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A b s t r a c t . The general expression of the tidal function between two real 
bodies of arbitrary mass distribution has been derived. The case has been 
regarded when the distances between the bodies are comparable to their 
sizes. In this case, the effect of the body figure is substantial. 

The relations obtained are utilized for the tidal influence of Jupiter 
on the surface of Io. It has been shown that Jupiter's shape (with J2 = 
0.015) causes a deformation in the sub-Jupiter point of about 15m. This is 
approximately 10% of the total tidal deformation of Io caused by Jupiter's 
gravitation. 

1· G e n e r a l t h e o r y 

When the tidal effect of a celestial body A on another celestial body Β is 
determined, the first body is usually treated as a mass point A. This is so 
because the distances between the bodies are large and because the differ-
ence between the real figure of the tide formation body and the spherical 
symmetry in its mass distribution is negligibly small. In this case, the tidal 
function of the body A on the body Β is given by the usual expression 

where G(r) is the known Dutson constant [1] 
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r is the position vector of the point where the mass MA is located, and 
Pn(cosH) is the Legendre polynomial with an argument cos(H) = ropo? 
( r 0 = r/r;/90 = p/p). 

In this paper, we analyze the case when the distance R between the 
bodies A and Β is not great and our purpose is to find the tidal influence 
of the real body A on Β (Fig. 1). Here, the tidal function W at point Ρ is 
determined by 

(2) 

where MA is the mass of the body A, dm is an elementary mass; r 7 and 
Δ are the distances from dm to the mass center G Β and to the point P, 
respectively (Fig. 1). If Δ " 1 is expressed by volume spherical functions [2], 
then 

Δ - 1 = Ε ^ ^ r r ( P p ) i v v ) , (3) 
n=0,m 

where 

(4) 

In (4) , Υ™*(τ) and Υ™(τ') are surface spherical functions whose arguments 
are the components of the unit vectors τ and r' in a spherical coordinate 
system with an origin G. By (*) we denote the intricate conjugated quantity 
to y - ( r ) . 

Hence, for Vpy we obtain 

n=0,m ± A 

(5) 
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and, from (1) , (4) and (5) , 

n=2,m Λ 

The last expression is obtained by taking into account that NQ ( Γ ' ) = 

— 1/r' and that the harmonic with an index η = 1 does not cause a tidal 

effect. 

To connect the tidal function W with the harmonic coefficients charac-

terizing the distribution of mass in T 4 , we shall refer N™(rf) to the origin 

G A of TA- For this purpose, we use the relation (Fig. 1) 

r' = r + p A , (7) 

and N™(r + ρ A) is presented according to the rule described in [2] in the 

following form: 

ÜN™(r + pA) = £ QLMnmTr(PA)N^L

M(r'). (8) 
(L,M) 

In (8 ) , Ω denotes the Taylor operator whose action is identical to the trans-

lation of the origin of the coordinate system by G Β at GA, while 

_ ( - l ) L [ ( 2 n + l ) ( n - m + L - Af )!(n + m + L + M ) ! ] 1 / 2 

(9) 
The action of the operator W on N™(r') G G B leads to the appearance of 

The final expression for the tidal function W of the real body A on Β 

is obtained from (5) and (8) in the form 

o r ι 1 

W = fMA £ Q L M N M - ^ A M T R { P P ) N ™ + M I R ) ( 1 0 ) 

n=2,m,L,M 

where 

A l - 2 L T Ï J T A

T L ^ W A 

are the harmonic coefficients characterizing the mass distribution in the 

body TA. 

Expression (10) generalizes the usual presentation of the tidal potential 

where the body causing the tides is treated either as a point mass M or as 
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a spherical body with spherical symmetry of its mass distribution. Really, 

if in (10) the term with L = M = 0 is separated, we obtain the expression 

W = fMA £ - L - T r i p p ) N ^ r ) + Wq, (11) 
71=2,771 

the first part of which is, in fact, the usual presentation (1) of the tidal 

potential, while the second part may be presented in the following form 

u/ Ar<\ Χ- η 2L±l(pAN-2{R\N+L-2 

w * = 3 G ( r ) Σ ^ - â T f î VR) [Τ) 
nmLM 

.Α^ΥΓ(θΡΑΡ)Υ^ίΜ(θ,Χ), (12) 
where R is constant, g,Z and qp, lp are the spherical coordinates of the 

directions r and r p , respectively, and 

The summing is performed according to the scheme 

η L 

Σ - Σ Σ 
(n,m,L,M) (n=2,m=-n) ( L = 2 , M = - L ) 

The relation (12) gives the tidal effect related to the mass distribution of 

the body. 

2. The tidal function of Jupiter 

The relations obtained are utilized for the tidal influence of Jupiter on the 

surface of Io. It has been shown that Jupiter's shape (with J2 = 0.015) 

causes a deformation in the sub-Jupiter point of about 15m. This is ap-

proximately 10% of the total tidal deformation of Io caused by Jupiter's 

gravitation. 
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