MAXIMUM PRINCIPLE FOR NON-LINEAR degenerate equations of the parabolic type

Jan Chabrowski and Rudolf Výborný

This paper establishes a weak maximum principle for the difference $u-v$ of solutions to nonlinear degenerate parabolic differential inequality

$$
\begin{aligned}
\alpha(t, x) u_{t} & -f\left(t, x, u(t, x), D u(t, x), D^{2} u(t, x)\right) \\
\leq & \alpha(t, x) v_{t}-f\left(t, x, v(t, x), D v(t, x), D^{2} v(t, x)\right)
\end{aligned}
$$

The function α is non-negative and f is assumed to be parabolic with respect to u in the sense that there exists a non-negative function k such that
$f\left(t, x, u(t, x), D u(t, x), r_{1}\right)-f\left(t, x, D u(t, x), r_{2}\right)$

$$
\geq \kappa(t, x) \operatorname{Tr}\left(r_{1}-r_{2}\right),
$$

whenever r_{1} and r_{2} are symmetric matrices and $r_{1} \geq r_{2}$. The crucial assumption is that $\alpha+\kappa$ is bounded away from zero.

The results are then applied to the uniqueness of the Cauchy problem for the degenerate parabolic equation

$$
\alpha(t, x) u_{t}=f\left(t, x, u, D u, D^{2} u\right)
$$

under various growth conditions similar to those used in uniqueness theorems for parabolic (non-degenerate) equations.

The main purpose of this note is to prove a weak maximum principle for non-linear degenerate equations of the parabolic type. There is an extensive literature on the maximum principle for parabolic and elliptic equations (see [8] and [10]). In recent years the maximum principle was extended to degenerate elliptic parabolic equations and has been studied by several authors [1], [4], [5], [6], [9], [12], [13], [14]. We begin in Section I by considering a maximum principle for non-linear degenerate equations of parabolic type in a bounded domain. Theorem 1 is an extension to non-linear equations of the weak maximum principle proved by lppolito [5]. In Section 2 we extend these results to an infinite strip by using the method of growth damping factors (see [2] and [7]). As an application we obtain the uniqueness of the first initial-boundary value problem in a bounded cylinder and that of the Cauchy problem on a half space.

1.

We consider a differential inequality of the form
(1)

$$
\begin{aligned}
\alpha(t, x) u_{t}-f(t, x & \left., u(t, x), D u(t, x), D^{2} u(t, x)\right) \\
& \leq \alpha(t, x) v_{t}-f\left(t, x, v(t, x), D v(t, x), D^{2} v(t, x)\right)
\end{aligned}
$$

in $(0, T] \times \Omega$, where Ω is an open set in R_{n}. Du denotes the gradient of u with respect to $x, D^{2} u$ is the Hessian matrix of the second order derivatives (also with respect to the variable x), D_{i} denotes the derivative with respect to $x_{i}, \alpha(t, x)$ is a non-negative function on $(0, T] \times R_{n}$. Let $Q=(0, T] \times \Omega$. We denote by $\partial_{p} Q$ the parabolic boundary of Q; that is, $\partial_{p} Q=\bar{Q}-Q$.

We assume that $f(t, x, u, p, r)$ is defined for $(t, x) \in Q$, $u \in R, p \in R_{n}$ and $r \in R_{n} 2$.

A function $u(t, x)$ is said to be regular on Q if it is continuous on \bar{Q} and $D u, D^{2} u$ and u_{t} are continuous on Q (at $t=T$ the derivative u_{t} is understood as the left-hand derivative).

Given a regular function u, the function f is said to be weakly
parabolic with respect to u if there exists a non-negative function $\kappa=\kappa(t, x)$ such that
$f\left(t, x, u(t, x), \operatorname{Du}(t, x), r_{1}\right)-f\left(t, x, D u(t, x), r_{2}\right) \geq \kappa(t, x) \operatorname{Tr}\left(r_{1}-r_{2}\right)$
holds for $(t, x) \in Q$, whenever r_{1} and r_{2} are symmetric matrices and $r_{1} \geq r_{2}$ (that is, the quadratic form $\sum_{j, k=1}^{n}\left(r_{1 j k}-r_{2 j k}\right) \lambda_{j} \lambda_{k}$ is positive semidefinite) .

This definition has been introduced by Besala [2] (see also Szarski [10] and [11]).

THEOREM 1. Suppose that
(i) Ω is bounded,
(ii) f is decreasing with respect to u,
(iii) there exists a positive constant L such that
$|f(t, x, u, p, r)-f(t, x, u, \bar{p}, \bar{r})| \leq L(|p-\bar{p}|+|r-\bar{r}|)$
holds for all $(t, x) \in Q$ and arbitrary u, p, \bar{p}, r and \bar{r},
(iv) there exists a positive constant k such that

$$
\alpha(t, x)+\kappa(t, x) \geq k
$$

for $(t, x) \in Q$,
(v) u and v are solutions to (1) regular in Q,
(vi) f is weakly parabolic with respect to u or v.

Then, if $u-v$ has a positive maximum on \bar{Q}, this maximum is attained at some point of $\partial_{p} Q$.

Proof. We prove the theorem with the assumption that f is weakly parabolic with respect to u. If f is weakly parabolic with respect to v the proof is similar. We set

$$
\begin{aligned}
& M=\max \{u(t, x)-v(t, x) ;(t, x) \in \bar{Q}\} \\
& m=\sup \left\{0, u(t, x)-v(t, x) ;(t, x) \in \partial_{p} Q\right\}
\end{aligned}
$$

Assume, contrary to what we want to prove, that $M>m$. Choose
$x^{0} \in R_{n}-\bar{\Omega}$, we may assume that $1 \leq\left|x-x^{0}\right| \leq C$ for all $x \in \bar{\Omega}$ and some positive constant C. Let $t_{0}<0$ and γ a positive number satisfying

$$
\gamma>2 L(n+C) / k
$$

We define an auxiliary function ϕ by

$$
\phi(t, x)=\exp \left[-\gamma\left|x-x^{0}\right|^{2}-\gamma^{2}\left(t-t_{0}\right)\right]
$$

and choose $\varepsilon>0$ in such a way that
(2)

$$
\varepsilon \phi(t, x)<M-m
$$

for all $(t, x) \in \bar{Q}$. Let

$$
w(t, x)=u(t, x)-v(t, x)+\varepsilon \phi(t, x)
$$

It follows from (2) that $w<M$ on $\partial_{p} Q$. Hence w attains its maximum (which is greater than M) over \bar{Q} at a point $(\bar{t}, \bar{x}) \in Q$. Obviously

$$
\begin{aligned}
& w_{t} \geq 0, \quad D_{i} u-D_{i} v=2 \varepsilon \gamma\left(\bar{x}_{i}-x_{i}^{0}\right) \phi \quad(i=1, \ldots, n) \\
& D^{2} w \leq 0,
\end{aligned}
$$

at (\bar{t}, \bar{x}). By assumption $(v i)$ we have
(3) $0 \leq \alpha(\bar{t}, \bar{x}) w_{t}(\bar{t}, \bar{x})$

$$
\begin{aligned}
= & \alpha(\bar{t}, \bar{x})\left(u_{t}(\bar{t}, \bar{x})-v_{t}(\bar{E}, \bar{x})\right)-\varepsilon \gamma^{2} \alpha(\bar{t}, \bar{x}) \phi(\bar{t}, \bar{x}) \\
\leq & f\left(\bar{E}, \bar{x}, u(\bar{t}, \bar{x}), D u(\bar{t}, \bar{x}), D^{2} u(\bar{t}, \bar{x})\right) \\
& \quad-f\left(\bar{Z}, \bar{x}, v(\bar{t}, \bar{x}), D v(\bar{Z}, \bar{x}), D^{2} v(\bar{E}, \bar{x})\right)-E \gamma^{2} \alpha(\bar{Z}, \bar{x}) \phi(\bar{E}, \bar{x}) \\
= & J-\varepsilon \gamma^{2} \alpha(\bar{t}, \bar{x}) \phi(\bar{Z}, \bar{x}) .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
D^{2} u(\bar{t}, \bar{x}) & =\left[D^{2} w(\bar{t}, \bar{x})-4 \varepsilon \gamma^{2} r \phi(\bar{t}, \bar{x})\right]+\left[2 \gamma \varepsilon I \phi(\bar{t}, \bar{x})+D^{2} v(\bar{t}, \bar{x})\right] \\
& =A+B
\end{aligned}
$$

where r is the matrix with the entries

$$
\left(\bar{x}_{i}-x_{i}^{0}\right)\left(\bar{x}_{j}-x_{j}^{0}\right)
$$

and I is the identity matrix. Now
(4)

$$
\begin{aligned}
J= & {[f(Z, \bar{x}, u(Z, \bar{x}), D u(Z, \bar{x}), A+B)-f(Z, \bar{x}, u(Z, \bar{x}), D u(Z, \bar{x}), B)] } \\
& +[f(Z, \bar{x}, u(Z, \bar{x}), \operatorname{Du}(\bar{Z}, \bar{x}), B)-f(Z, \bar{x}, v(\bar{Z}, \bar{x}), D u(Z, \bar{x}), B)] \\
& +\left[f(Z, \bar{x}, v(Z, \bar{x}), D u(Z, \bar{x}), B)-f\left(Z, \bar{x}, v(\bar{Z}, \bar{x}), D v(Z, \bar{x}), D^{2} v(Z, \bar{x})\right)\right] \\
= & J_{1}+J_{2}+J_{3} .
\end{aligned}
$$

Using the weak parabolicity we estimate

$$
\begin{align*}
J_{1} & \leq \kappa(Z, \bar{x})\left[\sum_{i=1}^{n} D_{i}^{2} w(Z, \bar{x})-4 \varepsilon \gamma^{2}\left|\bar{x}-x_{0}\right|^{2} \phi(Z, \bar{x})\right] \tag{5}\\
& \leq-4 \varepsilon \gamma^{2} \kappa(Z, \bar{x}) \phi(Z, \bar{x}) .
\end{align*}
$$

The inequality $\omega(Z, \bar{x}) \geq M$ implies

$$
u(Z, \bar{x})-v(E, \bar{x}) \geq M-\varepsilon \phi(E, \bar{x}) \geq m \geq 0
$$

and since f is decreasing

$$
\begin{equation*}
J_{2} \leq 0 . \tag{6}
\end{equation*}
$$

Finally, in view of assumption (iii), we have

$$
\begin{align*}
J_{3} & \leq L\{|D u(\bar{Z}, \bar{x})-D v(\bar{X}, \bar{x})|+2 \gamma \varepsilon n \phi\} \tag{7}\\
& =2 L \gamma \varepsilon\left(\left|\bar{x}-\bar{x}_{0}\right|+n\right) \phi(\bar{Z}, \bar{x}) \\
& \leq 2 \gamma \varepsilon L(C+n) \phi(\bar{Z}, \bar{x}) .
\end{align*}
$$

Combining (3), (4), (5), (6) and (7) we obtain

$$
\begin{aligned}
0 & \leq \alpha(Z, \bar{x}) w_{t}(E, \bar{x}) \\
& \leq \gamma \varepsilon \phi(E, \bar{x})[-\gamma \alpha(E, \bar{x})-4 \gamma H(Z, \bar{x})+2 L(C+n)] \\
& \leq \gamma \varepsilon \phi(Z, \bar{x})[-\gamma k+2 L(C+n)]<0 .
\end{aligned}
$$

This contradiction completes the proof.
As an immediate consequence of Theorem 1 we obtain the uniqueness of the first initial-boundary value problem

$$
\begin{align*}
\alpha(t, x) u_{t} & =f\left(t, x, u, D u, D^{2} u\right) \text { for }(t, x) \in Q, \tag{8}\\
u(t, x) & =g(t, x) \text { for }(t, x) \in \partial_{p} Q, \tag{9}
\end{align*}
$$

while g is a given continuous function on $\partial_{p} Q$.

COROLLARY 1. Assume that conditions (i), (ii), (iii) and (iv) of Theorem 1 hold. Let u and v be regular solutions to the problems (8) and (9). If f is weakly parabolic with respect to u or v then $u \equiv v$ on \bar{Q}.

2.

In this section we shall investigate the uniqueness of the Cauchy problem for non-linear equation (8). The method of Section 1 can be used to prove the following extension of Corollary 1 to the infinite strip $(0, T] \times R_{n}$. Put $S=(0, T] \times R_{n}$.

THEOREM 2. Assume that conditions (i), (ii), (iii) and (iv) of Theorem 1 hold for $(t, x) \in S$. Let u and v be regular solutions of (8) such that $u(x, 0)=v(x, 0)$ for $x \in R_{n}$ and $\lim _{|x| \rightarrow \infty}[u(t, x)-v(t, x)]=0$ uniformly in $[0, T]$. If f is weakly parabolic with respect to u or v, then $u \equiv v$ on \bar{S}.

In general, we cannot expect uniqueness even in the class of bounded functions. Indeed, the function

$$
u(t, x) \equiv t
$$

satisfies the equation

$$
\Delta u-0 . u_{t}=0
$$

and vanishes at $t=0$. In the above example $\alpha \equiv 0$; however, if there exist positive constants β and R such that $\alpha(t, x) \geq \beta$ for $|x| \geq R$ and $t \in[0, T]$, then we can formulate a uniqueness theorem in the class of functions growing not faster than $e^{k|x|^{2}}$, where $k>0$.

We shall need the following condition on f :
(A) there exist positive constants L_{0}, L_{1} and L_{2} such that $|f(t, x, a, p, r)-f(t, x, \bar{u}, \bar{p}, \bar{r})|$

$$
\leq L_{0}\left|r_{-} \bar{r}\right|+L_{1}(1+|x|)|p-\bar{p}|+L_{2}\left(1+|x|^{2}\right)|u-\bar{u}|
$$

for all $(t, x) \in S$ and arbitraxy $u, \bar{u}, p, \bar{p}, r$ and \bar{r}. Moreover, there exist positive constants R and L_{3} such that

$$
f(t, x, u, p, r)-f(t, x, \bar{u}, p, r) \leq-L_{3}(u-\bar{u})
$$

for all $|x|<R, t \in[0, T], u \geq \bar{u}$ and arbitrary p and r.

Here $\left|r_{-} \bar{r}\right|$ is defined by

$$
\left|r_{-} \bar{r}\right|=\sum_{i, j=1}^{n}\left|r_{i j}-\bar{r}_{i j}\right|
$$

Let β be a fixed positive number and define
$F_{B}(x, k, \rho)=\left\{\begin{aligned} L_{2}+4 L_{0} k n+4 n L_{1}|x|+\left(16 L_{0} k^{2} n^{2}+4 n k L_{1}+L_{2}\right)|x|^{2} & \\ -2 \beta k \rho\left(1+|x|^{2}\right) & \text { for }|x| \geq R, \\ 4 L_{0} k n+4 n k L_{1}|x|+\left(16 k^{2} n^{2} L_{0}+4 n k L_{1}\right)|x|^{2} & \\ -L_{3}-2 \alpha k \rho\left(1+|x|^{2}\right) & \text { for }|x|<R .\end{aligned}\right.$
There exists a k such that $F_{B}(x, k, 0)<0$ for all $|x|<R$, to every such k there exists a $\rho(k)$ such that $F_{\beta}(x, k, \rho)<0$ for all $x \in R_{n}$ and all $\rho>\rho(k)$. Put

$$
\begin{aligned}
& k_{0}=\sup \left\{k>0 ; \text { there exists } \rho(k)>0 \text { such that } F_{\beta}(x, k, \rho)<0\right. \\
& \text { for all } \left.\rho \geq \rho(k) \text { and } x \in R_{n}\right\} .
\end{aligned}
$$

We are now in a position to define a class of functions in which we shall investigate the uniqueness of the Cauchy problem.

We shall say that a function $u(t, x)$ defined on \bar{S} belongs to $E_{+}\left(k_{0}\right) \quad\left(E_{-}\left(k_{0}\right)\right)$ if there exist positive constants M and $k<k_{0}$ such that

$$
u(t, x) \leq M e^{k|x|^{2}} \quad\left(u(t, x) \geq-M e^{k|x|^{2}}\right)
$$

for all $(t, x) \in \bar{S}$.
Put

$$
E\left(k_{0}\right)=E_{+}\left(k_{0}\right) \cap E_{-}\left(k_{0}\right)
$$

THEOREM 3. Suppose that $f(t, x, u, p, r)$ satisfies condition (A)
and moreover
(i) there exists a positive constant β such that

$$
\alpha(t, x) \geq B \text { for } t \in[0, T] \text { and }|x| \geq R
$$

and

$$
\alpha(t, x) \geq 0 \text { for } t \in[0, T] \text { and }|x|<R,
$$

(ii) u and v are regular solutions to (1) in S such that $u \in E_{+}\left(k_{0}\right)$ and $v \in E_{-}\left(k_{0}\right)$,
(iii) f is weakly parabolic with respect to u or v with parabolicity function $H \equiv 0$.

If $u(0, x) \leq v(0, x)$ for $x \in R_{n}$, then

$$
u(t, x) \leq v(t, x) \text { for } \bar{S} .
$$

Proof. Since $u \in E_{+}\left(k_{0}\right)$ and $v \in E_{-}\left(k_{0}\right)$ there exist positive constants M and $k_{1}<k_{0}$ such that

$$
\begin{equation*}
u(t, x)-v(t, x) \leq M e^{k_{1}|x|^{2}} \tag{10}
\end{equation*}
$$

for all $(t, x) \in \bar{S}$. Let $k_{1}<k<k_{0}$ and

$$
H(t, x)=\exp \left[\frac{2 k\left(1+|x|^{2}\right)}{1-\rho t}\right]
$$

for $(t, x) \in[0,1 / 2 \rho] \times R_{n}$, where $\rho=\rho(k)$ (see the definition of $E_{+}\left(k_{0}\right)$ and $\left.E_{-}\left(k_{0}\right)\right)$.

Define

$$
\tilde{u}=u / H \quad \text { and } \quad \tilde{v}=v / H .
$$

It follows from (10) that given $\varepsilon>0$ there is a $R_{\varepsilon}>0$ such that

$$
\begin{equation*}
\tilde{u}(t, x)-\tilde{v}(t, x) \leq \varepsilon \tag{11}
\end{equation*}
$$

for $t \in[0,1 / 2 \rho]$ and $|x| \geq R_{\varepsilon}$. We may suppose that $R \leq R_{\varepsilon}$. In order to prove that $u \leq v$ in $[0,1 / 2 \rho] \times R_{n}$, it suffices to prove that this inequality is true in the cylinder $[0,1 / 2 \rho] \times\left(|x| \leq R_{\varepsilon}\right)$. Assuming that there is a point $(\bar{t}, \bar{x}) \in(0,1 / 2 \rho] \times\left(|x|<R_{\epsilon}\right)$ such that
$\tilde{u}(\bar{X}, \bar{x})-\tilde{v}(\bar{X}, \bar{x})$

$$
=\operatorname{Max}\left\{\tilde{u}(t, x)-\tilde{v}(t, x) ;(t, x) \in[0,1 / 2 \rho] \times\left\{|x|<R_{\varepsilon}\right\}\right\}>\varepsilon,
$$

we shall derive a contradiction. Note that

$$
D[\tilde{u}(\bar{t}, \bar{x})-\tilde{v}(\bar{t}, \bar{x})]=0, \quad \tilde{u}_{t}(\bar{t}, \bar{x})-\tilde{v}_{t}(\bar{t}, \bar{x}) \geq 0
$$

and

$$
D^{2}[\tilde{u}(\bar{t}, \bar{x})-\tilde{v}(\bar{t}, \bar{x})] \leq 0 .
$$

Consequently by assumptions (A) and (i iii) and by using an argument similar to [10], pp. 205-208, we obtain

$$
\begin{aligned}
& \alpha(\bar{t}, \bar{x}) H(\bar{t}, \bar{x})\left[\tilde{u}_{t}(\bar{Z}, \bar{x})-\tilde{v}_{t}(\bar{Z}, \bar{x})\right] \\
& \leq H(\bar{t}, \bar{x})(1-\rho \bar{t})^{-2}[\tilde{u}(\bar{t}, \bar{x})-\tilde{v}(\bar{t}, \bar{x})] F_{\beta}(\bar{x}, k, \rho)<0
\end{aligned}
$$

This contradiction completes the proof if $1 / 2 \rho=T$; otherwise the proof can be completed by a finite number of applications of the above argument on $[1 / 2 \rho, 1 / \rho] \times R_{n},[1 / \rho, 3 / 2 \rho] \times R_{n}$, and so on.

COROLLARY 2. Suppose that assumptions (A), (i) and (ii) of Theorem 3 hold. Let u and v be regular solutions of (8) in S belonging to $E\left(k_{0}\right)$. If f is weakly parabolic with respect to u or v and $u(x, 0) \equiv v(x, 0)$ for $x \in R_{n}$ then $u \equiv v$ on S.

We conclude by giving some variants of Theorem 3. The first variant is:
THEOREM 3'. Theorem 3 remains true if we replace assumptions (A) and (i) by
(i') $\alpha(t, x) \geq 0$ for $(t, x) \in \bar{S}$,
(A') there exist positive constants L_{0}, L_{1} and L_{2} such that $[f(t, x, u, p, r)-f(t, x, \bar{u}, \bar{p}, \bar{r})]$

$$
\leq L_{0}|r-\bar{r}|+L(1+|x|)|p-\bar{p}|-L_{2}\left(1+|x|^{2}\right)(u-\bar{u})
$$

for all $(t, x) \in \bar{S}, u \geq \bar{u}$ and arbitrary p, \bar{p}, r and \bar{r}.

In this case we define the corresponding functions F and H and a constant k_{0} as follows:

$$
F(x, k)=4 L_{0} k n+4 n k L_{1}|x|+\left(16 k^{2} n^{2} L_{0}+4 n k L_{1}\right)|x|^{2}-L_{2}\left(1+|x|^{2}\right)
$$

for all $x \in R_{n}$,

$$
\begin{aligned}
H(x) & =\exp \left|2 k\left(1+|x|^{2}\right)\right|, \\
k_{0} & =\sup \left\{k ; F(x, k)<0 \text { for all } x \in R_{n}\right\} .
\end{aligned}
$$

Note that in this variant the function H is independent of t.
In variant 2 of Theorem 3 we replace assumptions (A) and
(i) by
(i") $\alpha(t, x) \geq 0$ for $(t, x) \in[0, \infty) \times R_{n}$,
(A") There exist positive constants L_{0}, L_{1} and L_{2} such that
$[f(t, x, u, p, r)-f(t, x, \bar{u}, \bar{p}, \bar{r})] \leq L_{0}|r-\bar{r}|+L_{1}|p-\bar{p}|-L_{2}(u-\bar{u})$
for $(t, x) \in[0, \infty) \times R_{n}, u \geq \bar{u}$ and arbitrary p, \bar{p}, r and \bar{r}.

We define
$F(t, x, \delta)=L_{0} \delta^{2} \sum_{i, j=1}^{n} \operatorname{tgh} \delta x_{i} \operatorname{tgh} \delta x_{j}+L_{1} \delta \sum_{i=1}^{n} \operatorname{tgh} \delta x_{i}-L_{2}-\delta \alpha(t, x) \operatorname{tgh} \delta t$ for $(t, x) \in(0, \infty) \times R_{n}$,

$$
\delta_{0}=\sup \left\{\delta>0 ; F(t, x, \delta)<0 \text { for all }(t, x) \in(0, \infty) \times R_{n}\right\}
$$

With δ_{0} we associate the following class of functions.
A function $u(t, x)$ defined on $[0, \infty) \times R_{n}$ belongs to $A_{+}\left(\delta_{0}\right)$ ($A_{-}\left(\delta_{0}\right)$) if there exist positive constants M and $\delta<\delta_{0}$ such that

$$
u(t, x) \leq M \exp \left[\delta\left(\sum_{i=1}^{n}\left|x_{i}\right|+t\right)\right] \quad\left(u(t, x) \geq-M \exp \left[\delta\left(\sum_{i=1}^{n}\left|x_{i}\right|+t\right)\right]\right)
$$

for all $(t, x) \in[0, \infty) \times R_{n}$.
Put

$$
A\left(\delta_{0}\right)=A_{+}\left(\delta_{0}\right) \cap A_{-}\left(\delta_{0}\right)
$$

We now state the result as
THEOREM 4. Suppose that the functions f and α satisfy assumptions ($i^{\prime \prime}$) and (A ") and moreover
(ii) u and v are regular solutions to (1) in $(0, \infty) \times R_{n}$ such that $u \in A_{+}\left(\delta_{0}\right)$ and $v \in A_{-}\left(\delta_{0}\right)$,
(iii) f is weakly parabolic with respect to u or v with parabolicity function $H \equiv 0$.

$$
\begin{aligned}
& \text { If } u(0, x) \leq v(0, x) \text { for } x \in R_{n} \text {, then } \\
& \qquad u(t, x) \leq v(t, x) \text { for }(t, x) \in[0, \infty) \times R_{n} .
\end{aligned}
$$

The proof is similar to that of Theorem 3. We only mention that the function H is defined by

$$
H(t, x)=\cosh \delta t \prod_{i=1}^{n} \cosh \delta x_{i}
$$

for $(t, x) \in[0, \infty) \times R_{n}$.
From the above variant of Theorem 3 and Theorem 4 one can derive the uniqueness criteria for the Cauchy problem for equation (8) in pretty much the same way as we derived Corollary 2 from Theorem 3.

References

[1] Willy Bertiger and Chris Cosner, "Classical solutions to degenerate parabolic equations in unbounded domains", Rend. Mat. (6) 13 (1980), 447-474.
[2] P. Besala, "An extension of the strong maximum principle for parabolic equations", Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 1003-1006.
[3] Jean-Michel Bony, "Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques degeneres", Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1 277-304.
[4] C. Denson Hill, "A sharp maximum principle for degenerate ellipticparabolic equations", Indiana Univ. Math. J. 20 (1970-1971), 213-229.
[5] Pauline M. Ippolito, "Maximum principles and classical solutions for degenerate parabolic equations", J. Math. AnaZ. AppZ. 64 (1978), 530-561.
[6] N.V. Krylov, "The maximum principle for nonlinear parabolic and elliptic equations", Math. USSR-Izv. 13 (1979), 335-347.
[7] M. Krzyżański, "Sur les solutions de l'équation linéaire du type parabolique déterminées par les conditions initiales", Ann. Soc. Polon. Math. 18 (1945), 145-156.
[8] Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1967).
[9] Ray Redheffer, "The sharp maximum principle for nonlinear inequalities", Indiana Univ. Math. J. 21 (1971), 227-248.
[10] Jacek Szarski, Differential inequalities (Monografie Matematiyczne, 43. PWN - Polish Scientific Publishers, Warszawa, 1965).
[11] J. Szarski, "Strong maximum principle for non-linear parabolic differential functional inequalities in arbitrary domains", Ann. Polon. Math. 31 (1975-1976), 197-203.
[12] Margaret C. Waid, "Second-order time degenerate parabolic equations", Trans. Amer. Math. Soc. 170 (1972), 31-55.
[13] Margaret C. Waid, "Strong maximum principles for time degenerate parabolic operators", SIAM J. App Z. Math. 26 (1974), 196-202.
[14] Margaret C. Waid, "The first initial-boundary value problem for some nonlinear time degenerate parabolic equations", Proc. Amer. Math. Soc. 42 (1974), 487-497.

Department of Mathematics,
University of Queensland,
St Lucia,
Queensland 4067,
Australia.

