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Abstract

The relative significance of conceptual design to basic design or detail design is widely recognized, due to its influ-
ential roles in determining the product’s fundamental features and development costs. Although there are some general
methodologies dealing with functions in design, virtually no commercial CAD systems can support functional design,
in particular so-called synthetic phase of design. Supporting the synthetic phase of conceptual design is one of the
crucial issues of CAD systems with function modeling capabilities. In this paper, we propose a computer tool called a
Function-Behavior-State (FBS) Modeler to support functional design not only in the analytical phase but also in the
synthetic phase. To do so, the functional decomposition knowledge and physical features in the knowledge base of the
modeler, and a subsystem Qualitative Process Abduction System (QPAS) play crucial roles. Modeling scheme of func-
tion in relation with behavior and structure and design process for conceptual design in the FBS Modeler are described.
The advantages of the FBS Modeler are demonstrated by presenting two examples; namely, an experiment in which
designers used this tool and the design of functionally redundant machines, which is a new design methodology for
highly reliable machines, as its application.
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1. INTRODUCTION after functional design. Therefore, representation and ma-
nipulation of function are crucial issues for constructing a
CAD system that supports conceptual design. Recent need
for high-performance and innovative design require devel-
opment of such a CAD system.

Although there are some general methodologies dealing
with functions (e.g., Rodenacker, 1971; Pahl & Beitz, 1988),
virtually no commercial CAD system can support func-
tional design, in particular, the so-called synthetic phase of
design. In this paper, we propose a computer tool called a
Function—Behavior-State (FBS) Modeler to support func-
tional design not only in the analytical phase but also in the
synthetic phase. We clarify advantages of the FBS Modeler

Let us consider a design process that consists of functional
design (or conceptual design), basic design, and detail de-
sign. Because a designer should determine the functional
structure of a design object and basic physical mechanisms
that realize the functional structure in functional design, func-
tional design is more important than basic design or detail
design (Yoshikawa & Gossard, 1989). However, traditional
CAD technology, dealing mainly with geometry, cannot treat
function well, because function is a more abstract concept
than the geometric information that can be generated only
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by presenting two examples; namely, an experiment in which
designers used this tool and the design of functionally re-
dundant machines. Function redundant design is a new de-
sign methodology for highly reliable machines.
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The rest of the paper is organized as follows: Section 2
analyzes existing methods to represent functions and presents
a theoretical background of the FBS Modeler. Section 3 de-
scribes the FBS Modeler and its usage in functional design.
Section 4 illustrates an experimental use of the FBS Mod-
eler. In Section 5, we propose a design methodology of func-
tionally redundant machines as an application of the modeler.
We discuss advantages and issues of the modeler in Sec-
tion 6, and Section 7 concludes this paper.

2. FUNCTION-BEHAVIOR-STATE MODELING

In this section, we discuss problems in representing func-
tion in the conventional approaches and propose a new
framework called a FBS diagram.

2.1. Representation of function

There is no clear and uniform definition of function be-
cause function is an intuitive concept depending on the de-
signer’s intention.

Rodenacker (1971) defines function as a relationship be-
tween input and output of energy, material, and informa-
tion. This definition is accepted widely in design research
(e.g., Pahl & Beitz, 1988; Welch & Dixon, 1992). However,
this representation has limitations; for example, the func-
tion of a fixture “to fix something for manufacturing it” and
the function of a linear guide “to guide the motion of an
object on a straight line” cannot be represented. Value en-
gineering (VE) represents a function in the form of to do
something (Miles, 1972). Although this definition is gen-
eral, due to the lack of clear description about relationships
between function and structure, this representation is not
powerful enough for design applications.

We define a function as “a description of behavior ab-
stracted by human through recognition of the behavior in
order to utilize the behavior” (Umeda et al., 1990). In other
words, it is difficult to distinguish clearly function from be-
havior and it is not meaningful to represent function inde-
pendently of the behavior from which it is abstracted. Here
we represent a function as an association of two concepts;
that is, its symbol represented in the form of 10 do some-
thing, as VE proposed, and a set of behaviors that can ex-
hibit the function. Although the symbol is meaningful only
to a human, this information, associated with its behavior,
is essential for supporting design such as reuse of design
results and clarification of specifications. The relationships
between functions and behaviors are subjective and many-
to-many correspondent; for example, we might say that some
behaviors such as “hitting a bell” and “oscillating a string”
realize a function “to make a sound.” We call these relation-
ships F-B relationships.

In this framework, we assume that the representation of
function includes human intention as the symbols and F-B
relationships, whereas the representation of behavior of an
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Fig. 1. State of paper weight (Umeda et al., 1990).

entity can be determined more objectively based on physi-
cal principles. Here, a state of an entity is defined by a set
of attributes and relations among relevant entities.! Fig-
ure 1 shows a part of the state description of a paper weight.
In Figure 1, “Paper Weight” and “Paper” are entities and
they have the relation “on,” which means that the paper
weight is on the paper. “Paper Weight” has some attributes
that have values; namely, “Weight: 1 kg,” “Volume: 100
cm?” and “Density: 10 g/cm>.” These attributes are also
related with each other.

Introducing a discrete unit time, we define behavior as
“sequential state transitions along time,” and assume that
physical phenomena determine behavior of an entity. In other
words, we can reason out all possible behaviors of an entity
from an initial state with a set of physical phenomena. We
call these relationships between behaviors and states B—S
relationships.

However, representations of behavior may differ depend-
ing on the physical situations of the current interest. For
example, while the behavior that electricity passes through
a wire can be codified with resistance, voltage, current, and
so on, it can also be captured as motion of electrons. To
represent this difference, we introduce aspects. An aspect is
a collection of all relevant entities, attributes, relations, and
physical phenomena of the current interest. Figure 2 illus-
trates the relationships among function, behavior, and state.

2.2. Functional decomposition

2.2.1. Function-behavior-state diagram

In design, a designer decomposes the required functions
into subfunctions hierarchically until arriving at substantial
components (e.g., Pahl & Beitz, 1988). Therefore, it is es-
sential for supporting design to represent a design object
hierarchically in such a way that its representation becomes
gradually concrete over hierarchy. We assume that such hi-

! In this paper, we call so-called structure and so-called state altogether
state, because the distinction between them is not essential. For example,
the structure of a machine might change when a fault occurs.
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erarchies can only be constructed subjectively from the view-
point of function rather than objectively or physically.

We represent a design object hierarchically as shown
in Figure 3. We call this scheme a FBS diagram. This fig-
ure indicates that the designer should concurrently describe
symbols of functions and their actualizing behaviors with
appropriate aspects in a hierarchy. Because aspects are phys-
ically related with each other, consistency among aspects
and, therefore, consistency of behaviors and states in each
aspect can be maintained by a computer with a sufficient
amount of aspects and physical knowledge in these aspects.
For example, we have proposed the metamodel mechanism
that manages relationships among aspects (Tomiyama et al.,
1992).

The main ideas of the FBS diagram are:

o to distinguish subjective parts of a design object (func-
tion symbols and F-B relationships) and objective parts
(behaviors and states);

Super-Level
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-
Aspect ! = . L
] : — e
L — . = =
e -ﬁk‘" i = S State Level
“-—/-

[0 Behavior B-S Relationship
State Relationships between Aspects

Hierarchical Relationship
between Functions

(Q Function Symbol 4» F-B Relationship

Fig. 3. Function-behavior-state diagram.
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e to represent a function as an association of subjective
concepts (function symbols) and objective concepts (be-
haviors) rather than just either of them; in other words,
functions relate subjective concepts and objective con-
cepts; and

e to represent a design object hierarchically to support a
modeling process that details functional and behav-
ioral descriptions concurrently.

Because of these features, computerization of the FBS dia-
gram helps a designer to execute functional design; for in-
stance, the system can search for appropriate behaviors to a
required function, check inconsistencies in the objective
parts, and propose modification for the inconsistencies.

2.2.2. Task decomposition and causal decomposition

Functional decomposition is one of the key issues in the
synthetic phase of design. Let us examine this functional
decomposition in detail.

Based on results of experiments described in Section 4,
we propose that decomposition of functions can be classi-
fied into the following two categories. Here, we assume that
a function f is decomposed into subfunctions f, f5,..., f,
that are embodied by behaviors by, b,, ..., b,.

Causal decomposition: For instance a function f “to gen-
erate light” can be decomposed as follows:

f: to light a lamp with electricity b,: a lamp lighting

f>: to generate electricity b,: a battery gen-
erating elec-

tricity.

In this case, b, is indispensable for activating b,. We
call this kind of decomposition causal decomposition, for
which a definition is that behaviors resulting from this
decomposition are causally related with each other.

Task decomposition: For example, a function f “to make
salt” can be decomposed as follows:

Ji: to collect sea water  b|: water pouring

f>: to boil salty water b, water boiling.

This kind of decomposition is fask decomposition rather
than causal decomposition. Namely, b, and b, are not caus-
ally related with each other, because they can occur in-
dependently.2
While the task decompositions are not physically deriv-

able, the causal decompositions can be reasoned out by
searching causal relationships through knowledge about be-
havior. Therefore, in the implementation of the FBS Mod-
eler described in Section 3, while the task decompositions
are described as a part of functional knowledge explicitly

2 Of course, they should be related structurally to perform the target
function f.
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Fig. 4. Architecture of the FBS modeler.

and executed manually, the causal decompositions are ex-
ecuted by the system with physical knowledge. The latter
helps the designer to find out new design solutions. By ap-
plying the task decompositions hierarchically, the designer
constructs a task-decomposed functional hierarchy from the
required functions. In contrast, for the causal decomposi-
tions, a subsystem called Qualitative Process Abduction Sys-
tem (QPAS) (Ishii et al., 1993) helps the designer to find
out appropriate mechanisms for realizing task-decomposed
functions with physical knowledge.

3. FUNCTION-BEHAVIOR-STATE MODELER

We have developed a computer tool called a FBS Modeler
for supporting functional design based on the FBS diagram.
Because of implementational limitations, the modeler can
handle only one aspect at one time that represents behav-
iors at the bottom level in Figure 3.

Figure 4 shows the architecture of the FBS Modeler. The
qualitative reasoning system (Tomiyama et al., 1992), based
on Qualitative Process Theory (Forbus, 1984), gives a rep-
resentational scheme of behaviors and states and performs
behavioral simulation. QPAS (Ishii et al., 1993) that de-
rives physical phenomena from the given state transitions is
incorporated for supporting the causal decomposition. The
Function Redundancy (FR) Designer will be described in
Section 5. Knowledge about function is described in the func-
tion knowledge base in the form of function prototypes de-
scribed in Section 3.1.1. The behavior knowledge base
consists of physical features, physical phenomena, rela-
tions, and entities described in Section 3.1.2.

Table 1. Definition of function prototype

Item Contents

Name
Decomposition
F-B relationship

verb + objects + modifiers
networks of subfunctions
physical features
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Fig. 5. Example of functional decomposition knowledge.

3.1. Knowledge representation

3.1.1. Functional knowledge

To construct a knowledge base of functions, we collect
prototypes of functions from existing design results. Table 1
shows the scheme of the function prototype.

Name is the symbol for representing a designer’s inten-
tion in the form of “to verb objects modifiers.” Here, ob-
Jects represent entities and things related to the function such
as “gear” and “electricity.” Modifiers qualify a function and
include such terms as “fast” and “reliably.”

Decomposition describes feasible candidates for decom-
posing the function in the form of networks of subfunc-
tions. This hierarchy is composed of either abstract—concrete
relations or whole—part relations. Here, only task decom-
positions are included in the decomposition knowledge. Fig-
ure 5 shows an example of the decomposition knowledge.
This network denotes that the target function “to move a
table fast and precisely”? (shown as a black node) can be
decomposed into two subfunctions; namely, “to move the
table with a motor fast” and “to stop the table precisely.”

The F-B Relationship describes candidates of embodi-
ments of the function in the form of physical features de-
scribed below.

3.1.2. Physical feature

Generally speaking, a designer considers components and
their behaviors at the same time. Moreover, the F-B rela-
tionship implies that it is useful to collect building blocks
of behaviors that correspond to functions. For representing
such knowledge, we have proposed physical features that
are building blocks consisting of components and physical
phenomena occurring on the components (Tomiyama et al.,
1992). We introduce the physical feature to relate functions
to behaviors and states. Our representation of behaviors and

* In Figure 5, gray nodes and double oval nodes represent objects and
modifiers of the function name, respectively; namely, the function “to move
a table fast and precisely” consists of the verb node “move,” the object
node “table,” and the modifier nodes “fast” and “precisely.”
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Table 2. Definition of physical phenomenon (Tomiyama et al.,
1992)

Item Contents
Phenomenon name
Supers ) super classes
Conditions
prerequisites needed entities
references needed causal dependencies among prerequisites
relations needed relations
g-conditions parametric conditions
s-conditions parametric conditions given outside of QPT
Influences
quantities definition of parameters
g-relations proportional equations
influences differential equations

states of design objects is based on Qualitative Process
Theory (QPT) (Forbus, 1984).

In the FBS Modeler, a physical feature is represented as
a network of three kinds of elements (we call them behav-
ior nodes); namely, entities, relations, and physical phenom-
ena. An entity is a component such as a gear, a spring, and
a shaft and plays the same role as an individual in QPT.
Relations represent structural relationships among entities
such as “on,” “above,” and “connected.” A physical phe-
nomenon is the same concept as a process in QPT and de-
fined in Table 2. If a phenomenon is activated by satisfying

its conditions, it adds parameters and qualitative equations
defined in the influences in Table 2.

Each physical feature is constructed by the designer so as
to be a meaningful block for representing a function. For
example, Figure 6 shows an example of a physical feature
in which a phenomenon “ElectricalDischarging,” defined in
Table 3, occurs between a discharger and a nonconductor.
In this figure, arcs between nodes represent physical depen-
dencies; that is, this phenomenon depends on the discharger
and the nonconductor, which are related by the relation “Con-
nectionWithASpace,” as specified in the conditions in
Table 3.

We view that it is difficult to define general primitives
for representing functions and behaviors, while it might be
possible in some limited domains. Instead, our approach to
represent functions and behaviors is to collect various func-

(ElectricalDischargi@

Phenomena

| ConnectionWithASpace]

Relations

Fig. 6. Example of a physical feature.
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Table 3. Definition of electrical discharging

Item Contents
Phenomenon ElectricalDischarging
Supers Fundamental

Conditions

prerequisites

discharger = Discharger,
device = ElectricalNonConductor

references
relations connectionsWithASpace(discharger,device)
g-conditions (discharger voltage) > zero
s-conditions (discharger sw) = on
Influences
quantities (device charge) = (— zero +)
g-relations (device charge) direct (discharger voltage)
influences

tion prototypes and physical features from existing designs
and to construct a large knowledge base of them. We be-
lieve that the system will help designers to create new de-
sign solutions by searching through the knowledge base.

3.2. Functional design on the FBS modeler

Here, we consider that functional design is to construct a
consistent and feasible FBS model of a design object by de-
tailing and embodying the required functions on the FBS
Modeler. Figure 7 illustrates the basic flow of the func-

‘tional design on the FBS Modeler.

Specification of Required Functions

Y

Functional Decomposition

Y

Embodiment of Functions

v

Causal Decomposition

Y

Construction of Behavior Net.

Y

Behavior Simulation

< Fvaluation >

Satisfied

QPAS4—p>

nsatisfied

Fig. 7. Basic flow of functional design.
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Fig. 8. Example of functional design (1).

Specification of required functions. The designer inputs
required functions by choosing function prototypes.

Functional decomposition. The designer recursively de-
composes the required functions into subfunctions by ap-
plying the decomposition knowledge of function prototypes
and, as a result, constructs a functional hierarchy. These de-
compositions are task decomposition. By collecting a large
amount of decomposition knowledge, the system can help
the designer to find out new solutions of functional decom-
position. This is one feature of the modeler for supporting
the synthetic phase of design.

Embodiment of functions. Next, the designer instantiates
physical features that can embody the hierarchy by using
the F-B relationships of prototypes for each function. Again,
by collecting a large amount of knowledge about the F-B
relationships, the system can help the designer to find out
new solutions by combining them. This is the second fea-
ture of the modeler to support the synthetic phase.

For example, Figure 8 depicts that a required function
“to charge drum,” which often appears in design of photo-
copiers, is task-decomposed into two subfunctions “to dis-
charge electricity to drum” and “to rotate drum” and the
subfunction “to discharge electricity to drum” is embodied
by a physical feature represented as a network of five be-
havior nodes in the Behavior Layer.*

“ The subfunction “to rotate drum” is not embodied yet in this figure.
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Causal decomposition. After instantiating physical fea-
tures, the designer often finds out that some of them cannot
occur. For example, the physical feature shown in Figure 8
is not physically adequate, because the condition of the phe-
nomenon “ElectricalDischarging,” defined in Table 3, is not
satisfied yet. In such a case, QPAS (Ishii et al., 1993) rea-
sons out candidates of additional physical features to sat-
isfy the physical conditions.

After the designer specifies a physical feature pf, the sys-
tem helps the designer to find out additional features pf” as
follows.

a. Candidate generation: To realize the feature pf, all phe-
nomena in pf should occur. If a physical phenomenon
is inadequate to occur, it may have the following two
kinds of incompleteness:

Prerequisites: To activate a phenomenon, all prereg-
uisites of its definition should be connected to it.
If a phenomenon has unconnected prerequisites,
these prerequisites should be added to the model
and connected to it. In this case, QPAS searches
for physical features that include the unconnected
prerequisites.

Parametric conditions: To activate a phenomenon, all
parametric conditions (viz., g-conditions and
s-conditions) of its definition should be satisfied.
The designer should decide these conditions to be
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Fig. 9. Flow of the causal decomposition.

satisfied either by giving it as initial conditions or
by adding physical features that can realize the con-
ditions. While the designer should describe the ini-
tial conditions to the model in the former case, in the
latter case, by providing QPAS with each paramet-
ric condition, the system reasons out candidates of
physical features that include phenomena that can
change the value of the parameter in the condition;
in other words, the phenomena that have the same
parameter in their g-relations or influences.

b. Feature instantiation: After the designer selects a phys-
ical feature among the derived candidates, the feature

[8] FBSHodeler/Modifier
. edit node function arrange metamodel FR
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is instantiated in the model and connected to pf by
using physical dependencies.

c. Function extraction: Next, a function is added for ex-
plaining the additional feature pf’. The FBS Modeler
reasons out function prototypes that have pf’ in the
F-B relationships. After the designer selects a proto-
type, it is instantiated and connected to pf’ by the F-B
relationship. Moreover, the target function f is con-
nected to the instantiated function f’ by a caused-by
relationship that denotes that f is caused by f' (see
Fig. 9).

d. Repetition: By repeating this cycle, a network of be-
havior nodes is constructed so as to realize the target
physical feature pf.

In this way, the modeler supports the designer to find out
new solutions by reasoning out additional physical features.

Figure 10 shows an example of adding a physical feature
to the example shown in Figure 8. In Figure 8, the follow-
ing two conditions of the phenomenon “ElectricalDischarg-
ing” have not been satisfied yet (see Table 3); “(discharger
voltage) > zero,” which means voltage of the discharger
should be higher than zero, and “(discharger sw) = on,”

Function Prototypes

Function Layer]

generate(voltage)with(battery)
generateForceTo(electricalContactP|
give(bendingPressure)
globalLinearHandle(work)
increase(pressure)with(valve)
jump(toy)
jump(toy)with(battery)

keepBF config(arm)
keepSameConfig(arm)to(work)
keepUDConfig(arm)
linearHandle(work)
localLinearHandle(work)
maintain(electricalContactPoints)
make(electricalContactPoints)contag
move(arc)

move(table)
move(table)by(ballscrew)

[«] [»

L —
OLel T»] 0
Features for This Function
=
acdcvoltagegeneration Lud
batteryVoltageGeneration =
v
KX
0
Behavior for This Function
R g
[~

Fig. 10. Example of functional design (2).
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which means that the discharger should be switched on. In
this case, while “(discharger sw) = on” was given as an ini-
tial condition by the designer, “(discharger voltage) > zero”
was provided to QPAS. By selecting a candidate derived by
QPAS, the designer added a feature in which a phenomenon
“ElectricityFlowing” occurs on a battery. Moreover, by se-
lecting an extracted function, the system added the function
“to generate voltage” and connected it to the instantiated fea-
ture. The function “to discharge electricity to a drum” is re-
lated to this function by the caused-by relation.

Construction of the behavior network. Next, the de-
signer should construct a physically consistent network of
behavior nodes (called a behavioral network) by connect-
ing instantiated physical features so as to complete the func-
tional hierarchy. This is done by unifying the same entities
in different features.

Behavior simulation and evaluation. After constructing
the behavior network, the qualitative reasoning system ex-
ecutes behavior simulation on the behavior network. The
reasoning system compares the initial FBS model with the
result of simulation and indicates the following informa-
tion. This evaluation supports the designer in the analytical
phase of design at an early stage of design.

Unrealizable phenomena: If physical phenomena desig-
nated by the designer do not occur in the simulated net-
work, some conditions should be inadequate.

[] FBStodeler/Hodifier |
edit node function arrange metamodel FR

X

Y. Umeda et al.

Side-effects: Phenomena that are not expected to occur
may cause side-effects that the designer did not notice.

Unrealizable functions: If functions have unrealizable phe-
nomena in their F-B relationships or unrealizable sub-
functions, they will not be realized.

Figure 11 shows the FBS model of Figure 10 after this
evaluation. The black and hatched nodes indicate unrealiz-
able phenomena and side-effects, respectively, and the black
oval nodes represent unrealizable functions. From this fig-
ure, the designer understands that the required function “to
charge the drum” is not realized when the drum is put in the
light because the drum is photo-semiconductor, and finds
out that he/she should enclose the drum.

Unless satisfied with the result of evaluation, the de-
signer repeatedly refines the function hierarchy and/or the
behavior network.

4. EXPERIMENTAL USE OF THE FBS
MODELER

To evaluate the performance of the FBS Modeler, we asked
three groups of designers to use the modeler. They needed
about a week to learn the modeler.

A group from a construction company used the modeler
for conceptual design of houses. In this experiment, the de-
signers determined the configurations of living rooms, kitch-
ens, bathrooms, and so on by using this modeler. The modeler

Function Layer

thischarye }

generateForceTo(electricalContactPoints
give(bendingPressure)
|| globalLinearHandle(work)
|| increase(pressure)with(valve)
jump(toy)
|| jump(toy)with(battery)
keepBF config(arm)
keepSameConfig(arm)to{work)
keepUDConfig(arm)
linearHandle(work)
|| localLinearHandle(work)
maintain(electricalContactPoints)
make(electricalContactPeints)contact
1| move(arc)
/| move(table)
|| move(table)by(ballscrew)

4]

acdcvoltagegeneration
batteryVoltageGeneration

-[4] »](]

[ ¢l

=[4]

Fig. 11. Example of evaluation.
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helped them to collect and describe functional and behav-
ioral knowledge about rooms and how to configure the rooms
by executing the behavior simulation about air flow, human
movement, noise propagation, and so on.

Other groups from an electronics company represented their
products (arobot arm [see Fig. 12] and a videotape recorder).
In these experiments, the designers focused on collecting func-
tional knowledge and describing basic structure of the prod-
ucts rather than designing new products. The knowledge
representational scheme of the modeler helped them to de-
scribe tacit functions explicitly. The simulation helped to ver-
ify correctness and consistency of described knowledge.

As aresult of this experimental use, the following advan-
tages are identified.

[\] FBSModeler

. edit node function arrange metamodel FR
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1. The FBS Modeler is useful for functional design not
only in the domain of mechanical design but also house
design. This advantage is due to the modeler’s capa-
bility to represent abstract concepts, which could not
be represented with traditional CAD systems in the
form of functions and qualitative physics. They con-
cluded that such knowledge is useful not only for nov-
ice designers but also for experts, because it clarifies
designer’s idea.

. They felt that if enough knowledge and FBS models
of existing products were provided, they could design
new products by referring to models of similar prod-
ucts in the FBS Modeler.
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Fig. 12. The FBS model of a robot arm.
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3. It is important that the user can check side-effects at
the very early stage of design. For example, they
checked air flow to avoid spreading foul odors from
the toilet in the design of house.

4. They considered that representing a group of compo-
nents performing a function as a physical feature is
useful for understanding and reusing design results.

However, the following problems were pointed out.

1. It was difficult to symbolize functions, because func-
tions were ambiguous in nature and the designers were
not educated to do so. In spite of this difficulty, they
felt that symbolization of functions is useful for orga-
nizing and reusing their knowledge.

2. Becauseevenin the early stage of design designers cal-
culate critical quantitative values, the FBS Modeler
would become more industrially relevant, if it could in-
troduce quantitative modelers easily. To solve this prob-
lem, we are developing a framework called a Knowledge
Intensive Engineering Framework (Tomiyama et al.,
1994) that integrates various kinds of modelers includ-
ing geometric modelers, FEM (Finit Element Method)
modelers, and, of course, the FBS Modeler.

3. They wanted to evaluate functions more quantita-
tively to select better solutions from alternatives. We
view that the modifier shown in Table 1 is the key for
such evaluation. For this purpose, we are developing
a quantitative evaluation method called Amount of
Function, which evaluates the FBS models based on
the modifiers (Shimomura et al., 1995).

5. EXAMPLE OF APPLICATION: DESIGN FOR
FUNCTION REDUNDANCY

In this section, we illustrate a design methodology for highly
reliable machines as an application of the functional design
to demonstrate the advantage of the FBS Modeler.

5.1. Function redundancy

Principal strategies of the traditional reliability design meth-
odologies (e.g., Ireson, 1966) are to make each component
more reliable and to add redundancy to the machine. While
there is a certain limit to the former, the latter part redun-
dancy often results in undesirable cost, weight, and com-
plexity of the machine due to additional redundant parts.
We proposed a new idea called function redundancy
(Umeda et al., 1992). Function redundancy is achieved by
using potential functions of existing parts in a slightly dif-
ferent way from the original design. For example, in case of
emergency when the engine stops, a car with a manual trans-
mission can run for a while with its starting motor. This func-
tion redundancy depends on the fact that the starting motor
performs its potential function “to generate driving force”
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instead of the original function “to start the engine” by chang-
ing the power flow of the car. For achieving similar redun-
dancy under the part redundancy strategy, we need to add
another engine to the car.

5.2. Design for function redundancy

Here, we propose design methodology for function redun-
dancy based on the FBS Modeler. The FBS Modeler is use-
ful, because:

1. The FBS Modeler represents functions and many-to-
many correspondent F-B relationships.

2. The FBS Modeler can reason about potential func-
tions by searching through the function and behavior
knowledge bases.

In the FBS Modeler, the function redundancy is modeled
as shown in Figure 13; the target function F,, is decomposed
into subfunctions F, and F_, which are embodied by Behav-
ior nodes (BNodes) 1, 2, 3, and 4 and 5, 6, 7, and 8, respec-
tively, in the normal state. If, for example BNode 5 is lost
by a fault, the subfunction F, and, therefore, the target func-
tion F, are lost. Here, if the prototype of the lost function F,
includes other physical features that can be activated in the
faulty machine, the lost function can be recovered. This is
the function redundancy. In the example in Figure 13, be-
cause the prototype of the lost function F has another phys-
ical feature that consists of BNodes 1, 2, 9, and 10 in its
F-B relationship, the potential function F/ appears by acti-
vating additional phenomena BNodes 9 and 10 and, there-
fore, the target function F,, are recovered.

We have developed a subsystem for function redun-
dancy, called Function Redundancy (FR) Designer (see
Fig. 4). The FR Designer searches for candidates of func-
tion redundancy by the above-mentioned method and eval-

Function Knowledge

Physical Features
Function Name Fc
— b- -
Dec:rrf;p;slltxon Sub-functions LBNo Te0 H BN del]
- e . ——

BNodelOjd BNode2

—

:BNodelf H éBNode3

BNode2 H BNodes HNTRVIRIUHEBRIANIRAS

Fig. 13. Function redundancy in the FBS modeler.
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vates them. The input to this system is an FBS model of a
design object and the output is an FBS model that has func-
tion redundancies. By inputting the FBS model, the design
for function redundancy is executed as follows:

1. Select a target function. The designer selects a target
function to which function redundancy is added.

2. Derive candidates of function redundancy. The sys-
temn generates candidates of function redundancy for
the target function by searching for potential func-
tions in the initial FBS model as described above.

3. Modify design object for function redundancy. After
selecting a candidate, the designer should modify the
design object for activating the required behaviors for
the function redundancy. This modification can be re-
alized in many ways; namely, adding parts, changing
existing parts, changing control sequence programs,
and so on. It is also necessary to add some switching
mechanisms for activating potential functions.

4. Evaluate result. The FR Designer indicates the follow-
ing information for supporting the designer to evalu-
ate the design.

Robustness: The system shows ratio of redundant func-
tions achieved by the FR candidate by comparing the
original functional hierarchy and the modified one.
Here, we assume that redundancy in the functional
level increases the reliability of the design object.

Redundancy: The system shows ratio of added behav-
ior nodes for realizing the function redundancy.
Namely, redundancy in behavior level implies ad-
ditional costs or difficulty for realizing the selected
FR candidate.

Therefore, the designer should modify the design object to
get most Robustness and least Redundancy.

5.3. Example

As an example, we designed a functionally redundant photo-
copier. Figure 14 depicts the original structure of the copier.
The target function is a function “to charge the drum,” which
is performed by the main charger.

Figure 15 depicts the result of the function redundant
design and suggests that the target function “to charge
the drum” can also be performed by the transfer charger,
of which the original function is “to transfer toner to the
output paper.” In Figure 15, black rectangular nodes per-
form the target function “to charge the drum” in the normal
state of the copier. When the target function is lost, a po-
tential function of the transfer charger, which is performed
by the hatched rectangular nodes, can replace the target
function. The hatched function hierarchy represents func-
tion redundancy.

We have developed a prototype copier that has this func-
tion redundancy (Umeda et al., 1992) (see Fig. 16). We only
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Fig. 14. Structure of a copier.

needed to replace a transformer for the transfer charger and
to install an additional control sequence program. If we
wanted to achieve the same performance by part redun-
dancy, we should have needed to add an additional main
charger, a transformer, and so on. This means that function
redundancy allows more fault tolerance with a much smaller
number of additional parts.

6. DISCUSSIONS AND RELATED WORKS

The main focus of the FBS Modeler is to support functional
design not only in the analytical phase but also in the syn-
thetic phase. We consider that the difference between ana-
lytical tasks (e.g., diagnosis [Abu-Hanna et al., 1991;
Bradshaw & Young, 1991] and design verification [Iwasaki
etal., 1993]) and synthetic tasks (e.g., design [Franke, 1991;
Welch & Dixon, 1992]) is critical. While an analytical task is
a process that transforms structural description into func-
tional description understandably for the user, a synthetic task
is a process that transforms functional description represent-
ing the user’s intention into structural description. For sup-
porting the synthetic phase of design, the FBS Modeler has
two advantages; namely, its knowledge representation and the
subsystem QPAS. Concerning the former, besides the map-
ping between functions and behaviors, which is common for
existing function reasoning tools (e.g., Iwasaki et al., 1993),
the FBS Modeler has two additional kinds of knowledge:

o the functional decomposition knowledge used for con-
structing functional description of design objects, and

 physical features used for generating behavior and struc-
ture of design objects that can perform functions. Es-
pecially, in mechanical domain, the physical feature is
a more appropriate building block of behavior than the
component that is often used as the building block in
traditional representation, because, as Faltings (1987)
pointed out, a function in mechanical domain corre-
sponds to an interaction among some components rather
than a component.
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Fig. 15. Screen hardcopy of the FR designer.

We view that these two kinds of knowledge are indispens-
able for supporting the designer to create new design ob-
jects by selecting and combining them. Because the QPAS
system assists the designer to find out new combinations of
physical features, this system is also useful for creative de-
sign. The design for function redundancy described in Sec-
tion 5 is an example of such creative design with the FBS

Repaired with FR

Normal Image

Faulty Image

Fig. 16. The result of repair execution.
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Modeler, which could not be supported by the traditional
CAD systems because function plays the crucial role in this
design. Designers’ comments described in Section 4 were
also positive for this ability of the FBS Modeler to support
creative design.

The classification of the functional decomposition clari-
fies the difference between the required functions and the
functions for explanation. In other words, while the task-
decomposed functional hierarchy can be considered as a de-
scription of the designer’s intention, the extracted functions
by the causal decomposition can be considered as addi-
tional functions for explaining the mechanism to realize the
designer’s intention.

One of the limitations of our approach is that, presently, the
FBS Modeler deals with behaviors corresponding only to the
undecomposable level of the function hierarchy. Allemang and
Liver (1994) proposed the idea of horseshoe constraint as the
behavioral descriptions of abstract functions.
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Keuneke (1991) categorized four function types; namely,
ToMake, ToMaintain, ToPrevent, and ToControl, while we
do not. Iwasaki et al. (1993) represented behavioral functions
based on causality among state transitions. This approach
is similar to ours with different knowledge representation
and less emphasis on design. Bracewell et al. (1995) pro-
posed an integrated CAD tool in which functions are em-
bodied as bond graphs. This approach is effective for the
domain where design objects can be represented well with
the bond graphs. Welch and Dixon (1992) also proposed a
bond graph based functional representation. Our approach
agrees with Keuneke’s approach in that functional structure
does not always correspond to physical structure, while some
others (e.g., Pahl & Beitz, 1988; and Bradshaw & Young,
1991) assume so. We further demonstrate the importance of
this with the function redundancy in Section 5.

Function redundancy is a reverse operation of the func-
tion sharing (Ulrich & Seering, 1988) to obtain higher re-
liability. Comparing the design for function redundancy with
Suh’s axiomatic design (Suh, 1990), the design for function
redundancy does not fit to the independence axiom. This is
because the design for function redundancy focuses on ro-
bustness against faults of the design object, while the axi-
omatic design focuses on the traditional performance.

7. CONCLUSIONS

In this paper, we have proposed the FBS Modeler, which sup-
ports designers not only in the analytical phase of conceptual
design but also in the synthetic phase. The functional decom-
position knowledge and the physical feature in the knowl-
edge representation of the modeler and the QPAS enable the
modeler to support the synthetic phase. We have confirmed
the advantages of the FBS Modeler with experimental use of
the modeler by designers and demonstrated the usefulness of
our approach with the design of functional redundancy.
Future work includes:

o Verifying applicability of the FBS Modeler to actual
design.

¢ Supporting quantitative functional evaluation and mod-
ification of design objects based on this evaluation. We
are developing a quantitative evaluation method of func-
tion called Amount of Function, which uses the modifi-
ers of function symbols and a design process model called
Functional Evolution Model (Shimomura et al., 1995).
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