for its domain and g(x) 9e g (y) 
for x 5e y, then {g(n)a} is a uniformly distributed sequence for almost all a. 

From this theorem it is clear t h a t the sequence {n\a\ is uniformly dis t r ibuted 
for almost all a. In a certain sense, almost all sequences {sn} are uniformly 
distr ibuted. Here we shall show t h a t the sequence {n\a\ is well dis tr ibuted 
for almost no a. 

First , however, we shall make a few remarks on homogeneous sets. Let E 
be a subset of (0, 1) and let the density A (a, b) of E in the interval (a, b), 
0 < a < i < 1, be defined by the following relation 

. , 7X outer measure (E C\ (a, b)) 
A (a, b) = • 7T - , . 

\b — a\ 
If E is of measure one, it is clear t h a t A (a, b) = 1 for every interval (a, b); 
likewise if E is of measure 0, it is clear t h a t A (a, b) = 0 for every interval 
(a, b). Sets having the same density for every interval in (0, 1) are called 
homogeneous. If E is measurable of measure r, 0 < r < 1, then the comple
ment of E can be covered by a set of open intervals whose to ta l length is 
(1 — r) + e where e is an arbitrari ly small positive quan t i ty . Denote this 
set of open intervals by S; then the outer measure of E P\ S is less than e. 
For a t least one of the intervals (a, (3) belonging to S, it follows t h a t 

A ( a , j 3 ) < -
(1 - r) + e * 

If, on the other hand, we examined the open set covering E, we could show 
the existence of intervals such t h a t 

r 
A ( a , 0 ) > r + e' 

I t is now clear t h a t a necessary and sufficient condition for a measurable set 
to be homogeneous is t h a t its measure be either zero or one. Moreover, if E 
is measurable, A (a, b) > 8 > 0 for all intervals (a, 6), then E is homogeneous 
and of measure one; see also Knopp (7, p . 413, Satz 4 ) . 

We now prove the following: 

T H E O R E M 4. Let (n(k)) be a subsequence of the integers, 

n(k) 
= r(fe), r{k)/ 

n(k - 1) 

then for almost all a, 0 < a < 1, the sequence {n(k)a\ is not well distributed. 
Proof. If the sequence {n(k)a\ is well distr ibuted, then we cannot have, for 

instance, 

(10) {n(k)a} < \ for kv < k < kv + [log2 v] 

for infinitely many v. For if I(x) is the characteristic function of [0, J] we 
would then have 
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-j k v+[l0g2v] 

<n) ï ï ^n £ J(5»')= x with s» = W*M 
[iOg2 V\ n=kv+l 

for infinitely many k and the sequence {n(k)a} is not well distributed. 
We first prove that the set of a for which \n{k)a) is not well distributed 

contains a set of positive measure. Let Ek be the set of a for which {n(k)a\ < J. 
This set consists of the first half of each of the intervals 

\'n(k)/'\n(k)'n(k)J'---'\ n(k) ' ) 

and n(Ek) = §. We first remark that contained in the interval 

J'<r>«k» = (é)'2im) 
there will be at least [%r(k + 1)] — 1 intervals of the form 

for there can be at most two intervals of the form J(r, n(k + 1)) which inter
sect J'(r, n(k)) but do not lie completely in J'(r, n(k)) and their combined 
length may be either 

Jn(k+ 1) 
r(k + 

) 
r(k+ 1) 1  

2 n(k+l) 

or 

r(k + i) i /r r( fe + i)1 _ A i 
2 n(k+l) \L 2 J /w ( j fe+i) ' 

Hence the number of intervals of the form J'(r, n(k + 1)) completely contained 
in Ek is at least 

([M* + 1)] " !)«(*) > (M* + 1) ~ 2)»(*). 
Each of the intervals / '(>, w(£ + 1)) in turn contains at least [%r(k + 2)] — 1 
intervals of the form J'(r, n(k + 2)). It follows that 

Jc+p 

HEn 
n=Jc 

contains at least 

n ( * ) ( M * + 1) - 2) . . . ( | r (* + £) - 2) 

intervals of the form J'{r, n(k + p)). This means that 

<-(£>-) > i^f+V) *< 4 +" -2) • • •<Mk+p} -2) 
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where 

(12) limX(ik,/>) = 0 (p = 1,2, . . . ) • 

On the other hand, there can be no more than [§r(& + 1)] intervals of the 
form J(r,n(k-\- 1)) wholly contained in J'(r,n(k)), and indeed J '(r , n(k)) is 
wholly contained by no more than [%r(k + 1)] + 2 < ^r(& + 1) + 2 intervals 
of the form J(r, w(fe + 1)). This is also an upper bound for the number of 
intervals of the form J'(r,n(k + 1)) which intersect Jf(r,n(k)). It is now 
clear that 

where 

(13) l i m f ( £ , £ ) = 0 (p = 1 ,2 , . . . ) , 

and that 

(14) lim £ & - g = 1 ( £ = 1 , 2 , . . . ) . 

For v = 1, 2, let £„ = E ^ where &2 > &i and r(fei) > 16. For y > 3 let 

kv+p(v) 

(i5) *, = n Er 
r=kv 

and choose first p{v) = [log2 P], Ï> ^ 2*; then by virtue of (12) and the fact 
that 2-tlog2"] > 1/v, 

(16) L(k,p(?)) > 1/v 

for kv > i£. For v = 2*, let p(v) = k — 1 and again by virtue of (12) 

L(k, p{y)) > 21-* - e > 2A - e > 1/v 

for &„ > K'. Since 
(„/2nog2 "]) < (2^/2log2") < 2, 

it is evident that for v 7^ 2k 

L(k,p(v)) <2/p, 

and this will also be true for v = 2k. In either case, because of (14) it is possible 
to choose kv so large that 

(17) U(k„p(v)) <5/2v 

and kv > kv-i + p(y — 1). With this choice of p{v) and then of ft„, we have 

(18) 5/2, > /*({,) > I / , . 

Moreover, from (13) and (15) and the argument in the sentences preceding 
(13), it is clear that £„ is covered by intervals of the form Jf(r, n(kv + p(y))) 
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whose number does not exceed n(kv)U(kv, p{y)). Each of the intervals of the 
form J'(r, n(kv + p(v))) is in turn intersected by no more than 

[" n(kv+h) 1 
l2n(kv + p(v))_\^Z 

intervals of the form J'(r, n(kv+h)). Since r(ki) > 16, we also have 

f n(kv+h) 1 , 2 < 5n(kv+n) 
L2n(kv + p(v))A~1r ^ Sn(kP + p(v)) ' 

It is also clear that each of the intervals of the form J'(r, n(kv+h)) is intersected 
by no more than U(kv+k, p(y + h)) intervals of the form J'(r, n(kv+h + 
p{y + h))) which belongs to £„+&. Hence we have 

*(«,+») < hn(kv)U{K Piy)) • ~ l { k ^ ( v ) ) - U(kv+h, p(v + h)) 

1 125 1 1 
nikp+n + p(v + h)) 64 v v + h' 

Now for any n0, M > N > n0 so that 
M -j 

is arbitrarily close to \. For iV < n < If, we have 

/ n-l \ /n-1 \ 19^ 1 ^ 1 12^ 1 

Therefore, it follows that 

/ "-,1 \ 1 1 2 5 1 

/.( Û «.)>*•( U 6.) = E 4 " U ^ ^ f l - ^ f J 
\w=no / \n=N ' n=N \ &=iV / \ U4: / W==AT /* 

A 125 \ 

This last expression can be made arbitrarily close to 3/256, so that ju(lim £w) 
> 3/256. We have seen that if a G lim £w, {?z(&)a} is not well distributed. In 
a different context, this argument is the same as one used by Lorentz (9, 
p. 134; see also Halmos 3). 

We shall now show that the set F of a for which {n(k)a} is not well distri
buted is of measure one. Let (a, b) be an interval such that 0 < a < b < 1 ; 
then if ko is sufficiently large, (a, b) will contain intervals of the form 
J(r, n(ko)). In fact the number of such intervals wholly contained in (a, b) 
will be 

[\b — a\n(ko)] or [\b — a\n(ko)] — 1. 
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Now it is evident that the sets £„(&0) (v = 1, 2, . . .), ki = &o, could be con
structed in much the same way as before. Moreover, it is clear that the upper 
and lower bounds obtained in (12) and (13) and the arguments preceding 
them are of such a type that they could be adapted to proving 

M(ÏÏ^n/(^(*o)))>^gf^y 

in much the same way as for the interval (0, 1). This means 

3 
M(lim Uko) H (a, 6)) > ([6 - a\n(k0)] - 1) 

s 3 ,, , 6 
256tt(£0) 

256 ' ' 256w(£o) ' 

The set lim £„(feo) (&o = 1 ,2 , . . . ) is a Borel set and hence measurable. Let 
the set G consist of those 

oo 

a G U Hm £„(&o). 
fco=l 

It is clear that G, being an enumerable union of measurable sets, is also 
measurable. Moreover, 

M(G fl (fl, b)) >^\b-a\ 

and the density of G in any interval is greater than 3/256. From our pre
liminary remarks this evidently means that the set G is homogeneous and of 
measure one. The set F of a for which {n(k)a) is not well distributed includes 
G and so is measurable, with measure one. 

A normal number is one in whose decimal expansion all digits occur with 
equal frequency and in fact all blocks of digits of the same length occur with 
equal frequency. Let x = .XiXi. . . b e an infinite decimal to base r and let 
Xn denote the block of digits Let N(Bk, Xn) denote the number 
of occurrences of the block Bk = b\. . . bk in Xn. Then x is normal to the 
base r if 

\im\ N{Bk,Xn) = rk 

for all Bk, k = 1, 2, 3, . . . . A complete discussion of normal numbers can be 
found in (11). The following has been proved by Wall (11, p. 110): 

THEOREM 5. The number x is normal to base r if and only if the sequence 
{rkx} is uniformly distributed. 

In (6) it is stated that: 

THEOREM 6. The sequence {rkd} is not well distributed for any 6 when r is 
any rational number. 

The proof given for Theorem 6 is not correct and the complete truth of 
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the ma t t e r remains open. We note t h a t the a rgument could be modified to 

give the result, when r is integral. However, in this special case, the following 

approach is simpler. 

T H E O R E M 6'. The sequence {rk6} is not well distributed for any 6 when r is 

an integer. 

Proof. In the first place the sequence {rk6} mus t be uniformly dis t r ibuted 

or it cannot be well dis t r ibuted. This means, according to Theorem 5, t h a t it 

mus t be normal to the base r. However, from the definition of a normal 

number , it is clear t h a t for every p = 1, 2, 3, . . . there is an np such t h a t 

if Q = . X1X2 . . . to base r, then 

%np Xnp+l . . . Xnp+p U. 

I t follows t h a t the terms of {rk6} are less than or equal to \/r for 

nv + 1 < k < np + p. 

Hence if I(x) is the interval function for (0, 1/r), then 

-1 np+p 

P np+1 

and {rk6\ cannot be well dis t r ibuted. This proves the theorem. 
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