ON A RAMANUJAN'S IDENTITY by MANVENDRA TAMBA

(Received 29 June, 1990)

1. Introduction. In [4], Ramanujan stated the following beautiful identity which was later proved by Bailey [2] and [3];

$$q \prod_{n=1}^{\infty} \frac{(1-q^{5n})^5}{(1-q^n)} = \sum_{n=0}^{\infty} \frac{q^{5n+1}}{(1-q^{5n+1})^2} - \frac{q^{5n+2}}{(1-q^{5n+2})^2} - \frac{q^{5n+3}}{(1-q^{5n+3})^2} + \frac{q^{5n+4}}{(1-q^{5n+4})^2}.$$
 (1)

We denote by S(n) the coefficient of q^n on the right hand side of (1). The object of this paper is to prove the following two theorems.

THEOREM 1. (a)
$$S(n)$$
 is multiplicative. (b) Let p be a prime. We have the following:
(i) if $p = 5$, then $S(5^n) = 5^n$;
(ii) if $p \equiv \pm 1 \pmod{5}$, then $S(p^n) = (p^{n+1} - 1)/(p - 1)$;
(iii) if $p \equiv \pm 2 \pmod{5}$, then $S(p^n) = \begin{cases} (p^{n+1} - 1)/(p + 1) & \text{if } n \text{ is odd} \\ (p^{n+1} + 1)/(p + 1) & \text{if } n \text{ is even.} \end{cases}$

THEOREM 2. Let R(n) denote the number of integral solutions of the Diophantine equation

$$5(x_1^2 + x_2^2 + x_3^2 + x_4^2 - x_1x_2 - x_2x_3 - x_3x_4) + x_1 + x_2 + x_3 + x_4 = n.$$

Then

$$R(n) = S(n+1).$$

2. Proof of Theorem 1. For $1 \le k \le 4$, define

$$\sigma_k(n) = \sum_{\substack{d \mid n \\ d \equiv k \pmod{5}}} n/d.$$

and note that

$$\sum_{n=0}^{\infty} \frac{q^{5n+k}}{(1-q^{5n+k})^2} = \sum_{n=1}^{\infty} \sigma_k(n)q^n.$$

As S(n) denotes the coefficients of q^n on the right hand side of (1), we have

$$S(n) = \sigma_1(n) - \sigma_2(n) - \sigma_3(n) + \sigma_4(n).$$
⁽²⁾

Now, the part (a) of the Theorem 1 easily follows by observing that

$$S(n) = \sum_{d \mid n} (n/d) \chi(d),$$

where χ is the Dirichlet character defined by $\chi(2) = -1$. Part (b) of the Theorem 1 follows by using (2).

Glasgow Math. J. 34 (1992) 17-19.

MANVENDRA TAMBA

3. Proof of Theorem 2. In this section we shall prove the following lemma from which Theorem 2 follows immediately.

LEMMA. For |q| < 1,

$$\prod_{n=1}^{\infty} \frac{(1-q^{5n})^5}{(1-q^n)} = \sum_{n=0}^{\infty} R(n)q^n.$$

Proof. First we note that

$$\sum_{n \in \mathbb{Z}} z^{An} q^{Bn^2 + Cn} = \prod_{n=1}^{\infty} (1 - q^{2Bn})(1 + z^A q^{2Bn + C - B})(1 + z^{-A} q^{2Bn - C - B}),$$
(3)

by Jacobi's triple product identity [1, p. 21]. Hence $\prod_{n=1}^{\infty} (1-q^n)^{-1}$ is the constant term (i.e. the term independent of z) in

$$\prod_{n=1}^{\infty} (1+zq^{n-2})(1+z^{-1}q^{n+1}).$$

Now consider

$$\sum_{y_1, y_2, y_3, y_4, y_5 \in \mathbb{Z}} \{q^{5/2(\sum_{i=1}^{s} y_i^2) + \frac{1}{2}(y_1 + y_2 + 3y_3 + 5y_4 + 7y_5)} z^{y_1 - y_2 - y_3 - y_4 - y_5}\}$$

$$= \{\prod_{n=1}^{\infty} (1 - q^{5n})(1 + zq^{5n-2})(1 + z^{-1}q^{5n-3})\} \{\prod_{n=1}^{\infty} (1 - q^{5n})(1 + z^{-1}q^{5n-2})(1 + zq^{5n-3})\}$$

$$\times \{\prod_{n=1}^{\infty} (1 - q^{5n})(1 + z^{-1}q^{5n-1})(1 + zq^{5n-4})\} \{\prod_{n=1}^{\infty} (1 - q^{5n})(1 + z^{-1}q^{5n})(1 + zq^{5n-5})\}$$

$$\times \{\prod_{n=1}^{\infty} (1 - q^{5n})(1 + z^{-1}q^{5n+1})(1 + zq^{5n-6})\}$$

$$= \prod_{n=1}^{\infty} (1 - q^{5n})^5(1 + zq^{n-2})(1 + z^{-1}q^{n+1}).$$
(4)

By comparing the constant terms on both sides of (3) we have $y_1 = y_2 + y_3 + y_4 + y_5$. Hence by making the change of variables

$$x_1 = y_2 + y_3 + y_4 + y_5$$
, $x_2 = y_3 + y_4 + y_5$, $x_3 = y_4 + y_5$, $x_4 = y_5$

to get the polynomial in the form given in Theorem 2, the lemma follows.

ACKNOWLEDGEMENT. The author is very pleased to acknowledge the referee of this paper for his valuable suggestions.

REFERENCES

1. G. E. Andrews, The theory of partitions, *Encyclopedia of Math. Appl.*, Vol. 2 (Addison-Wesley, 1976).

2. W. N. Bailey, A note on two of Ramanujan's formulae, Quart. J. Math. 3 (1952), 29-31.

3. W. N. Bailey, A further note on two of Ramanujan's formulae, Quart. J. Math. 3 (1952), 158-160.

4. S. Ramanujan, Congruence properties of p(n), (unpublished manuscript), Trinity College Library (1920).

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Madras-600 005, India