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Rotational symmetries in electron nanodiffraction (END) measured by 4D STEM can reveal and map 

local structure in metallic glasses [1][2]. The angular autocorrelation function and its power spectrum have 

been used to characterize local symmetries, but we show that it can exhibit several types of artifacts. We 

have adapted the Symmetry STEM method, recently proposed to probe local symmetry in 4D STEM data 

from crystals [3], to analyze rotational symmetry in 4D STEM data from metallic glasses without artifacts. 

Fig. 1(a) – (c) illustrates angular correlation analysis. Individual diffraction patterns I(k) , are unwrapped 

into polar coordinates I(k,φ) and autocorrelated in azimuth to obtain 

 

Rotational symmetry in I(k) is transformed in periodic symmetry in C(k,Δ). C(k,Δ) is then Fourier 

transformed to obtain the power spectrum P(k,n). A simple mathematical model for a general END pattern 

illustrates three artifacts present in angular correlation analysis. Assume the END pattern consists 

of m+1 pairs of diffraction disks (speckles) all at the k radius, with m of the pairs rotated by angles 

{Δ1,Δ2,...,Δm} with regards to a reference pair. The disk intensities are 

{p0,p0',p1,p1',...,pm,pm'} where pi and pi' are the intensities of the ith pair. The angular power of this pattern 

at k is given by 

(1) 

where N is the total number of discrete azimuthal angles, w is the width of each disk in φ, and q = 2πn/N. 

Eq. 1 demonstrates two of the artifacts in P(n). First, the Fourier transformation of the rectangular 

functions describing the speckles creates ringing that smears 2-fold symmetry power into high order even 

symmetries as represented by the sin2 term in Eq. 1. A second artifact arises from the breakdown of Friedel 

symmetry in the pattern, meaning that I(k) ≠ I(-k) or, in this model, pi ≠ pi'. Lens aberrations and defocus 

and dynamical diffraction in thicker samples can all cause Friedel breakdown in amorphous END patterns 

[4], none of which are of structural origin. Friedel breakdown gives rise to nonstructural odd n magnitude 

in the power spectrum, transferred from structural even n power. The third common artifact is random 

arrangements of speckles arising from multiple scatterers separated in the sample thickness. The random 

inter-cluster overlap as well as intra-cluster structural correlation manifest themself in the angular power 

as the cosine term in Eq. 1 and act as modulations between pairs. In this analysis, they are practically 

indistinguishable from one another. Collectively, these three artifacts can make angular correlation results 

challenging to interpret. 
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Fig 1(d) – (e) illustrates our new analysis inspired by Symmetry STEM. It starts by rotating the pattern 

around its origin by an angle , then calculating the Pearson product-moment correlation coefficient 

between the original and rotated patterns, 

 

ρ(Δ) can be averaged over the full range of k in the pattern or a selected range of k values. The symmetry 

coefficients S(n) are evaluated from ρ(Δ) following two rules: (1) S(n) is the mean of ρ(Δ) at the 

characteristic angles of n-fold rotation symmetry, excluding  = 0 and 2; and (2) S(2n) doesn’t sample 

angles already included in S(n). The first few terms of S(n) are defined as 

 

The odd n S(n) contain contributions both from inherent odd symmetries in the pattern and from even 

symmetries that are twice the odd (for instance, S(3) could come from both 3- and 6-fold symmetry). 

However, S(6) is independent of S(3) by construction. 

S(n) avoids the first two artifacts of the angular correlation power spectrum. Without the Fourier 

transformation, there is no ringing effect, and no nonstructural odd symmetries from Fourier 

decomposition of uneven intensity speckles due to Friedel symmetry breakdown. Random overlaps still 

effect S(n), but their influence is reduced. Unlike in P(n), S(n) measures correlations only at the exact 

angles of the rotational symmetry. Correlations close to but not at those angles will not be registered, 

which significantly reduces the chance of random overlap creating a high magnitude, even symmetry. 

However, the odd symmetry coefficients sample more angles than even ones, so odd symmetries are more 

likely to gain magnitude from random overlaps. 

Fig. 2 shows autocorrelation power spectrum and symmetry coefficient analysis of END experiments on 

Pd43Ni10Cu27P20 nanowires. 960 END patterns are acquired with a parallel probe 2 nm in diameter from 

~40 nm thick wires. Because the sample is fairly thick, the angular power spectrum in Fig.2a shows a 

monotonic decrease in magnitude with symmetry order n. Random overlaps and possible dynamical 

diffraction creates significant Friedel symmetry breakdown, which in turn causes strong nonstructural odd 

symmetry that overshadows the even symmetry features in the power spectrum. On the other hand, the 

averaged symmetry coefficient in Fig 2b shows strong 6-fold and 10-fold symmetry, which are 

characteristic of icosahedral structure. These results suggest that symmetry analysis is more tolerant of 

thicker samples. 

Examining single patterns gives several instances of artifacts in the angular power spectrum which do not 

influence the symmetry coefficients. Fig. 2c shows a random overlap of speckles at an angle of ~ 125 

degrees. The power spectrum falsely picks this up as 6-fold symmetry, but the symmetry coefficient does 

not. Fig. 2g shows a 10-fold symmetry that is only partially complete in the diffraction plane. The power 
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spectrum recognizes it only as 3-fold symmetry because the three strong speckles are close to the 3-fold 

positions. The symmetry coefficient registers the 10-fold angles even though the pattern is incomplete. 

We acknowledge support from the NSF (DMR-1807241). 

 
Figure 1. Schematics of angular correlation analysis and correlation symmetry analysis using an 

experimental END pattern on Pd-based nanowire sample. (a-c) Angular correlation analysis procedure; 

(d-f) Symmetry coefficient analysis procedure. 
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Figure 2. (a) Averaged power spectrum and (b) averaged symmetry coefficients of the END experiments 

on the Pd-based nanowires; (c, g) examples of END patterns, (d, h) their angular correlation functions at 

k = kmax , (e, i) power spectrum and (f, j) symmetry coefficients. 
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