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Abstract

It is an open problem to establish whether or not the partial sums operator SNNif(x, y) of the Fourier
series of / e Lp, 1 < p < 2, converges to the function almost everywhere as N -> oo. The purpose of
this paper is to identify the operator that, in this problem of a.e. convergence of Fourier series, plays
the central role that the maximal Hilbert transform plays in the one-dimensional case. This operator
appears to be a singular integral with variable coefficients which is a variant of the maximal double
Hilbert transform.

1980 Mathematics subject classification (Amer. Math. Soc): 42 B 05.

1. Introduction

Let / be in Lp([-v,v] X [-«,*)), p > 1, and let L™m,_ooanme'("*+my> be its
Fourier series. It is well known that the square partial sums operator SNNf(x, y)
= ^\ni\m\<Nanme'("x+my) converges almost everywhere to f(x, y) as N tends to
infinity for every / e Lp, p > 1 [3]. The analogous statement concerning the
partial sums operator SNMf(x, y) = Llnl<Nj]m^Manme*"x+m>') where N and M
tend to infinity independently, is false for all p > 1 [4]. The partial sums operator
SNNif(x, y) = T.w^N,\m\<Nianmei(nx+my) (or SNN*f(x, y), k any integer bigger
than 1) can be thought as an intermeditate case between the two previous ones.

We are interested in the open problem of establishing whether or not
SNNif(x, y) converges a.e. as N -* oo for any / e Lp, 1 < p < 2. (For p > 2 the
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2 Elena Prestini [2]

answer is known to be positive [3]. The proof is simple. It uses the one-dimen-
sional result [5] and the fact that the characteristic function of the parabola
y > x2 is a multiplier for L2 (and L2 only).) The operator to study is the
following singular integral with variable coefficients

(1) Tf(x, y) = f f eHf(x,y)x- + N\x,y)y-)^x - x>, y - y')/x'y'dx'dy'

where N{x, y) is any bounded integer-valued function [7]. One would like to
prove that there exists a constant cp, independent of N(x, y) and / , such that

(2) \\Tf\\p< cp\\f\\p, l < / > < 2 ,

because this implies that SNNif(x, y) -* f(x, y) a.e. as N -* oo for every / e Lp.
We do not settle this question but we study special cases of operators as in (1).
Our study leads us to identify certain singular integral operators that, in this
problem of a.e. convergence of Fourier series, appear to play the same central role
that the maximal Hilbert transform plays in the one-dimensional case [1], [2], [5].
We consider two families of functions N(x, y) and we prove for the correspond-
ing operator T defined in (1) the uniform estimate (2). In Section 1 we consider
the case N(x, y) = (XN0(x, y))* for X > 1010 (here (*)* denotes the greatest
integer function) under the assumption that N0(x, y) is differentiable and that
NQ(X, y), dN0/dx(x, y), dN0/dy(x, y) take on approximately the values C, A
and B respectively with 0 < A, B, C < 1 (i.e. C/2 < N0(x, y) < C, etc.). This
case suggests that f^j?n(e

iM<-x)y'/x'y')f(x - x',y - y')dx'dy\ where Af(x) is

any integer-valued bounded function, is the operator we are looking for. This is
easily recognized as the double Hilbert transform. Let us observe that this case is
just neater, but not very different from the case N(x, y) = (\x + ny)*, X,
fi > 1010 studied in [7], and it will be used in Section 2. We will present it briefly.
In Section 2 we consider N(x, y) = (Xxy)*, X > 1010. Its behavior sharply differs
from that of N(x, y) of Section 1 in the region close to the axes x = 0 and y = 0,
so that new tools have to be introduced. In particular this case suggests a more
complicated operator than the double Hilbert transform of Section 1, which is
roughly speaking the following one

(3) / / (Vx'y')f(x - x ' , y - y>) dx'dy'

(together with its maximal operator), where D is a fixed region symmetrical with
respect to the axes x' and y' (see Section 2 for the exact definition). Finally in
Section 3 we take N(x, y) = (Xxy13)*, X > 1010, j8 > 1. This case leads us to
consider a more general singular integral with variable coefficients (and its
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13] Estimates for families of singular integrals

maximal operator), which is roughly speaking the following one

(4) / f l/x'y'f(x -x',y- y') dx'dy',

where for every fixed y, Dy is a region symmetrical with respect to the axes x'
and y' (see Section 3 for the exact definition).

In [8] the boundedness in Lp of the operators (3) and (4) has been proved and
their maximal operators have been dominated pointwise by classical operators
like the Hardy-Littlewood maximal function and the one-dimensional Hilbert
transform. We shall state and make use of these results here. We hope that this
work and [8] provide the insight and the necessary tools to handle the case,
important for the complete solution of the problem, in which N(x, y) is mono-
tonically nondecreasing in x and y.

1.

We introduce the following operator, that we call the Carleson operator,
Cf(x)= f%(e'M(x)x'/x')f{x - x')dx' where M{x) is any bounded, integer-
valued function. From [5], there exists a constant cp, independent of M(x) and / ,
such that

IIC/||,«c,||/II,, K/xoo.

For the rest of this section we also refer the reader to [7]. There exists a Cx

function <j>(t) supported on (|?| < 2IT) such that if we write <t>k(t) = 2k<j>(2kt)
then \/t = T.f^0<j>k(t) for |/| < <n. Now we can write the operator (1) as follows:

Tf(x,y)= t Tkhf(x,y),

where

Tkhf(x, y)= / / e ' < " < ^ > * ' + " 2 < ^ > A ^ ( x ' ) < h ( / ) / ( * ~x',y- / ) dx'dy'.

Since Tkh acts independently on dyadic intervals I X J, | / | = 2ir2~k, \J\ = 2ir2~h

and / , y c [ 0 , 2 u ] , we fix I X J. Clearly \\Tkhf\\Lp(IXJ)^ c^fW^,.^ for
p > 1, where /* denotes the double of / . We shall consider pairs p = [/ X / , «7],
where u>, c R, \ur\ = 2* is any dyadic interval, and operators Tpf(x, y) =
Tkhf{x, y)xEr(x> y), where Ep = {(x, y) e / x / : N(x, y) e W / } . Clearly
Tkhf(x,y) = Y.Ul<zRTpf(x, y) for (x, y) e I X J and by Schwartz inequality
||rp||2 < c( |£p | / | /X J\)l/2 = cA(p), where ||Tp||2 is the operator norm. The dis-
tinction between norms of operators and functions will be clear from the context.
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Similarly using q = [7 X J, «y] , \uj\ = 2 \ we can decompose Tkhf(x, y) =
£ W y c R T J ( x , y) for (x, y) e I x / . We have | |r, | |2 < c ( | £ q | / | / X / I ) 1 / 2 = c5(q)
where £ q = {(x, y) £ I X J: N2(x, y) e co,}. In [6] we proved the following

LEMMA 1. Let I be a fixed dyadic interval, / c [0,2TT], | / | = 2^-2"* and M{x)
be a bounded integer-valued function. Let {p} = {[/, uf]} be a collection of pairs
such that A(p) = (\Ep\/\I\)

1/2 < 81/2, where Ep = {x e 7: M(x) e W/} aw</ fer
Tpf(x, y) = (feiM^*'<t>k(x')f(x ~ x')dx')xE(x). Then for 1 < p ^ 2 and \/p
+ 1 /q = 1

Now we consider for any X > 1010 and x, y 6 [0,2ir] the family of functions
N(x, y) = (\N0{x, y))* with ^ ( J C , _y) differentiable. Furtheremore we assume
that there exist constants A, B, C such that 0 < A, B, C < 1 and C/2 < N0(x, y)
< C, i4/2 < 3AT0(JC, y)/Zx < ̂ , 5 /2 < ZN0(x, y)/dy < fi for every (x, y). We
keep denoting by Tf(x, y) the operator associated to this family by (1). We have
the following

THEOREM 1. There exists a constant cp independent of X, A, B,C and f such that
\\Tf\\P<cp\\f\\p,l<p<2.

PROOF. We consider two cases: X > B/AC and 1010 < A < B/AC. First
suppose X > B/AC. We denote by [a] the biggest dyadic number less than a,
a > 0. We subdivide the proof into four steps.

STEP 1. Let 2"*> = [\/2ir2(XA)l/1] and 2"A> = [\/2IT2X{BC)1/2]. Consider
the operator GJ(x, y) = f fe*Ni*'»*'+riii*'>M Lk>kuh>hi<l>k(x')<t>h(y')f(x -
x', y — y')dx'dy'. Then G1 acts independently on dyadic intervals I X J such
that | / | = 2ir2'k\ \J\ = 2ir2'hl. Fix one of them and let x, and y} be the middle
point of / and J. Then for (x, y) e / X / we write

<!>k{x')4,h{y')f{x-x',y-y')dx'dy' = MJ{x,y),

meaning that the error term which is equal to G1f(x, y) minus the main term
Mlf(x, y) satisfies the same estimate of Mv This can be proved by the same
method used in [7], which applies an expansion in Taylor series since

\N(x,y)-N(x,,yJ)\\x'\<l.
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We shall use this convention for the rest of this paper. It is immediate that
MJ(x, y) = expOWU,, yj)x)Cy,Hx,(exp(-iN(xr, yj)x')f(x', /))(*, y), where
Hx, denotes the Hilbert transform in x' (actually a variant of it since the kernel is
smooth at \x'\ = 2^2"*' just as it is for Cy, [8]). So WG^p < cp, 1 < p < oo.

REMARK. Observe that for (x, y) e / X J we also have

\N2(x,y)-N2(x,yj)\\y'\<l,

so that we can actually say that

GJ(x, y) = MJ(x, y)=jj cxp(i{N2(x, yj)y' + N(xf, yj)x'))

X E *k(x')*h(y')f{x-x',y-y')dx'dy'.

The last operator (if we first integrate in x' and then in y'), to an exponential
factor, is the double Hilbert transform.

STEP 2. Let l/2v2\(BC)1/2 < 2-* < A^2/{2-n2^/2B) be fixed. For (JC, y) e I
X /, |/| = 2772"*' and |J| = 2772-* we have that

GJ{x,y)= £ Tkhf(x, y) = / exp(iN2(x, y)y')*k(y')

X f exp(iN(x,,yj)x') £

where (x,, yj) is the center of / X /. Clearly HGĴ  < c^ll/ll^, 1 < p < oo. We
are going to improve this estimate in L2. It is easy to check that the size of the
sets £[y,W/] = {y e J: N2(x, y) e wy} is not greater than c2h/(\2BC) for every
x. Hence' ||GJ2 < c(22h/(\2BC)1/2). Therefore, by interpolation, Lh\\Gh\\p^
cpi:hQ.2h/(\2BC))l/2q < cp for every 1 < p < 2, \/p + 1/̂ r = 1. If instead 2"A

1 p

is fixed and 2~k> = [2h/(2v2\B)]_ we let GJ(x,y) =
-k > k2

 Tkhf(x> y)- Proceeding as above we have that Zh \\Gn\\p < cp, 1 < p < 2.

STEP 3. For every 2"* > [1/(2TT2(X^)1/2)] we let 2"** = [
Then as in Step 2, but switching the roles of the operators in x' and y', if
Gk = U> H2 Tkh w e h a v e t h a t E , | |G f c | | , < CpLk (22k/XA)1/2" <cp,l<P<2.

STEP 4. The remaining operators 7^ will be subdivided into three families. The
first one is defined by 2"* > A2-k/B and so 2h/(27r2\B) < 2"* < XC/2\ It is
easy to check that fi(q) < c(22h/(\2BC))1/2, which implies

L B^IL, < c,Z (22>/(\2BC))1/2\(\2BC/22») < C/.
k,h h

https://doi.org/10.1017/S1446788700028020 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028020


6 Elena Prestini [6]

The second family is defined by 2'k/XC < 2~h < A2~k/B. It is easy to check that
5(q) < c(2h2k/(\2AC))1/2, which implies

k,h h

since X > B/AC. For the remaining Tkh's we use the estimate A(p) <
c(22V(^^))1/2and soLkJTkh\\p < cpLk(2

2k/(XA))^2ng(XA/22k) < cp.
This ends the case X > B/AC. If instead 1010 < X < B/AC then / = x'/XC

lies above _y' = Ax'/B. This case be handled as the previous one and we leave it
ot the interested reader. As we observed in the remark the main operator that
controls the case is the double Hilbert transform.

2.

We shall need the following

LEMMA 2. (1) The operators Hf(x) = fLf,0^k(x')f(x - x')dx' and Hf(x) =

o\f^k^ko^k(x') f(x ~ x')dx'\ are bounded in Lp, 1 < p < oo. Moreover if
M denotes the Hardy-Littlewood maximal function then

(5) Hf(x)^c{Mf(x) + M(Hf)(x)}.

(2) Suppose that B c N X N is a collection of pairs (k,h) of nonnegative
integers such that for every k the section Bk- [h e N: (k,h) e B) is a truncation
of N possibly depending upon k and for every h the section Bh= {k e N: (k, h) e
B} is a truncation of N possibly depending upon h. Then the operators

HJ(x,y)=ff £ <t>k(x')<t>h(y')f(x-x',y-y')dx'dy'
(k,h)<BB

and

HJ(x,y)= Sup

are bounded in Lp,l < p < oo, with norm independent of B. Moreover the following
inequality holds:

(6) HJ(x, y)^c{ Mx,My,f(x, y) + Mx,Hy,f{x, y)

Hx,f(x,y) + Mx,My,(HJ)(x,y)}.

f f X **(*')**(/)/(* " x', y - y') dx'dy'
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[7] Estimates for families of singular integrals 7

PROOF. This is Lemma 1 and Theorems 1 and 2 of [8].
Now we consider the operator Tf(x, y) defined by (1) with N(x, y) = (Xxy)*,

X > 1010. We are going to prove the following

THEOREM 2. There exists a constant cp, independent of X and f, such that

\\Tf\\P<cp\\f\\p,l<P*2.

PROOF. AS before Tf(x,y) = Lfh=0Tkhf(x,y). Now if we consider for all
integers m, n > 0 the region Rmn = {(x, y): 2-n2'm~x < x < 2w2"m, 27r2""~1 <
y < 2w2""} then by Theorem 1 we have that for (x, y) e Rnm the operator
Gnmf(x, y) = Lk>m,h>nTkhf(x,y) is bounded on Lp, 1 < p < 2. Clearly there
is no problem in adding up any finite number of these estimates. In what follows
we will see that if 2'" > 2"2m then we apply this argument only for 2~" > X'l/2

and 2m23"/2/X < 1; if 2"" < 2"2m only for 2"m > X"1/4 and 22m2"/X < 1. So we
are left, for any nonnegative integers n, m, with the operators

(1) Tkhf(x, y) for k > 0, h>n and (x, y) e / X J where / = [0,2w2"A:),
| / | = 2w2"\ J Q {y: 2TT2-"-1 < y < 2w2-"};

(2) Tkhf(x,y) for h > 0, k > m and (x, y) e / X 7 where | / | = 2ir2"*,
/ c {x: 2TT2-'"-1 < x < 2w2-m}, / = [0,2w2"*);

(3) Tkhf(x, y) for k > 0, /i > 0 and (x, j ) G / X / where / = [0,2ir2"*),
/ = [0,2w2"*).

One can estimate the sum of the operators in (1) and (2) quite easily by the
methods of Section 1. We leave this to the interested reader. Instead something
new (Lemma 2) has to be introduced to handle the operators in (3). We are going
to do it in this way. Let \/p + \/q = 1. It is easy to check that the worst estimate
for A(p) and B(q), namely the one corresponding to w7 = [0,2k) and
uj = [ 0 , 2 * ) , is A(p) < c((22k+h/X)lg(X/22k+h))^2, £ ( q ) <

c((2
k23h/2/X)lg(X/2k+3h/2))1/2. Clearly if 2~H > 2~2k it is more convenient to

use fi(q), i.e. to write Tkhf(x, y) = LqTqf(x, y), and to use ^4(p) if 2'h < 2""2/c.
The two cases being similar we are going to treat only the case 2~h > 2~2k. First
of all we shall add up all pairs q = [ / x J , w ; ] such that 5(q) ~ 1 (i.e.
2*23*/2/87r3X > l, which makes \N(x, y)x'\, \N2(x, y)y'\ < 1). We show that
for 1 < p < 2

(7) I E V | | <<TJ|/||,.

Secondly for r > 0 we show that if B(q) - 2" '"1 (i.e. 2"2 r"2 < 2A:23/l/2/87r3X <
2-2r)then

(8)
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Since it is no problem to add up to the estimates (8) over r this will end the proof.
We start by proving (7). In our assumptions it has to be w, = [0,2h), since we are
working close to the origin x = y = 0. We have that
F_J{x,y)= L Tqf(x,y)

B(q)~l

= / / E *k{x')*h(y')f{x-x',y-y') dx'dy',
(*,*)6J-,

k>ko(x,y), h>ho(x,y)

where B^ = {(k,h): 2'h > 2~2k, 2k2u/2/8w3\ > 1}, and kQ(x, y), ho(x,y)
are defined as follows. If w ^y < 2m, x < 2W[1/8TT3X] then 2'ka = 2"A:°<JC'->') =
[l/87r3X], 2~h° = 2-A»(jc->') = 1; if v/2 < >> < w then, if x < 27r[l/87r3] we have
that 2"*° = 2[1/8T7 3 X] , 2"*° = 1, while if 2ir[l/Sn3X] < x < 4TT[1/8W3X] we
have the same 2"*° and 2~A° = 1/2; and so on, until y < 27r[l/(87r3A)1/2]; then,
if x < 2ff[l/87r3X] we have 2"*» = [ 1 / ( 8 T T 3 X ) 1 / 4 ] , 2-*"> = l , . . . , while if
77[1 / (8TT 3 X) 1 / 4 ] < x < 2w[l/(8w3X)1/4] then we have the same 2~k° and 2-*0 =
[l/(8w3X)1 / 2] . Therefore

Sup f I - x', y - y') dx'dy'

~r lHence by Lemma 2 we have \\F_j\\p < cp and (7) is proved. Now let 5(q) - 2
Since 2~h > 2"2A: we have that 2 2 78TT 3 X < 2'k < 2< r + 1 ) / 2 /(8^3X)1/4. If

Tkhf(x, y) = Lqrq /(x, >") ̂  5(<«) ~ 2'r'' t h e n ll7"**!!, < c
P

2'r/2q hy L e m m a

1 of [6]. So, trivially, if l/2''+1(87r3X)1/4 < 2"* < 2C- + 1 >/ 2 / (8TT 3 X) 1 / 4 we have
that E M 11^^11^ < cp2-r/2«lg(23<r+1)/2). We are left to consider 2'k <
2-/-1(8w'3X)-1 / 4 which makes \N(x, y)x'\ < 1. In this case we keep the Tkh's
decomposed as sums of the T^'s, q = [/ X / , « , ] . Depending upon Uj we are
going to subdivide the Tq's into 4(r + 1) famines Z)o , . . . , D^^ X) and to show that
iPqe/j,7!,/!!/, < cp2-'/2q for every j . This proves (8). The first family Do is
defined by <oy = [0,2*). Since (Xxy)2 < 2h,, clearly

- *', ^ - J'O dx'dy',

2h>(\xy)2

where

2~2k, B(q) ~ 2" ' " 1 , 2 '* 1 /4}
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By L e m m a 2 the last operator has Z^-norm smaller than cp. This is not good
enough. We are going to do better by splitting every Tqf(x, y) = T^f(x, y) +
Tq

2f(x, y) where Tjf(x, y) = Tqf(x, y)xE'(x, y) and

E± = Eqn{(x,y): x

With obvious notations, Fof = F^f + Fo
2/. If we put E{q = {x: (x, y) e £*} and

Eiq = { y- (*> y) G £q } i l i s easy t o check that

(9) | £ q ^

Now the estimates (5) and (6) of Lemma 2 can be made more precise [8], namely

c Sup (Akh)'1 f f \f(x- x',y-y')\dx'dy'
\ k^k^^ J-h J-k

+ Sup (4**)"1 £ /_* | Hx,f(x -x',y- y') | dx'dy'

+ Sup (Akh)'1 j h j k \HJ(x - x',y - y')\ dx'dy'

+ ^ Sup^ (2k)~lfkJ\Hy,f(x - x',y)\dx\

with kj = A:,(x, >>), h, = /i,(x, ^ ) .

The maximal function acting on the x' variable and (9) make the L^-norm of each
of these four operators less than or equal to cl~r/p. Precisely we can always first
integrate in y' and then (with y fixed) in x'. Then the support of Fgf(x, y) in the
x variable (y is fixed) can be subdivided into disjoint intervals I{, l{, These
can be set in one-to-one correspondence with other disjoint intervals I{', 1%',...
such that X G / / , y' = y - w, \lf\ ~ 2-*2<*>>'>. For instance if IT < y < 2IT then
F£f(x, y) = T±f(x, y) where q, = [[0,2TO) X [0,2ir), [0,1)1 and a = [2r/X].
Then If = £1

J
qi and If' = [0,2ira\. If instead IT/2 < y < -n then Fjf(x, y) =

Tlf(x, y)T±j(x, y), where_q2 = I[0,4TO) X [0,»), [0,2)]. In this case If and if
are defined as above, while 1% = Ef^2\Ef^ and If = [2wa,4wa]. And so on. By
(9) we have that
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So by the action of the maximal function (acting on the x' variable) that appears
in each of the four terms that control FQ/(X, y)we have

(10) H/tfll,*^-'/'.
Now we proceed to show that Hi^llp < c

p(
r^'r)1/p- This is easier and it is proved

by the following observation. There exists a family of sets {Gh } and of two-by-two
disjoint intervals {Ih X Ih) with the properties Gha Ihx Jh; \Gh\/\Ih X Jh\ <
c2~r; at any point (x, y) in Gh at most r among the T2f(x,y)'s are different
from zero; if (x, y) e IhX Jh then

\Ftf{x,y)\<r Sup 77^77/ \f(x',y')\dx'dy'
IhXjhQlXJ I7 X J\JlXj

if (x, y) G Gh and F0
2f(x, y) = 0 otherwise. Precisely Ih = [2h2n/2/X,

2h + l2"/2/\], Jh = [0,2""] and Gh = {(x, y)^lhx Jh: N\x, y) e [0,2*)}. This

proves the desired estimate. Now we are going to consider the family Ds,
1 < 5 < 4(r + 1), defined by q = [/ X / , « , ] , <oy e Vs and

Vs = U{[2'"12*,(2'-1 + 1)2*),..., [(2' - 1)2\2'2*)}
h

(observe that Eq = 0 if Uj G 1 ,̂ S > 4(r + 1)). The u/s in Fs are two-by-two
disjoint so that the corresponding Tq's live on disjoint sets. This makes the matter
easier and so it is left to the reader to prove that

I V T f\\ < r 1~T/%P

by considering a suitable maximal function.
The main operator we used is Hx. As we said it is easy to handle all pairs

q = [I XJ,Uj], \J\ > |/|2, «y = [0,2*], 5(q) = l of the collection (1): it is
enough to apply the double Hilbert transform. For instance if / c {y:2'nm < j
< 2'n+V), 2"" > \"1/4, then we observe that N(x, y) = Xxy ~ X2'"x. So after
applying the operator

E <j>k(x')*f(x,y)

no pairs of norm 1 are left among the ones we started with.
The picture becomes considerably more complicated if we let N(x, y) =

(XxyP)* where (5 is as big as we wish. To handle this case we are going to
introduce an operator more powerful than Hv This is the subject of the next
section.
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3.

We shall make use of the following

LEMMA 3. For every y fixed, let By be a subset of N X N with the property that
for every k there exists an integer r{y, k) such that Byk = {h e N: (k, h) e By) =
{ h > r{y, k)}. Then there exists a constant cp depending only upon p, 1 < p < oo,
such that \\H2f\\p < cp\\f\\p where

H2f{x, y) = f f E * * ( / ) * * ( * ' ) / ( * ~x',y- y') dx'dy'.
(k,h)mBy

Moreover if we define

H2f(x,y) = Sup
/ / E <f>h(y')<t>k(x')f(x-x',y-y') dx'dy'

then there exists an absolute constant c such that H2f(x, y) < c{My,Hx,f(x, y) +
My(H2f(x, y)Xy)} and so H2 is a bounded operator on Lp.

PROOF. This is Theorem 3 and Theorem 4 of [8].
Now we consider the operator Tf(x, y) defined as in (1) with N(x, y) =

(XxyP)*, X > 1010, B > 1. A new problem arises when B is big. Let us assume
for instance that B is as big as we wish and X > B2&. We are going to explain
why H2 is needed to control T.qTqf(x, y) where q = [/ X / , « , ] , «y = [0,2*],
| / | > |/|2, / = [0,2"*] and B(q) = 1. Suppose for instance that n < y < 2-n. The
point is that y& is approximately a constant (i.e. it takes on values lying in
between two consecutive dyadic numbers) only on very small intervals, precisely
over intervals of size not greater than \/B. So if among the pairs under
consideration we single out those with / c {y: m < y < 2w), then only the pairs
with | / | < \/B can be dealt with by applying the double Hilbert transform.
Similarly if ml'" < y < ir2~n+1, and so on. Therefore, after applying the double
Hilbert transform, we are left with many pairs having / c {y. IT2~" < J? <
TT2""+1} besides those having / = [0,2ir2~k] and / = [0,2ir2~'r]. It is easy to
check that two pairs [Ir X Jv «y ] and [I2 X J2, «y ] with \JX\ = \J2\ = 2~h (and so
u>j = Uj — [0,2*)) will have Ix ¥= I2 unless Jx = J2. In other words, if we add up
the Tq's corresponding to all pairs we are left with, the resulting operator will have
a convolution kernel depending upon the height y at which the operator is
evaluated. Such an operator, except for an error term, is H2.

We will not go into more details, H2 is essentially the only new tool needed to
control Tf(x, y).
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We conclude by observing that our study suggests that H2 and the double
Hilbert transform play the same central role in the problem of a.e. convergence of
double Fourier series we mentioned, that the Hilbert transform played in the
one-dimensional problem.
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