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Abstract

Parallel reduction is a major component of parallel programming and widely used for summarisation
and aggregation. It is not well understood, however, what sorts of non-trivial summarisations can
be implemented as parallel reductions. This paper develops a calculus named λas, a simply typed
lambda calculus with algebraic simplification. This calculus provides a foundation for studying a
parallelisation of complex reductions by equational reasoning. Its key feature is δ abstraction. A
δ abstraction is observationally equivalent to the standard λ abstraction, but its body is simplified
before the arrival of its arguments using algebraic properties such as associativity and commutativ-
ity. In addition, the type system of λas guarantees that simplifications due to δ abstractions do not
lead to serious overheads. The usefulness of λas is demonstrated on examples of developing com-
plex parallel reductions, including those containing more than one reduction operator, loops with
conditional jumps, prefix sum patterns and even tree manipulations.

1 Introduction

Functional programming is commonly regarded as a promising approach in parallel
programming. A major reason is the freedom of side effects, enabling evaluation of inde-
pendent subexpressions in parallel. For example, in the following recursive Fibonacci
function:

fib n = if n ≤ 1 then 1 else fib (n − 1) + fib (n − 2)

it is syntactically clear that the two recursive calls, fib (n − 1) and fib (n − 2), can be simul-
taneously evaluated. For this reason, functional programming makes parallel programming
easy and intuitive.

Another benefit of using functional programs in parallel programming is equational rea-
soning, which helps certify the correctness of parallel implementations. As an example,
consider the following parallel implementation of the fib function in Haskell:

fib n = if n ≤ 1 then 1 else par x (pseq y (x + y))
where x = fib (n − 1)

y = fib (n − 2)
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2 A. Morihata

In this program, par requests the evaluation of its first argument, x, in parallel to that of
its second argument, and pseq forces the evaluation of its first argument, y, before the
evaluation of its second argument. The correctness of this implementation immediately
follows from the observational equalities of par and pseq:

par a b = b
pseq a b = b (unless a is undefined)

Such equational reasoning is useful for not only certification but also for the develop-
ment of parallel implementations. For example, consider the following usual summation
function, sum:

sum [ ] = 0
sum (a : x) = a + sum x

Although this function does not appear to contain independent subexpressions, equational
reasoning reveals its potential for parallel evaluation:

sum (a : b : x)
= { unfolding the definition of sum }

a + (b + sum x)
= { associativity of + }

(a + b) + sum x
= { folding the definition of sum }

sum [a, b] + sum x

It is not difficult to generalise the observation above to sum (l ++ r) = sum l + sum r, where
++ denotes a list concatenation operator. That is, sum can process the elements of the first
half, l, and the remaining elements, r, in parallel.

Such parallel summation, sum, is an instance of parallel reduction, also known as par-
allel summarisation or aggregation. Parallel reductions are used for calculating the total,
maximum, average, and other results for huge data. Parallel reductions appear everywhere
in real programs and are thus supported by most modern parallel programming environ-
ments, including MPI,1 OpenMP,2 Intel Threading Building Blocks,3 MapReduce (Dean
& Ghemawat, 2004), Cilk++ (Frigo et al., 2009), Manticore (Fluet et al., 2008), Repa
(REgular PArallel arrays) for Haskell (Keller et al., 2010) and Futhark (Henriksen et al.,
2017).

Despite the importance and usefulness of parallel reductions, the current support for
them is not satisfactory. Existing parallel programming environments support only specific
patterns of parallel reductions, typically loops (or singly recursive function) specified by
using an associative operator. To see the problem, consider the following poly function,
which calculates the value of a polynomial represented by a list of coefficients. Its formal
definition is shown in Figure 1(a):

poly x [a0, a1, . . . , an] = a0 + a1x + · · · + anxn

1 http://mpi-forum.org/.
2 http://openmp.org/wp/.
3 https://www.threadingbuildingblocks.org/.
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Lambda calculus with algebraic simplification for reduction parallelisation 3

poly x [ ] = 0
poly x (a : y) = a + x × poly x y
(a) Polynomial computation

sumB1 e [ ] = e
sumB1 e (a : x) = if a < 0 then e

else sumB1 (e + a) x
(b) Summation with break

psum [ ] e = [ ]
psum (a : x) e = e : (psum x (e + a))
(c) Prefix sum

rd (Assign v e) y = (remove v y) ∪ {(v, e)}
rd (Seq s1 s2) y = rd s2 (rd s1 y)
rd (If e s1 s2) y = rd s1 y ∪ rd s2 y
rd (While e s) y = y ∪ rd s y

(d) Reaching definition analysis

Fig. 1. Examples of non-trivial reductions. (a) Polynomial computation. (b) Summation with break.
(c) Prefix sum. (d) Reaching definition analysis.

Although poly is a modest generalisation of sum (note that poly 1 = sum), it does not fit
the parallel reduction pattern supported by existing environments because it involves more
than one operator (namely, addition and multiplication). In fact, it does not have an imme-
diate divide-and-conquer implementation: there is no operator ⊕ that satisfies poly x (l ++
r) = poly x l ⊕ poly x r. Therefore, its parallel implementation is non-trivial. A known par-
allel implementation uses the powers of x in addition to the value of poly. More formally,
the parallel implementation is specified by the following pl x y = (poly x y, xlength y):

pl x (l ++ r) = let (lp, lx) = pl x l

(rp, rx) = pl x r

in (lp + lx × rp, lx × rx)

This parallel implementation appears very different from the original poly function.
We hope for parallel programming environments to support a wide variety of non-trivial

reductions that real programs contain, including those with more than one operator like
poly, those using control operators such as break (Figure 1(b)), those with prefix sum
patterns that calculate not only the summary but also all intermediate results (Figure 1(c))
and those traversing non-linear structures such as trees (Figure 1(d)). Although there have
been many studies on systematically developing parallel reductions (Fisher & Ghuloum,
1994; Suganuma et al., 1996; Hu et al., 1997, 1998; Chin et al., 1998; Gorlatch, 1999; Xu
et al., 2004; Matsuzaki et al., 2005, 2006; Deitz et al., 2006; Morita et al., 2007; Morihata
et al., 2009; Morihata & Matsuzaki, 2010; Emoto et al., 2010; Morihata & Matsuzaki,
2011; Sato & Iwasaki, 2011; Chi & Mu, 2011; Emoto et al., 2012; Raychev et al., 2015;
Fedyukovich et al., 2017; Farzan & Nicolet, 2017; Jiang et al., 2018; Farzan & Nicolet,
2019), those studies consider only specific forms of reductions, and none of them can
uniformly deal with all the kinds of reductions shown in Figure 1.

This paper introduces a calculus named λas , a simply typed lambda calculus with alge-
braic simplification. It is designed to provide a foundation for systematically developing
a variety of parallel reductions based on equational reasoning. The central idea is to
regard a parallel reduction as a simplification of functions using algebraic properties such
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4 A. Morihata

as associativity and commutativity. For example, consider calculating sum [a0, . . . , an].
The sequential evaluation essentially corresponds to the following expression:

a0 + (· · · (an−1 + (an + 0)) · · · )

This is not suitable for parallel evaluation because no independent subexpressions exist. It
can be divided into a function and an argument, however, by inserting a lambda abstraction.
Then, effective parallel evaluation is possible if the function part can be evaluated during
evaluation of the argument. For this example, the function part can be simplified using the
associativity of (+):

a0 + (· · · (an−1 + (an + 0)) · · · )
= { inserting a lambda abstraction }

(λx. a0 + (· · · (ak−1 + (ak + x)) · · · )) (ak+1 + (· · · (an−1 + (an + 0))) · · · )
⇒ { parallel evaluation }

(λx. ak
0 + x) an

k+1 where ak
0 = ∑

0≤i≤k ai and an
k+1 = ∑

k+1≤i≤n ai

This understanding of parallel reduction is not new. It has been used for developing parallel
reduction loops (Callahan, 1992; Fisher & Ghuloum, 1994; Sato & Iwasaki, 2011; Raychev
et al., 2015; Farzan & Nicolet, 2017; Jiang et al., 2018), parallel list/tree reductions (Hu
et al., 1998; Chin et al., 1998; Xu et al., 2004; Matsuzaki et al., 2005, 2006; Morihata
& Matsuzaki, 2010) and parallel querying on semi-structured databases (Buneman et al.,
2006; Cong et al., 2007, 2012). Here, λas integrates this idea into lambda calculi.

λas is a simply typed lambda calculus extended with a special abstraction syntax,
namely, δ abstraction. In λas, a lambda-abstracted term, λx. e, is a value; in other words,
the body e is not evaluated until its argument is passed. A δ-abstracted term, δx. e, is not a
value, however, and its body e is simplified using algebraic properties before the arrival
of its argument. For example,

δx. x + 2 × x

is not a value and is thus immediately evaluated to:

λx. 3 × x

Note that this evaluation may be performed at the same time as the evaluation of the
argument. For instance,

(δx. x + 2 × x) (2 + 5)

has potential for parallel evaluation, as the following evaluation process shows

(δx. x + 2 × x) (2 + 5)
⇒ (λx. 3 × x) 7 (parallel evaluation)
→ 3 × 7
→ 21

It is non-trivial to provide a good strategy for simplifying complex expressions. For
example, δx1. δx2. 8 × ((−1) × x1 + x2) + 5 × (x1 × 3 + x2 × (−2)) can be simplified to
λx1. λx2. 7 × x1 − 2 × x2 by distributing × over +, whereas δx. x3 + 3 × x2 + 3 × x + 1
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Lambda calculus with algebraic simplification for reduction parallelisation 5

can be simplified to λx. (x + 1)3 by factorisation. Even worse, an inappropriate simplifica-
tion strategy may significantly decrease efficiency. For instance,

δx1.δx2. · · · δxn. (1 + x1) × (1 + x2) × · · · × (1 + xn)

may be ‘simplified’, by distributing × over +, to an exponentially large expression:

λx1.λx2. · · · λxn. 1 + x1 + · · · + xn + x1 × x2 + x1 × x3 + · · · + x1 × x2 × · · · × xn

To provide a simple and effective simplification strategy, λas requires that simplifica-
tions must result in linear polynomials.4 For example, δx. δy. x × y gets stuck because its
body contains a product of x and y. This linearity requirement is somewhat restrictive but
beneficial from several aspects. First, simplifications can be easily achieved by distribut-
ing × over + and then merging terms that have a common variable. Second, the result of
the simplification is commonly small because the size of a linear polynomial is at most
proportional to the number of variables. Third, several studies (Xu et al., 2004; Matsuzaki
et al., 2006; Emoto et al., 2010; Sato & Iwasaki, 2011; Emoto et al., 2012) pointed out that
linear polynomials are expressive enough to capture a wide variety of parallel reductions.
Therefore, the linearity requirement can be regarded as a guideline for developing efficient
parallel reductions by introducing δ abstractions. To support such development, λas has a
type system that checks the linearity requirement.

Formalising a new lambda calculus, λas , should be an important step in developing
a powerful reduction parallelisation method for practical programming languages. The
existing studies on parallel reduction suggest the following hypothesis: parallel reductions
rely on the algebraic properties and simplifications of the operators used, and are nearly
independent of control structures or programming patterns. If this hypothesis is correct, it
could be a valuable clue to a uniform approach for dealing with various language features
and programming patterns used in practical programs. Typed lambda calculi are perfectly
suitable for confirming this hypothesis: control structures can be encoded by higher-
order expressions, whereas operators (for base-type values) are clearly distinguished from
higher-order features.

This paper contains the following three major contributions:

• Systematic development of a wide variety of parallel reductions using λas

(Section 2): the paper discusses reduction patterns including all examples in
Figure 1, and others, as well.

• Design of λas, a lambda calculus with algebraic simplification (Section 3): the type
system of λas guarantees progress, that is, the effectiveness of simplifications. Its
operational semantics shows that any typed λas term is observationally equivalent
to the corresponding term of the simply typed lambda calculus.

• Extensive studies for strengthening λas (Section 4): in particular, the paper discusses
the possibilities of combining λas with the fixed-point operator, algebraic structures
other than a commutative semiring and control operators.

This paper extends the preliminary report (Morihata, 2019). In particular, Sections 2.4,
4.2, and 4.5, Theorem 1, Corollary 6, and Example 9 are new.

4 This paper specifically uses the term ‘linear’ to refer to the linearity of polynomials, and not to the ‘single-use’
of variables.
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6 A. Morihata

foldr f e [ ] = e
foldr f e (a : x) = f a (foldr f x)

foldl f e [ ] = e
foldl f e (a : x) = foldl ( f e a) x

Fig. 2. Definitions of standard functions.

2 Developing complex parallel reductions by λas

This section informally introduces λas and demonstrates its effectiveness through exam-
ples. Figure 2 lists standard functions used in this section. Later, Section 3 develops the
formalism.

2.1 Flavour of λas

The following is the syntax of λas. The type, τ , is the same as that of the simply typed
lambda calculus.

e ::= x | λxτ . e | e e | c | e ⊕ e | e ⊗ e | δxR. e | · · ·

λas extends the simply typed lambda calculus via the semiring operators, ⊕ and ⊗, on the
carrier set R (c ∈ R), and a δ abstraction, δxR. e. Other features, such as conditionals,
algebraic datatypes, and recursion, can be added if they are consistent with lambda calculi
and do not manipulate semiring values of type R. In the following, such additional features
are used where necessary and expressed by the syntax of Haskell.

A semiring abstracts the cooperation of two related operations such as addition and
multiplication. For the time being, we consider the (commutative) semiring of addition
and multiplication on integers, that is, (⊕) = (+), (⊗) = ×, and R =Z. Other semirings
are introduced as needed.

The operational semantics of λas is the standard call-by-value reduction except for
δ abstractions. On one hand, a δ abstraction is observationally equivalent to a lambda
abstraction, that is, δxZ. e ≡ λxZ. e. Here, two terms are said to be observationally equiva-
lent if they will be reduced to the same value for any surrounding context of the base type.
On the other hand, the body of a δ abstraction, namely e in δxZ. e, is evaluated before the
argument, x, is specified. The δ-abstracted variable should have the semiring type, R. The
type annotations for variables may be omitted if they are apparent from the context.

For example, as discussed in the introduction, for the following term:

(δx. x + 2 × x) (2 + 5)

the function and argument can be evaluated in parallel. In the following, → denotes
a reduction step (or possibly a series of them) and ⇒ is used instead to emphasise
possibilities for parallel evaluations:

(δx. x + 2 × x) (2 + 5)
⇒ (λx. 3 × x) 7
→ 3 × 7
→ 21
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Lambda calculus with algebraic simplification for reduction parallelisation 7

For simplifying the function part without knowing the value of the argument, an evaluation
of λas involves variables that are not bound to values yet. We call such variables indeter-
minates. λas simplifies polynomials over indeterminates using the algebraic properties of
the semiring.

So long as a δ abstraction is not involved, the evaluation is carried out as the usual
call-by-value reduction. For example,

λy. (δx. x + 2 × x)

is not evaluated any further unless the argument is passed, whereas

δy. (δx. x + 2 × x)

is not a value and is evaluated to

λy. (λx. 3 × x)

For providing a simple and effective simplification strategy for polynomials, λas

requires that an evaluation inside a δ abstraction must result in a linear polynomial over
indeterminates. For example,

δx. δy. x × y

gets stuck because the body is non-linear: it involves a multiplication of indeterminates, x
and y.

Note that the linearity is not a syntactic but semantic requirement. For example,

λx. δy. x × y

does not get stuck if a constant (i.e., a value that contains no indeterminate) is supplied as
the argument; however, it does get stuck if the argument contains indeterminates.

λas is associated with a type system that guarantees progress of computation. In other
words, the type system of λas rejects terms that may involve a multiplication of inde-
terminates. The rest of this section considers only typeable terms that cause neither
non-termination nor errors.

2.2 Parallel let

Lambda calculi can encode useful programming constructs. For example, the non-
recursive let expression can be defined as follows:

let x1 = e1 x2 = e2 · · · xk = ek in ek+1 ≡ (λx1. λx2. · · · λxk . ek+1) e1 e2 · · · ek

This simultaneously defines x1, . . . , xk , and thus, e1, . . . , ek must not contain any of
x1, . . . , xk . Accordingly, e1, . . . , ek can be evaluated in parallel. This captures the usual
async-finish pattern.

λas is slightly more expressive. For instance, consider the following term:

let x = 3 + 5 in x + x × (7 + 3)
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8 A. Morihata

As x + x × (7 + 3) depends on x, its parallel evaluation appears to be impossible. In λas,
by replacing the first let with plet, defined by:

plet x = e1 in e2 ≡ (δx. e2) e1,

a parallel evaluation becomes possible:

plet x = 3 + 5 in x + x × (7 + 3)

= (δx. x + x × (7 + 3)) (3 + 5)

⇒ (λx. x × 11) 8

→ 88

As seen in this example, the introduction of plet, or equivalently a δ abstraction, enables
parallel evaluation regardless of data dependency. To see the effectiveness of plet, consider
the following sequence of let expressions:

let x0 = a0 in let x1 = a1 + x0 in let · · · in let xn = an + xn−1 in xn

This program cannot gain any parallel speedup even using plet instead of let because each
right-hand side expression cannot be simplified further. Nevertheless, by inserting plet, it
can be transformed into an equivalent program that is more suitable for parallel evaluation:

let x0 = a0 in let x1 = a1 + x0 in let · · · in let xn = an + xn−1 in xn

= plet z = (let x0 = a0 in let x1 = a1 + x0 in let · · · in let xk = ak + xk−1 in xk)
in (let xk+1 = ak+1 + z in let · · · in let xn = an + xn−1 in xn)

≡ (δz. (λxk+1. (λxk+2. (· · · (λxn. xn) · · · )) (ak+2 + xk+1)) (ak+1 + z))
((λx0. (λx1. (· · · (λxk . xk) · · · )) (a1 + x0)) a0)

⇒ (λx. an
k+1 + x) ak

0 where ak
0 = ∑

0≤i≤k ai and an
k+1 = ∑

k+1≤i≤n ai

The introduction of plet thus breaks the data dependency and yields two terms that can be
evaluated in parallel.

2.3 Parallel list reduction

Now let us consider parallel list reductions.

Example 1 (Summation). We start with the simplest example, sum. Given lists l and r, the
goal is to calculate sum (l ++ r) by processing l and r independently. This can be achieved
by inserting a δ abstraction:

sum (l ++ r)
= { let l = [a0, a1, . . . , am] }

a0 + (a1 + (· · · (am + sum r) · · · ))
= { introducing a δ abstraction }

(δx. a0 + (a1 + (· · · (am + x) · · · ))) (sum r)
= { introducing foldr }

(δx. foldr (+) x l) (sum r)
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Lambda calculus with algebraic simplification for reduction parallelisation 9

Since the left-hand side expression contains l ++ r, which is not a pattern, the derived equa-
tion is not a valid function definition in Haskell. Yet, this equational reasoning suggests
an implementation that processes l and r in parallel and guarantees the correctness of the
implementation regardless of the strategy of splitting the given list into two sublists, l and
r. Moreover, the function part, δx. foldr (+) x l, can be effectively simplified to a linear
polynomial of the form of a + x, where a is a constant and x is an indeterminate.

Example 2 (Polynomial Evaluation). The development of parallel sum can be generalised
to several interesting applications. For example, recall the poly function discussed in the
introduction. A calculation similar to the case of sum leads to the following program:

poly x (l ++ r) = (δz. foldr (λa. λy. a + x × y) z l) (poly x r)

The function part can be effectively simplified because its body forms a linear expression.
For example, poly 10 ([2, 1, 3] ++ [5, 9]) is evaluated as follows:

poly 10 ([2, 1, 3] ++ [5, 9])
→ (δz. foldr (λa. λy. a + 10 × y) z [2, 1, 3]) (poly 10 [5, 9])
⇒ (δz. (2 + 10 × (1 + 10 × (3 + 10 × z)))) (5 + 10 × (9 + 10 × 0))
⇒ (λz. 312 + 1, 000 × z) 95
→ 95, 312

Recall that the parallel implementation of poly x discussed in the introduction additionally
uses the powers of x. In the development using λas above, the function part is simplified
to a linear expression that has two coefficients that correspond to the value of poly and the
powers. Therefore, λas enables us to discover the parallel implementation of poly without
using the expert knowledge.

The parallel implementation of poly calculates different kinds of results for l and r.
While the result for l is a linear polynomial that consists of two coefficients, the result
for r contains only one value. This is not problematic. As the following equation shows,
any number of independent sublists can be processed by this implementation, in which ◦
denotes a function composition:

poly x (y0 ++ y1 ++ · · · ++ yn)
= ((δz. poly′

x z y0) ◦ (δz. poly′
x z y1) ◦ · · · ◦ (δz. poly′

x z yn)) (poly x [ ])
where poly′

x e w = foldr (λa. λy. a + x × y) e w

In the above expression, all poly′
x can be evaluated in parallel.

Example 3 (Maximum Prefix Sum). Given a list of numbers, maximum prefix sum (Hu
et al., 1997; Morita et al., 2007) is the problem of finding the largest among the summations
of prefixes of the list. For example, the maximum prefix sum of [5, −2, 1, 6, −7, 3] is
5 + (−2) + 1 + 6 = 10. The function to compute the maximum prefix sum, mps, is defined
as follows, where ↑ is the binary maximum operator:

mps [ ] = 0
mps (a : x) = 0 ↑ (a + mps x)
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10 A. Morihata

Note that ↑ and + forms a semiring on Z∪ {−∞}, where ↑ is the addition and + is
the multiplication. Therefore, exactly the same process as in the case of poly gives the
following parallel implementation of mps:

mps (l ++ r) = (δz. foldr (λa. λy. 0 ↑ (a + y)) z l) (mps r)

2.4 Conditional

Conditional branches often interfere with parallelisations. λas provides a guideline for
parallelising programs with conditionals.

As an example, consider the following sumP, which calculates the summation of all
positive elements:

sumP [ ] = 0
sumP (a : x) = if a > 0 then a + sumP x else sumP x

A reasoning very similar to the case of sum leads to the following divide-and-conquer
implementation:

sumP (l ++ r) = (δx. foldr f x l) (sumP r)
where f a v = if a > 0 then a + v else v

This divide-and-conquer implementation passes the typechecking5 of λas, which means
that the conditional expression is harmless. The comparison operator, <, does not access
polynomials, in particular, the indeterminate generated by the δ abstraction; therefore, the
conditional does not interfere with the algebraic simplification.

Note that this situation is different from that of the following mps′, which is equivalent to
mps discussed in Section 2.3 but uses a conditional branch instead of the binary maximum
operator:

mps′ [ ] = 0
mps′ (a : x) = if a + mps′ x > 0 then a + mps′ x else 0

If we try to derive divide-and-conquer implementation of mps′, the comparison operator,
>, will compare polynomials that may contain indeterminates. This is not allowed because
it is impossible to effectively simplify expressions that contain comparisons between poly-
nomials. Therefore, for parallelising mps′, we should replace the conditional branch by a
semiring operator. Fortunately, in this case, the conditional can be replaced by a binary
maximum operator, which forms a semiring with +. In this way, λas enables us to dis-
tinguish harmful conditionals from harmless ones and thereby provides a guideline for
reduction parallelisation.

5 Strictly speaking, the program is not typeable because each list element, a, is accessed by < and a should
have the semiring type. We can avoid this problem using a function that lifts usual values to semiring values.
For example, using liftZ Z→ R, the recursive case of sumP could be sumP (a : x) = if a > 0 then (liftZ a) +
sumP x else sumP x. For simplicity of presentation, this paper neglects this issue.
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2.5 Loop

As the proposed approach is not specific to foldr, we next consider loops.

Example 4 (Summation by Loop). The first example is sumL, which calculates the
summation by a loop:

sumL = foldl (+) 0

The function can be reasoned as follows:

sumL (l ++ r)

= { definition of sumL }
foldl (+) 0 (l ++ r)

= { let l = [a0, a1, . . . , am] }
foldl (+) (· · · ((0 + a0) + a1) · · · ) + am) r

= { introducing δ abstraction }
(δx. foldl (+) x r) ((· · · ((0 + a0) + a1) · · · ) + am)

= { because l = [a0, a1, . . . , am] }
(δx. foldl (+) x r) (sumL l)

As in the case of sum, the function part and the argument can be evaluated in parallel
because the function part, δx. foldl (+) x r, can be simplified to a linear polynomial of the
form of x + a, where a is a constant and x is an indeterminate.

Because of the associativity and commutativity of the addition, sumL is observationally
equivalent to sum. Though this equivalence enables us to parallelise sumL, we did not use
it because the use of case-specific properties makes the reasoning less scalable. Next, we
will demonstrate that the same approach can deal with a more complicated example with
jumps.

Example 5 (Loop with Jump). Consider sumB1 in Figure 1(b), which sums up all elements
until encountering a negative element. This is a typical example of a loop with a break
statement. The presence of the break causes the computation result to depend on the order
of the elements. Nevertheless, its parallelisation is possible:

sumB1 e (l ++ r)

= { suppose l = [a0, a1] }
if a0 < 0 then e else if a1 < 0 then e + a0 else sumB1 ((e + a0) + a1) r

= { introducing abstractions }
(λf . if a0 < 0 then e else if a1 < 0 then e + a0 else f ((e + a0) + a1)) (δx. sumB1 x r)

The equational reasoning above derives a term in which the left sublist, l, and the right
sublist, r, are contained in independent subexpressions. Unfortunately, the function part
cannot be simplified because it uses not a δ abstraction but a lambda abstraction; moreover,
because the abstraction binds a function, it cannot be replaced by a δ abstraction. In fact,
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12 A. Morihata

however, this problem is not essential. The lambda-abstracted function, f , is used last;
therefore, it is sufficient to take the function after finishing list processing:

sumB1 e (l ++ r)

= { suppose l = [a0, a1]; reasoning above }
(λf . if a0 < 0 then e else if a1 < 0 then e + a0 else f ((e + a0) + a1)) (δx. sumB1 x r)

= { distribute lambda abstraction to conditional branches }
(if a0 < 0 then λf . e else if a1 < 0 then λf . e + a0 else λf . f ((e + a0) + a1))

(δx. sumB1 x r)

= { introducing sumB1′ defined below }
(sumB1′ e l) (δx. sumB1 x r)

Then, the left sublist is processed by the following sumB1′ during processing of the right
sublist:

sumB1′ e [ ] = λf . e

sumB1′ e (a : x) = if a < 0 then λf . e else sumB1′ (e + a) x

This parallel implementation works correctly, as the following example shows

sumB1 0 [3, 1, −5, 4, 2, −3, 7, 1]

→ (sumB1′ 0 [3, 1, −5, 4]) (δx. sumB1 x [2, −3, 7, 1])

⇒ (λf . 4) (λx. x + 2)

→ 4

We should distinguish the case of sumB1 from the following case of sumB2, in which
the computation terminates if the calculated value becomes negative:

sumB2 e [ ] = e

sumB2 e (a : x) = if e < 0 then e else sumB2 (e + a) x

As in the case of mps′, λas does not allow this program because the semiring value stored
in e cannot be manipulated by <. Moreover, the conditional branch can be replaced by
neither the maximum nor minimum operator. In fact, sumB2 cannot be parallelised by a
simple divide-and-conquer approach as in the case of sumB1.

2.6 Prefix sum

Prefix sums, also known as scans (Ladner & Fischer, 1980; Blelloch, 1993), are also
important idiomatic patterns in parallel programming. Prefix sums are somewhat similar
to reductions but record all the intermediate results of a reduction. The function psum in
Figure 1(c) is a typical example:

psum [a0, a1, . . . , an] e = [e, e + a0, e + a0 + a1, . . . , e + a0 + a1 + · · · + an−1]
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The following equational reasoning leads to a parallel implementation:6

psum (l ++ r) e

= { let l = [a0, a1, . . . , am] }
e : (e + a0) : · · · : (e + a0 + · · · + am−1) : psum r (e + a0 + · · · + am)

= { definition of psum and sumL }
psum l e ++ psum r (sumL e l)

= { introducing a δ abstraction }
psum (l ++ r) e = psum l e ++ (δe. psum r e) (sumL e l)

Note that the final step, introducing a δ abstraction, is essential. The δ abstraction breaks
the dependency from the computation for l (i.e., sumL e l) to the computation for r (i.e.,
psum r). This parallel implementation works well:

psum [3, 1, 7, 5, 2, 6, 9, 4] 0

→ psum [3, 1] 0 ++ (δe. psum [7, 5, 2, 6, 9, 4] e) (sumL 0 [3, 1])

→ psum [3, 1] 0 ++
(δe. psum [7, 5] e ++ (δe. psum [2, 6, 9, 4] e) (sumL [7, 5] e)) (sumL 0 [3, 1])

→ psum [3, 1] 0 ++
(δe. psum [7, 5] e ++ (δe. psum [2, 6] e ++ δe. psum [9, 4] e) (sumL [2, 6] e))

(δe. psum [7, 5] e ++ (sumL [7, 5] e)) (sumL 0 [3, 1])

⇒ [0, 3] ++ (λe. [e, e + 7] ++ (δe. [e, e + 2] ++ (δe. [e, e + 9]) (e + 8)) (e + 12)) 4

→ [0, 3] ++ [4, 4 + 7] ++ [16, 16 + 2] ++ [24, 24 + 9]

⇒ [0, 3] ++ [4, 11] ++ [16, 18] ++ [24, 33]

The implementation consists of three major steps. First, prefix sum computation is applied
to every sublist. At the same time, the total sum of each sublist is calculated. Then, the total
sum is propagated globally by resolving the lambda abstraction. Finally, the propagated
values are supplied to each element, resulting in the final output.

There is another known parallel prefix sum algorithm, which delays the prefix sum com-
putation until the total sum is propagated. This algorithm can be expressed by the following
program:

psum (l ++ r) = let s = δe. sumL e l

r′ = δe. psum r e

in λe. psum l e ++ r′ (s e)

It is fairly easy to check that this implementation is observationally equivalent to the
previous one. Once we regard δ abstractions as λ abstractions, standard reasoning on a
lambda calculus shows their equivalence:

6 Strictly speaking, the derived program violates a restriction of λas by applying a non-semiring operator (in this
case, the list constructor) to δ abstracted values. This is not problematic, as we will later discuss in Section 4.3.
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14 A. Morihata

psum (l ++ r)

= { the first parallel implementation }
λe. psum l e ++ (δe. psum r e) (sumL e l)

= { introducing δ abstraction }
λe. psum l e ++ (δe. psum r e) ((δe. sumL e l) e)

= { introducing let }
λe. (let s = δe. sumL e l r′ = δe. psum r e in psum l e ++ r′ (s e))

= { swapping let and the outermost λ abstraction }
let s = δe. sumL e l r′ = δe. psum r e in λe. psum l e ++ r′ (s e)

Nevertheless, this implementation shows a different behaviour from that of the previous
one:

psum [3, 1, 7, 5, 2, 6, 9, 4] 0

→ (let s = δe. sumL e [3, 1] r′ = δe. psum [7, 5, 2, 6, 9, 4] e

in λe. psum [3, 1] 0 ++ r′ (s e)) 0

→ (let s = δe. sumL e [3, 1]

r′ = δe. (let s = δe. sumL e [7, 5]

r′ = δe. (let s = δe. sumL e [2, 6] r′ = δe. psum [9, 4] e

in λe. psum [2, 6] e ++ r′ (s e)) e

in λe. psum [7, 5] e ++ r′ (s e)) e

in λe. psum [3, 1] e ++ r′ (s e)) 0

⇒ (λe. psum [3, 1] e ++
(λe. psum [7, 5] e ++

(λe. psum [2, 6] e ++
(λe. [e, e + 9]) ((λe. e + 8) e)) ((λe. e + 12) e)) ((λe. e + 4) e)) 0

→ psum [3, 1] 0 ++ psum [7, 5] 4 ++ psum [2, 6] 16 ++ (λe. [e, e + 9]) 24

⇒ [0, 3] ++ [4, 11] ++ [16, 18] ++ [24, 33]

Although rather complicated, this implementation also consists of three major steps. First,
the summation is calculated for every sublist. Then, the calculated value is propagated
globally by resolving the lambda abstraction. Finally, prefix sum computation is applied to
each sublist.

The development for psum is not specific to summation. The same can be applied to
any computation that records the intermediate results of a reduction expressed by a lin-
ear expression over a semiring. For example, similar algorithms can calculate all partial
summations of a power series.

The discussions to this point demonstrate typical use scenarios for λas. Several par-
allel implementations of reduction-related computations are developed by introducing
δ abstractions, and their correctness easily is checked by equational reasoning. In this
way, λas supports reduction parallelisation rather than providing parallel reductions as
a primitive parallel computation pattern.
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2.7 Beyond list processing

Existing reduction parallelisation methods mainly consider list/array processing. By virtue
of the expressiveness of λas, it can also deal with programs that process data structures
other than lists.

Example 6 (Bottom-Up Tree Processing). It appears straightforward to evaluate bottom-
up tree processing in parallel. For example, the following sumTree can process independent
subtrees in parallel:

sumTree (Nd n l r) = n + sumTree l + sumTree r
sumTree (Lf n) = n

This kind of bottom-up approach has been commonly used for parallel tree processing.
While it is suitable for processing balanced trees, it cannot achieve sufficient parallel
speedup if the input is a list-like tall tree. This limitation is not insignificant because
practical tree structures, such as XML data and syntax trees, are very often list-like.

λas enables a bold approach. Given a tree t, consider dividing t in the middle such that
t = c[t′], where t′ is a subtree of t, c is a tree context that has a unique ‘hole’ denoted by •
and c[t′] denotes the tree obtained by substituting t′ for the hole in c. The goal is to develop
a function sum′

Tree that satisfies the following equation:

sumTree (c[t′]) = (δx. sum′
Tree c x) (sumTree t′)

Equational reasoning easily leads to the definition of sum′
Tree. In the following, we use

c[•] instead of c to express that c is not a tree but a context:

sum′
Tree c x

= { the characteristic equation above }
sumTree (c[t′]) where x = sumTree t′

= { suppose c[t′] = t′ (i.e., c = •) }
sumTree t′ where x = sumTree t′

= { definition of x }
x

sum′
Tree c x

= { the characteristic equation above }
sumTree (c[t′]) where x = sumTree t′

= { suppose c[t′] = Nd n (l[t′]) r }
n + sumTree (l[t′]) + sumTree r where x = sumTree t′

= { induction }
n + sum′

Tree l x + sumTree r

The case of c[t′] = Nd n l r([t′]) is similar. In summary, the following definition is obtained:

sum′
Tree • x = x

sum′
Tree (Nd n (l[•]) r) x = n + sum′

Tree (l[•]) x + sumTree r
sum′

Tree (Nd n l (r[•])) x = n + sumTree l + sum′
Tree (r[•]) x

https://doi.org/10.1017/S0956796821000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000058


16 A. Morihata

Because the computation of sum′
Tree consists of additions, (δx. sum′

Tree c x) can be computed
independently with sumTree t′.

The definition of sum′
Tree shows the possibility of processing independent subtrees in

parallel, and subtrees can be recursively divided. Moreover, as the following reasoning
shows, even contexts can be recursively divided. Accordingly, this approach of dividing a
tree into a context and a subtree can lead to substructures of similar sizes, thereby providing
a good load balancing even for list-like trees:

sum′
Tree (c1[c2[•]]) x

= { the characteristic equation }
sumTree (c1(c2[t′])) where x = sumTree t′

= { the characteristic equation }
sum′

Tree c1 x′ where x′ = sumTree (c2[t′])
= { the characteristic equation }

sum′
Tree c1 x′ where x′ = sum′

Tree c2 x

= { introducing δ abstraction }
(δz. sum′

Tree c1 z) (sum′
Tree c2 x)

Note on tree division strategy

The approach, namely dividing a tree into a subtree and a context, is influenced by the
theory of parallel tree contraction (Reid-Miller et al., 1993; Morihata et al., 2009; Morihata
& Matsuzaki, 2011) that enables efficient parallel tree reduction regardless of the tree
shape. It is a generalisation of the divide-and-conquer approach for parallel list processing.
If x is a list, then x = c[x′] is equivalent to x = c ++ x′. Besides, the approach subsumes the
bottom-up tree processing, which divides Nd n l r into Nd n [•] r and l.

As similar to the case of parallel list processing, the equations about sumTree devel-
oped so far do not correspond to valid function definitions in Haskell. Instead, they show
the correctness of any parallel tree reduction in which each task corresponds to a subtree
or (one-hole) context. In other words, they correspond to several concrete implementa-
tions, including the reduction to parallel list processing (Reid-Miller et al., 1993) and
transformation to balanced tree processing (Morihata & Matsuzaki, 2011).

The approach is somewhat similar to lazy tree splitting (Bergstrom et al., 2012) that gen-
erates tasks in a by-need manner during tree traversal expressed by Huet’s zippers (Huet,
1997). However, each task generated by lazy tree splitting corresponds to a subtree, and
hence, the lazy tree splitting approach cannot achieve sufficient parallel speed-up for
list-like trees.

Example 7 (Complex Tree Processing with Accumulations). The next example is a more
complex case of tree processing: rd shown in Figure 1(d). The program expresses a reach-
ing definition analysis of a simple imperative program. Assign v e, Seq s1 s2, If e s1 s2

and while e s, respectively, denote an assignment statement like v := e, a sequential state-
ment like s1; s2, a conditional statement like if (e) s1 else s2 and a loop statement like
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while (e) s. The function remove v y removes definitions of variable v from the set of
definitions, y.

The program of rd appears unsuitable to parallel processing. In the case of Seq, a compu-
tation of a subtree depends on the result of another subtree via an accumulation parameter.
In λas, however, the dependency can be broken by introducing δ abstraction:

rd (Seq s1 s2) y = (δy. rd s2 y) (rd s1 y).

Therefore, the dependency is not problematic if the computation of rd involves only
semiring operators. Consider a semiring whose carriers are bit vectors such that each bit
corresponds to a variable in the program and whose operators are the bitwise logical OR
operator ∨ and the bitwise logical AND operator ∧. Then, the computation of rd can be
expressed via a semiring: ∪ and remove v y can be regarded as ∨ and ¬v ∧ y, respectively,
where ¬v is a bit vector with each bit set to 1 except for the bit corresponding to v. We
regard ∨ and ∧ as the addition and multiplication, respectively; then, rd does not involve
a non-linear multiplication because a left operand of a multiplication is always a constant,
¬v. In summary, the introduction of δ abstraction is safe and leads to parallel evaluation
of rd.

As in the case of sumTree, dividing a syntax tree into a context and a subtree may improve
load balancing. The situation here is more difficult, however, than the case of sumTree.
Given a tree c[t], the accumulation parameter for processing t depends on c[•]; therefore,
the computations of c[•] and t are mutually dependent. To resolve the dependency, we
require the computation for c[•] to return two values: an accumulation parameter y′ passed
to t, and a function fc that takes the result of t:

rd (c[t]) y = let ( fc, y′) = rd′ c y ft = δy. rd t y in fc ( ft y′)

We can develop the definition of rd′ by equational reasoning. The objective is to find fc
and y′ such that rd (c[t]) y = fc (rd t y′):

rd (c[t]) y

= { suppose c[t] = Seq (s1[t]) s2 }
rd s2 (rd (s1[t]) y)

= { induction }
let ( fc, y′) = rd′ s1 y in rd s2 ( fc (rd t y′))

= { introducing δ abstraction }
let ( fc, y′) = rd′ s1 y in (δz. rd s2 z) ( fc (rd t y′))

= { introducing let }
let ( fc, y′) = rd′ s1 y ft = δz. rd s2 z in ft ( fc (rd t y′))

The reasoning to this point leads to the following equation:

rd′ (Seq (s1[•]) s2) y = let ( fc, y′) = rd′ (s1[•]) y ft = δz. rd s2 z in (δz. ft ( fc z), y′)

https://doi.org/10.1017/S0956796821000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000058


18 A. Morihata

The other cases can be similarly dealt with. The result is the following:

rd′ • y = (λz. z, y)
rd′ (Seq (s1[•]) s2) y = let ( fc, y′) = rd′ (s1[•]) y ft = δz. rd s2 z in (δz. ft ( fc z), y′)
rd′ (Seq s1 (s2[•])) y = (δz. rd′ (s2[•]) z) (rd s1 y)
rd′ (If e (s1[•]) s2) y = let ( fc, y′) = rd′ (s1[•]) y y′′ = rd s2 y in (δz. fc z ∪ y′′, y′)
rd′ (If e s1 (s2[•])) y = let y′ = rd s1 y ( fc, y′′) = rd′ (s2[•]) y in (δz. y′ ∪ fc z, y′′)
rd′ (While e (s[•])) y = let ( fc, y′) = rd′ (s[•]) y in (δz. y ∪ fc z, y′)

It is not easy to understand the behavior of this implementation. Nevertheless, the equa-
tional reasoning certifies its correctness; moreover, the type system guarantees the linearity
of polynomials and thereby the efficiency of its parallel evaluation.

Example 8 (Recurrence Equation). As a final example, consider a purely numerical
computation: calculating a numerical sequence defined by the following recurrence
equation, which generalises calculation of the Fibonacci numbers:

f 0 = m0

f 1 = m1

f n = a × f (n − 1) + b × f n + c

It is well known that the following program provides a linear time implementation:

f n = let (mn−1, mn) = f ′ (n − 1) in mn

f ′ 0 = (m0, m1)
f ′ n = let (mn−1, mn) = f ′ (n − 1) in (mn, a × mn−1 + b × mn + c)

λas can then be used for developing a divide-and-conquer implementation:

f ′ (n + k)
= { let g (mn−1, mn) = (mn, a × mn−1 + b × mn + c) }

g (g (· · · (g︸ ︷︷ ︸
k

(f ′ n) · · · ))

= { let f ′′ k v1 v2 = if k ≡ 0 then (v1, v2) else g ( f ′′ (k − 1) v1 v2) }
let (mn−1, mn) = f ′ n f ′

k = δx. δy. f ′′ k x y in f ′
k mn−1 mn

Because the computation of f ′′ consists of additions and multiplications, the introduction
of δ abstractions is valid. Then, f ′ n and f ′′ k can be calculated in parallel.

In fact, parallel computations are unnecessary for this case:

f ′ (n + n)
= { parallel implementation of f ′ }

let (mn−1, mn) = f ′ n f ′
n = δx. δy. f ′′ n x y in f ′

n mn−1 mn

= { unfolding f ′ once more; note f ′ 0 = (m0, m1) }
let (mn−1, mn) = (let f ′

n = δx. δy. f ′′ n x y in f ′
n m0 m1) f ′

n = δx. δy. f ′′ n x y
in f ′

n mn−1 mn

= { common subexpression elimination }
let f ′

n = δx. δy. f ′′ n x y in let (mn−1, mn) = f ′
n m0 m1 in f ′

n mn−1 mn
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The computational cost of the obtained recursive program is O(log n). This example shows
the possibility of using λas beyond parallel processing.

3 Formal definition of λas

3.1 Preliminaries: Semirings and linear polynomials

λas is based on semirings. Formally, a semiring (S, ⊕, ⊗, 0, 1) is a five-tuple, where S is
the set of values, ⊕ and ⊗ are binary operators over S, 0 and 1 are elements of S, and the
following properties hold

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c { associativity of ⊕ }
a ⊕ b = b ⊕ a { commutativity of ⊕ }
a ⊕ 0 = 0 ⊕ a = a { additive identity }
a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c { associativity of ⊗ }
a ⊗ 1 = 1 ⊗ a = a { multiplicative identity }
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) { left distributivity }
(b ⊕ c) ⊗ a = (b ⊗ a) ⊕ (c ⊗ a) { right distributivity }
a ⊗ 0 = 0 ⊗ a = 0 { zero }

Section 2 introduced the following semirings: addition and multiplication of integers,
(Z, +, ×, 0, 1); addition with the binary maximum operator ↑, (Z∪ {−∞}, ↑, +, −∞, 0);
and computations over bit vectors ({0, 1}n, ∨, ∧, �0, �1), where {0, 1}n is the set of n-bits
vectors, �0 is the vector with each bit set to 0 and �1 is the vector with each bit set to 1.

For a semiring R = (S, ⊕, ⊗, 0, 1), we may use R and S interchangeably if the meaning
is apparent from the context. For example, we may write s ∈ R, that is, ‘s is an element of
R’, instead of s ∈ S.

Given a set of indeterminates X (X should be disjoint from R) and a semiring
R = (S, ⊕, ⊗, 0, 1), a polynomial of the following form, where c0, c1, . . . , cm ∈ S and
x1, x2, . . . , xm ∈ X :

c0 ⊕ (c1 ⊗ x1) ⊕ · · · ⊕ (cm ⊗ xm),

is called a left-linear polynomial over (R, X ). We may omit R and X if they are clear from
the context. Similarly, a polynomial of the following form:

c0 ⊕ (x1 ⊗ c1) ⊕ · · · ⊕ (xm ⊗ cm),

is called a right-linear polynomial. When ⊗ is commutative, left- and right-linear
polynomials coincide and are called linear polynomials.

3.2 Syntax and operational semantics

For simplicity, this section considers λas defined by the following syntax. Section 4
discusses further extensions:
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(λxτ . e) v → e[v/x]
e1 e2 → e′

1 e′
2 if e1 → e′

1 and e2 → e′
2, or, ei = e′

i and ej → e′
j (i, j ∈ {1, 2}, i �= j)

e1 ⊕ e2 → e′
1 ⊕ e′

2 if e1 → e′
1 and e2 → e′

2, or, ei = e′
i and ej → e′

j (i, j ∈ {1, 2}, i �= j)
e1 ⊗ e2 → e′

1 ⊗ e′
2 if e1 → e′

1 and e2 → e′
2, or, ei = e′

i and ej → e′
j (i, j ∈ {1, 2}, i �= j)

δx. e → δx. e′ if e → e′

δx. v → λx. v

(c0 ⊕ (c1 ⊗ x1) ⊕ · · · ⊕ (cm ⊗ xm)) ⊕ (c′
0 ⊕ (c′

1 ⊗ x1) ⊕ · · · ⊕ (c′
m ⊗ xm))

→ c′′
0 ⊕ (c′′

1 ⊗ x1) ⊕ · · · ⊕ (c′′
m ⊗ xm) where R � c′′

i = ci ⊕ c′
i (0 ≤ i ≤ m)

c0 ⊗ (c′
0 ⊕ (c′

1 ⊗ x1) ⊕ · · · ⊕ (c′
m ⊗ xm))

→ c′′
0 ⊕ (c′′

1 ⊗ x1) ⊕ · · · ⊕ (c′′
m ⊗ xm) where R � c′′

i = c0 ⊗ c′
i (0 ≤ i ≤ m)

(c0 ⊕ (c1 ⊗ x1) ⊕ · · · ⊕ (cm ⊗ xm)) ⊗ c′
0

→ c′′
0 ⊕ (c′′

1 ⊗ x1) ⊕ · · · ⊕ (c′′
m ⊗ xm) where R � c′′

i = ci ⊗ c′
0 (0 ≤ i ≤ m)

Fig. 3. Reduction rules for λas.

e ::= x | λxτ . e | e e | c | e ⊕ e | e ⊗ e | δxR. e

τ ::= Rα | τ → τ

α ::= C | P

A metavariable x is used to denote a variable (or indeterminate). R denotes the underlying
semiring, and c is a value in R. Each base type, R, is annotated by either P (polynomial)
or C (constant). Later, Section 3.3 explains the meanings of these annotations.

Values in λas are defined as follows. For now, ⊗ is assumed to be commutative,
and thus, only linear polynomials are considered. Later, Section 4.1 extends the theory
developed here to non-commutative semirings"

v ::= c0 ⊕ (c1 ⊗ x1) ⊕ · · · ⊕ (cm ⊗ xm) | λxτ . e

Values are functions and linear polynomials. Constants are special cases of linear
polynomials. Note that δ abstractions are not values.

The operational semantics is defined by the set of reduction rules shown in Figure 3, in
which e[v/x] denotes the capture-avoiding substitution of v to x in e. The first four rules are
the same as those of the usual call-by-value simply typed lambda calculus. The fifth and
sixth rules simplify the body of a δ abstraction. A δ abstraction becomes a λ abstraction if
the body is completely simplified. Linear polynomials are simplified according to the alge-
braic properties of the semiring. For simplicity, we assume that every linear polynomial
contains the same set of indeterminates. Because an indeterminate can be introduced to a
polynomial by associating it with a zero coefficient, this assumption is not restrictive. To
keep linearity, at least one operand of multiplication must be a constant.

3.3 Type system

Figure 4 shows the typing rules of λas. An environment � maps a variable to its
type. �{x : τ } denotes an extension of � by a binding x : τ , that is, �{x : τ }(x) = τ , and
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�(x) = τ

� � xτ : τ

�{x : τ } � e : τ ′

� � λxτ . e : τ → τ ′
� � e1 : τ → τ ′ � � e2 : τ

� � e1 e2 : τ ′

�{x : Rα} � e : τ ′ �{x : RP} � e : τ ′′

� � δxR. e : Rα → τ ′ � � c : Rα

� � e1 : Rα � � e2 : Rα

� � e1 ⊕ e2 : Rα

� � e1 : RC � � e2 : Rα

� � e1 ⊗ e2 : Rα

� � e1 : Rα � � e2 : RC

� � e1 ⊗ e2 : Rα

Fig. 4. Typing rules for λas.

�{x : τ }(y) = �(y) if x �= y. A λas term e is said to be typeable if there exist an environment
� and a type τ such that � � e : τ .

The typing rules contain two key differences from those of the simply typed lambda
calculus. First, each base type is annotated by either P or C. In the rules, a metavariable α

is used to denote P or C. A term of type RC should be reduced to a constant that contains
no indeterminate. The annotations are used for guaranteeing the safety of multiplication, in
which the operands must contain a constant. Second, a special rule is prepared for δxR. e.
Because e is to be simplified before the argument is passed, e should be typeable even if
x is an indeterminate and therefore of RP type. Moreover, because δxR. e is regarded as
a usual function after the simplification of e, δxR. e should have the same type as λxR. e.
Accordingly, the body, e, is typechecked twice. Note that the following simpler rule is safe
but too restrictive:

�{x : RP} � e : τ ′

� � δxR. e : RP → τ ′

This rule regards nearly every δ-abstracted function as returning non-constants. For
instance, it infers ∅ � (δxR. x) : RP → RP and thus rejects apparently safe terms such as
(δxR. x) 1 × (δxR. x) 1.

Except for these two differences, the typing rules of λas are the same as those of the
simply typed lambda calculus. A λas term containing no δ abstraction is typeable if and
only if it is typeable in the simply typed lambda calculus.

The following discussion considers only typeable λas terms.

3.4 Properties

λas can be regarded as a call-by-value simply typed lambda calculus extended by a spec-
ulative simplification. In the following, we show that the speculative simplification of λas

is not problematic.
The formalisation uses the notion of contexts. A context of λas is a λas term that contain

exactly one special variable •. The following gives the definition:

C ::= • | λxτ . C | C e | e C | C ⊕ e | e ⊕ C | C ⊗ e | e ⊗ C | δxR. C

Here, C[e] denotes a λas term obtained by substituting • for e in C.

https://doi.org/10.1017/S0956796821000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000058


22 A. Morihata

First, evaluation of λas is terminating. Let →∗ be the reflective transitive closure of →.

Theorem 1. For any λas term e, there exists e′ such that e →∗ e′ and no e′′ satisfies
e′ → e′′.

Proof. Consider another reduction relation �, defined as follows:

• e → e′ implies e � e′.
• e � e′ implies C[e] � C[e′] for any context C.
• δxR. e � λxR. e.

Because � enables more reductions than →, the termination of reductions by → follows
from that by �.

Note that � expresses β reductions with algebraic simplifications using semiring prop-
erties, and the algebraic simplification can be regarded as a convergent (i.e., confluent and
terminating) rewriting system. Because a rewriting system obtained by combining conver-
gent rules with β reductions of the simply typed lambda calculus is convergent (Tannen,
1988; Okada, 1989; Tannen & Gallier, 1991), � is terminating. �

Second, the following theorem states that a δ abstraction is observationally equivalent
to a λ abstraction.7

Theorem 2. For any λas term e and λas context C, if C[δxR. e] →∗ c1 and C[λxR. e] →∗

c2, where c1, c2 ∈ R, then c1 = c2.

Proof. Consider the reduction relation � defined in the proof of Theorem 1. Then, from
the definition of � and the assumption, C[δxR. e] �∗ c1 and C[δxR. e] � C[λxR. e] �∗

c2 hold. Recall that � is confluent (Tannen, 1988; Okada, 1989; Tannen & Gallier, 1991);
hence, there should exists c† such that c1 �∗ c† and c2 �∗ c†. Because c1, c2 ∈ R, this is
possible only if c1 = c2. �

Theorem 2 only considers successful evaluations that yield values. This is not a serious
limitation if we consider only typeable terms. As Theorem 1 shows, evaluations of λas

terms terminate. Moreover, evaluation of a typeable term never gets stuck, as we now
prove.

First, the following lemma shows the relationship between the types and results of eval-
uations. Let fvs(e) denote the set of all free variables in e, that is, variables not bound by
any λ abstraction or δ abstraction. We assume that every free variable is an indeterminate
and thus has type RP because free variables except for indeterminates cannot be values
in λas.

Lemma 3. Assume that � � v : τ , and that �(x) = RP for any x ∈ fvs(v); then, the
following equations hold

7 The theorem only considers evaluations that lead to base-type values. This is essential. δxR . e and λxR .e may
lead to syntactically different functions because the former performs speculative simplifications.
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• v = c if τ = RC.
• v = c0 ⊕ (c1 ⊗ x1) ⊕ · · · ⊕ (cm ⊗ xm), where {x1, . . . , xm} = fvs(v), if τ = RP.
• v = λxτ1 . e′ if τ = τ1 → τ2.

Proof. The proof follows immediately from the typing rules of λas. �

Next, the following two theorems show that, for any typeable λas term (without non-
indeterminate free variables), its evaluation will not get stuck.

Theorem 4. If � � e : τ and e → e′, then � � e′ : τ .

Proof. The proof follows straightforwardly from a case analysis over the rules of →.
The only non-trivial case is the beta reduction, (λxτ . e) v → e[v/x]. This case can be
straightforwardly proved by an induction over the structure of e. �

Theorem 5. If � � e : τ and �(x) = RP for any x ∈ fvs(e), then there exists e′ such that
e → e′ unless e is a value.

Proof. The proof uses an induction over the structure of e. Every case is easily proved
using Lemma 3. Note that it is safe to regard any x ∈ fvs(e) as an indeterminate of a
polynomial because �(x) = RP. �

The following corollary summarises Theorems 1, 4 and 5.

Corollary 6. For any λas term e and λas context C such that � C[δxR. e] : RC, there exists
c ∈ R such that C[δxR. e] →∗ c and C[λxR. e] →∗ c.

3.5 Encoding by Hindley–Milner typing

The type system of λas is not satisfactory from a practical perspective. It is difficult to
assign RP and RC appropriately.

As an simple example, consider dbl = λx. x + x (type annotations are omitted because no
annotation is appropriate). The possible type of dbl is either ZP →ZP or ZC →ZC. In fact,
both are inappropriate: if dbl is of the former type, δx. (dbl 1) × x cannot be typechecked;
if dbl is of the latter type, δx. dbl x cannot.

This problem is not specific to dbl. Most of the expressions can calculate both polyno-
mials and constants, depending on the inputs (or free variables) passed. This observation is
not expressed in the type system. Instead, the type system blindly generates all possibilities
and tried to find a possible assignment. In particular, the rule for a multiplication requires
examining two possibilities, and the rule for a δ abstraction requires typechecking the body
twice.

A possible solution to this problem is to introduce polymorphism, such as dbl : ∀α ∈
{ZC, ZP}. α → α. In particular, a promising approach is to encode the type system of λas

using the standard Hindley–Milner type system. This approach is beneficial from several
perspectives.
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• It allows polymorphic types not only for base types.
• It enables us to encode the type system of λas in widely used languages such as

Haskell and OCaml.
• It avoids costly brute-force searches and makes it possible to use existing efficient

type inference algorithms.
• It avoids inferring RP for every base-type expressions because the Hindley–Milner

type system can infer the principle type schema.

The idea of using the Hindley–Milner type system is based on the following observa-
tion. Recall that dbl can take an argument of either ZC or ZP. This situation can be naturally
expressed by the let polymorphism. Moreover, we can similarly solve inefficiency in type-
checking δ abstractions. The body of a δ abstraction is essentially evaluated twice, and
that the two evaluations may take arguments of different types. Using a let expression,
we can informally express this situation by the following equation. Here, �x� denotes an
indeterminate rather than a variable:

δxR. e ≡ let y = (λxR. e) �x� in λxR. y

That is, δxR. e first takes �x� as its argument, and after that, additionally takes the actual
argument. Based on this observation, we can check the following expression instead of
directly typechecking δxR. e:

let f = λxR. e in let = f �x� in f

That is, δxR. e is essentially regarded as λxR. e, but in addition, its applicability to an
indeterminate �x� :: RP is checked.8

The polymorphism of the Hindley–Milner type system can encode subtyping (Fluet
& Pucella, 2006), which is useful for expressing other typing rules of λas. For exam-
ple, the types of constants and ⊕ can be expressed by ∀α. Rα and ∀α. Rα → Rα → Rα ,
respectively.

Unfortunately, the rule for multiplications cannot be encoded by the Hindley–Milner
type system. This problem is essential because multiplications do not have the most general
type schema. For instance, the type of λxR. λyR. x ⊗ y is either ∀α. Rα → RC → Rα or
∀α. RC → Rα → Rα , and these two types are incomparable. A natural workaround is to
use two kinds of type-annotated multiplications, (⊗L) :: ∀α. RC → Rα → Rα and (⊗R) ::
∀α. Rα → RC → Rα . This modification may, however, make some typeable terms not
typeable. For instance, although let f = λxR. λyR. x ⊗ y in δxR. f 1 x ⊕ f x 1 is typeable
if ⊗ is commutative, neither ⊗L nor ⊗R can be used instead of ⊗.

The discussion above shows a trade-off between advanced types (e.g., polymorphism)
and the necessity of annotations. While advanced types are generally more expressive,
because of the difficulty of their inference, the type system often requires programmers
more type annotations. In the current situation of using the Hindley–Milner type system
for λas , the cost seems acceptable relative to the benefit.

We have introduced in Section 3.3 a monomorphic type system and did not regard the
use of the Hindley–Milner type system as the default choice. It is because adoption of

8 Here, we use the type notation for Haskell, ::, to avoid potential confusion with the original typing of λas.
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other kinds of type systems, including those equipped with structural subtyping, gener-
alised algebraic data types, refinement types and full dependent types, could be beneficial.
They enable us to count the number of indeterminates in the type level, and therefore,
would be useful to infer not only possibilities of getting stuck but also overheads for sim-
plifying polynomials. Nevertheless, as discussed above, their use may not come for free
and require additional type annotations. In summary, there exists a design choice between
type systems. Further study remains as future work.

4 Discussions

4.1 Non-commutative semiring

So far, we have considered commutative semirings. If ⊗ is not commutative, simplifi-
cations become more difficult. For instance, neither c ⊗ x ⊗ c′ nor (c1 ⊗ x ⊗ c′

1) ⊕ (c2 ⊗
x ⊗ c′

2) (c1 �= c′
1 and c2 �= c′

2) can be simpler.9 Therefore, to guarantee the simplicity of
polynomials, the operational semantics and the type system should distinguish left- and
right-linear polynomials. Every left (right) operand of multiplication should be either a
constant or a right-linear (left-linear, respectively) polynomial. Addition and multiplication
between a left-linear polynomial and a right-linear polynomial should be prohibited.

We can refine the operational semantics of additions and multiplications as follows:

(c0 ⊕ (c1 ⊗ x1) ⊕ · · · ⊕ (cm ⊗ xm)) ⊕ (c′
0 ⊕ (c′

1 ⊗ x1) ⊕ · · · ⊕ (c′
m ⊗ xm))

→ c′′
0 ⊕ (c′′

1 ⊗ x1) ⊕ · · · ⊕ (c′′
m ⊗ xm) where R � c′′

i = ci ⊕ c′
i (0 ≤ i ≤ m)

(c0 ⊕ (x1 ⊗ c1) ⊕ · · · ⊕ (xm ⊗ cm)) ⊕ (c′
0 ⊕ (x1 ⊗ c′

1) ⊕ · · · ⊕ (xm ⊗ c′
m))

→ c′′
0 ⊕ (x1 ⊗ c′′

1) ⊕ · · · ⊕ (xm ⊗ c′′
m) where R � c′′

i = ci ⊕ c′
i (0 ≤ i ≤ m)

c0 ⊗ (c′
0 ⊕ (c′

1 ⊗ x1) ⊕ · · · ⊕ (c′
m ⊗ xm))

→ c′′
0 ⊕ (c′′

1 ⊗ x1) ⊕ · · · ⊕ (c′′
m ⊗ xm) where R � c′′

i = c0 ⊗ c′
i (0 ≤ i ≤ m)

(c0 ⊕ (x1 ⊗ c1) ⊕ · · · ⊕ (xm ⊗ cm)) ⊗ c′
0

→ c′′
0 ⊕ (x1 ⊗ c′′

1) ⊕ · · · ⊕ (xm ⊗ c′′
m) where R � c′′

i = ci ⊗ c′
0 (0 ≤ i ≤ m)

In the type system, R should be annotated by either LP (left-linear polynomial), RP
(right-linear polynomial) or C (constant). We thus refine the typing rules for δ abstractions
and multiplications as follows:

�{x : Rα} � e : τ ′ �{x : Rβ} � e : τ ′′ β ∈ {LP, RP}
� � δxR. e : Rα → τ ′

� � e1 : RC � � e2 : Rβ β ∈ {LP, C}
� � e1 ⊗ e2 : Rβ

� � e1 : Rβ β ∈ {RP, C} � � e2 : RC

� � e1 ⊗ e2 : Rβ

The type system can be encoded by the Hindley–Milner type system. When using a
non-commutative semiring R, every base type has two kinds of annotations: left-linear L
or right-linear R, and constant C or polynomial P. Accordingly, we can encode the types
of semiring values, semiring operators and indeterminates as follows:

9 The non-commutativity of the multiplication should not be confused with the type-annotated multiplications
considered in Section 3.5. If ⊗ is commutative, (c1 ⊗L x) ⊗R c2 is a simplifiable (and typeable) expression.
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c :: ∀α, β. Rα,β

(⊕) :: ∀α, β. Rα,β → Rα,β → Rα,β

(⊗L) :: ∀α, β. Rα,C → RL,β → RL,β

(⊗R) :: ∀α, β. RR,β → Rα,C → RR,β

�x� :: ∀α. Rα,P

As in the case of commutative semirings, this encoding rejects some typeable terms. For
instance, (1 ⊗L 1) ⊕ (1 ⊗R 1) cannot pass the typechecking based on this encoding.

Although these refinements make the whole calculus more complicated, they maintain
the major properties including Corollary 6.

Example 9 (list concatenations). As an application of non-commutative semiring, con-
sider a function, pElem, which gathers positive elements:

pElem [ ] = [ ]
pElem (a : x) = if a > 0 then [a] ++ pElem x else pElem x

Reasoning similar to the case of sumP discussed in Section 2.4 leads to the following
divide-and-conquer implementation:

pElem (l ++ r) = (δx. foldr f x l) (pElem r)
where f a v = if a > 0 then [a] ++ v else v

By regarding ++ as the multiplication operator, we can see that this program calculates
left-linear polynomials and hence parallelisable.

Note that ++ cannot be the addition operator because of its non-commutativity.
Commutativity of the addition operator is essential. Otherwise, we cannot simplify expres-
sions like x1 ⊕ x2 ⊕ x1, and therefore, sizes of polynomials cannot be bound by the number
of indeterminates.

4.2 Multiplication without associativity

Sometimes, we can drop even associativity for the multiplication.
As an example, consider the ‘cons’ operator, (:), for lists. While it does not satisfy

associativity, a related associative operator, (++), enables simplification. For example, a
linear expression a : b : c : x, where x is an indeterminate, can be simplified to w ++ x where
w = [a, b, c]. In general, any linear expression written using the cons operator can be sim-
plified to the form of w ++ x, where w is a list and x is an indeterminate. In fact, we have
implicitly used this simplification strategy in Example 9.

Many practical operators have related associative operators that enable simplification.

Division: For an indeterminate x and numbers a1, a2, a3, x / a1 / a2 / a3 can be
simplified to x / a where a = a1 × a2 × a3.
Matrix multiplications (Matsuzaki et al., 2006; Sato & Iwasaki, 2011): For an
indeterminate vector x and matrices A1, A2, A3, A1(A2(A3x))) can be simplified to
Ax where A = A1A2A3.
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Algebraic data structures: For an indeterminate x and constructors of algebraic
data structures f1, f2, f3, f1 ( f2 ( f3 x)) can be simplified to f x, where f = f1 ( f2 ( f3 •))
is a data structure with the unique hole, • (Minamide, 1998).

Formally, we can apply the simplification strategy if the following properties hold. Here
we consider the case of left-linear expressions, and that of right-linear ones are analogous:

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c { associativity of ⊕ }
a ⊕ b = b ⊕ a { commutativity of ⊕ }
a ⊕ 0 = 0 ⊕ a = a { additive identity }
a ⊗ (b ⊗ c) = (a � b) ⊗ c { simplification by � }
1 ⊗ a = a { left multiplicative identity }
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) { left distributivity }

That is, ⊗ needs not to be associative; instead, � should be able to simplify a series of ⊗
applications. Note that � should be nearly associative, as the following reasoning shows

(a � (b � c)) ⊗ x = a ⊗ ((b � c) ⊗ x)
= a ⊗ (b ⊗ (c ⊗ x))
= (a � b) ⊗ (c ⊗ x)
= ((a � b) � c) ⊗ x

In particular, this generalises the case of a non-commutative semiring, in which (�) = (⊗).
The simplification strategy can be implemented using the following reduction rule

instead of the corresponding original one:

c0 ⊗ (c′
0 ⊕ (c′

1 ⊗ x1) ⊕ · · · ⊕ (c′
m ⊗ xm)) → c′′

0 ⊕ (c′′
1 ⊗ x1) ⊕ · · · ⊕ (c′′

m ⊗ xm)
where R � c′′

i = c0 � c′
i (0 ≤ i ≤ m)

The type system is unnecessary to modify from the case of non-commutative semirings.
This modification maintains the major properties including Corollary 6.

Example 10 (nondeterminisitc finite automata). Let A = (Q, �, I , F, τ ) be a nondeter-
ministic finite automaton, where Q is the set of the states, � is the alphabet, I ⊆ Q is the
set of the initial states, F ⊆ Q is the set of the final states and τ ⊆ (Q × � × Q) is the
transition relation. The following runA expresses the state transition by A :

runA = foldl (λa s. {q′ | q ∈ s, (q, q′) ∈ τa}) I
where τa = {(q, q′) | (q, a, q′) ∈ δ}

One may expect that this program does not fit the parallelisation approach by λas because
there is no algebraic operator. In fact, it can be parallelised by reformulating the com-
putation by a vector–matrix multiplication. Let {q1, q2, . . . , qm} = Q. First, s ⊆ Q can be
regarded as a bit vector of size m whose i-th bit is set 1 if qi ∈ s. Second, each τa (a ∈ �)
can be regarded as a m × m matrix whose (i, j) element is set 1 if (qj, qi) ∈ τa. Then,
{q′ | q ∈ s, (q, q′) ∈ τa} can be calculated by a vector–matrix multiplication τa s, where ∨
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and ∧ are, respectively, the addition and multiplication. Because a vector–matrix multipli-
cation has a related associative operator, that is, a matrix–matrix multiplication, runA can
be parallelised just like those examples discussed in Section 2.5.

Example 11 (tree transformation). As mentioned above, constructions of algebraic data
structures are equipped with an associative operator, which is the substitution operator for
data structures with holes. This view enables us to parallelise computations that construct
data structures. As a concrete example, consider the following simple tree transformation.
The input is a tree consisting of four kinds of nodes: B, L, R and N. The output is obtained
by eliminating the right and the left subtree of each L node and each R node, respectively.
The following function tt does the transformation:

tt (B t1 t2) = B (tt t1) (tt t2)
tt (L t1 t2) = tt t1
tt (R t1 t2) = tt t2

tt N = N

As discussed in Section 2.7, splitting the input tree into a subtree and a context may
improve parallelism. Formally, we would like to derive tt′ that satisfies the following
equation:

tt (c[t]) = (δx. tt′ c x) (tt t)

It is not difficult to derive the following definition of tt′:

tt′ (B (t1[•]) t2) x = B (tt′ (t1[•]) x) (tt t2)
tt′ (B t1 (t2[•])) x = B (tt t1) (tt′ (t2[•]) x)
tt′ (L (t1[•]) t2) x = tt′ (t1[•]) x
tt′ (L t1 (t2[•])) x = tt t1
tt′ (R (t1[•]) t2) x = tt t2
tt′ (R t1 (t2[•])) x = tt′ (t2[•]) x
tt′ • x = x

Because of the linearity of tt′ and algebraic property of data structures with holes, this
program can be evaluated in parallel just like sumTree.

While the formalism discussed so far is sufficient for capturing typical parallel reduc-
tions, there is a room for further generalisation. Any set of operators with a simplification
strategy can be integrated to λas if it satisfies desirable properties, such as termination,
confluency and efficiency. Nevertheless, it is generally non-trivial to develop a type sys-
tem that ensures the properties. For example, the linearity requirement of polynomials is
not sufficient to guarantee the efficiency of tree transformations because using a tree with a
hole more than once may require its duplication. Minamide (1998) provided a type system
that guarantees the single use of each structure. While it seems possible to adapt this type
system to λas, a formal investigation is left for future work.
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4.3 Other programming constructs

λas is so designed that it can be extended with standard program constructs such as con-
ditionals, data structures and recursions. Note that Theorems 2, 4 and 5 do not depend on
details of the calculus such as the evaluation order and termination. Accordingly, any con-
struct can be added if it can be expressed by a lambda calculus (neglecting the evaluation
strategy) and does not directly manipulate semiring values.

In Section 2.6, we have already used list constructors that store semiring values. They
are not problematic. Data structures are merely containers, and hence, their application
does not cause essential computation about semiring values. This intuition can be more
formally justified by considering Church encoding for the structures.

It is also possible to add the fixed-point operator to λas. Note that Theorems 2, 4 and
5 deal only with terminating evaluations. If an evaluation terminates in n steps, we can
use an n-fold unfolding operator instead of the fixed-point operators.10 Adding the n-fold
unfolding operator does not break the properties of λas because it can be expressed in the
simply typed lambda calculus. Therefore, δxR. e is observationally equivalent to λxR. e if
evaluations of these two terms terminate. Note, however, that they may have different ter-
mination behaviors. For instance, when ⊥ is non-terminating, (λxτ . 1) (λzR. ⊥) terminates,
whereas (λxτ . 1) (δzR. ⊥) does not.

4.4 More than one semiring

It is not difficult to deal with programs that use more than one semiring if those semirings
are clearly distinguished. In practice, however, multiple semirings may share operators
and values. For example, integers and integer additions are used in both (Z, +, ×, 0, 1) and
(Z∪ {−∞}, ↑, +, −∞, 0). The type system should thus distinguish these two semirings
and be aware of problematic terms like δx. (−2) × (x ↑ 1), which consists of operators, ↑
and ×, that do not form a semiring.

It is possible but not satisfactory to develop a type system that rejects all terms in which
a δ abstraction involves more than one different semiring. A better approach is to provide
a method that enables restructuring of terms, so that the body of a δ abstraction contains
computation of at most one semiring. For instance, (δx. (−2) × (x ↑ 1)) e is equivalent
to (δy. (−2) × y) ((δx. x ↑ 1) e), which is not problematic if e is evaluated to a constant.
Further investigation of this notion is left for future work.

4.5 Delimited continuation for introducing more δ abstractions

We have introduced parallelism by changing λ abstractions to δ abstractions. It is natural to
consider introducing more parallelism by splitting expressions by inserting δ abstractions.
Formally, given an expression e1[e2], we would like to evaluate e2 and its surrounding
context e1[•] in parallel by inserting a δ abstraction, that is, (δx. e1[x]) e2. However, this
approach is not always possible. For instance, consider e = (λx. x + ((λy. y + x) 3) + x) 5 =
e1[e2] where e1[•] = (λx. x + • + x) 5 and e2 = (λy. y + x) 3; then, e is not equivalent to

10 This approach is known as Levy’s labelled reduction technique (Lévy, 1976).
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(δz. e1[z]) e2 because e2 contains a free variable, x, whose actual value, 5, is specified
in e1.

A remedy to this situation is to use delimited continuations. In the following, we use the
shift/reset operator (Danvy & Filinski, 1990).

A continuation represents the computation that will be performed later. A reset operator,
〈e〉, delimits a continuation. A shift operator, S k. e, captures the current continua-
tion up to the surrounding reset operator and binds it to the variable, k. For example,
〈3 + (S k. k (k 2))〉 + 4 is evaluated as follows:

〈3 + (S k. k (k 2))〉 + 4
→ 〈(λk. k (k 2)) (λx. 〈3 + x〉)〉 + 4
→ 〈〈3 + 〈3 + 2〉〉〉 + 4
→ 12

Usefulness of continuations for modelling concurrency and parallelism is well recog-
nised (Giorgi & Métayer, 1990; Wand, 1999; Li et al., 2007; Fluet et al., 2008; Imam &
Sarkar, 2014; Dolan et al., 2017). We specifically focus on one-shot (Bruggeman et al.,
1996; Dolan et al., 2017) delimited continuations. Each one-shot continuation can only
be invoked at most once and hence corresponds to suspend/resume patterns. One-shot
delimited continuations can express several concurrent/parallel programming constructs
including coroutines (de Moura & Ierusalimschy, 2009) and Multilisp’s futures (Imam &
Sarkar, 2014).

It is non-trivial to integrate delimited continuations into the type system and operational
semantics of λas. Especially, the notion of current continuation is not well defined in par-
allel evaluations. For instance, when evaluating 〈(S k. k) (2 + 3)〉, it is unclear which of
λy. y (2 + 3) or λy. y 5 is bound to k. Even worse, the result of 〈(S k. 1) (S k. 3)〉 can
be either 1 or 3, depending on the evaluation order. To avoid such pathological cases, we
strictly follow the suspend/resume patterns. Continuations are only used for suspending
subcomputations, and suspended computations should be resumed later; neither dupli-
cation nor cancellation of suspended computations is allowed. In other words, we use
delimited continuations only for controlling the evaluation strategy.

Shift/reset operators enable us to express a general method of splitting expressions for
introducing parallelism. For an expression e1[e2], the following transformation leads to a
parallel evaluation of e1[•] and e2:11

e1[e2] ≡ 〈e1[S k. (δx. k x) e2]〉

The context, e1, is dynamically captured without making the variables in e2 free. Applying
this transformation to (λx. x + ((λy. y + x) 3) + x) 5 discussed above results in the
following parallel evaluation:

11 We assume that this rule introduces a corresponding shift/reset pair and their correspondence is kept. This is
possible without extending the language. For example, a context up to the n-th nearest reset can be obtained
by S k1 · · · S kn. λx. kn (kn−1 (· · · (k1 x) · · · )).
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(λx. x + ((λy. y + x) 3) + x) 5
≡ 〈(λx. x + (S k. (δx. k x) ((λy. y + x) 3)) + x) 5〉
→ 〈5 + (S k. (δz. k z) ((λy. y + 5) 3)) + 5〉
→ 〈(δz. (λw. 〈5 + w + 5〉) z) ((λy. y + 5) 3)〉
⇒ 〈(λz. 〈10 + z〉) 8〉
→ 18

Example 12 (list reductions, revisited). So far, we have regarded lists as primitives and
assumed that lists can be divided at a middle. For example, sum (l ++ r) = sum l + sum r
requires dividing the input list, l ++ r, into sublists l and r. One may hope to more formally
express a list division by combining Church encoding and δ abstractions:

[] ≡ λc. λn. n
(:) ≡ λh. λt. λc. λn. c h (t c n).

However, we cannot divide Church-encoded lists by simply inserting a δ abstraction. For
instance, a list [a0, a1, a2] is expressed by the following lambda expression:

λc. λn. c a0 ((λc1. λn1. c1 a1 ((λc2. λn2. c2 a2 ((λc3. λn3. n3) c2 n2)) c1 n1)) c n).

Then, it appears to be impossible to insert a δ abstraction into this expression. For instance,
the following is invalid because c1 and n1 become unbound:

λc. λn. (δx. c a0 ((λc1. λn1. c1 a1 x) c n)) ((λc2. λn2. c2 a2 ((λc3. λn3. n3) c2 n2)) c1 n1)

Moreover, the following is also invalid because the type of δ-abstracted variable x has a
function type:

λc. λn. (δx. c a0 ((λc1. λn1. c1 a1 (x c1 n1)) c n)) (λc2. λn2. c2 a2 ((λc3. λn3. n3) c2 n2))

The general splitting rule using shift/reset operators resolves this problem:

(λc. λn. c a0 ((λc1. λn1. c1 a1 ((λc2. λn2. e) c1 n1)) c n)) (+) 0
where e = c2 a2 ((λc3. λn3. n3) c2 n2)

≡ (λc. λn. 〈c a0 ((λc1. λn1. c1 a1 ((λc2. λn2. e′) c1 n1)) c n)〉) (+) 0
where e′ = S k. (δx. k x) (c2 a2 ((λc3. λn3. n3) c2 n2))

→ 〈a0 + (a1 + (S k. (δx. k x) (a2 + ((λc3. λn3. n3) (+) 0))))〉
→ 〈(δx. (λy. a0 + (a1 + y)) x) (a2 + ((λc3. λn3. n3) (+) 0))〉

As expected, in the last expression, the function and argument can be evaluated in parallel.

4.6 Efficiency

We have discussed the usefulness of the type system of λas for understanding the over-
head introduced by the simplification. However, what the type system exactly guarantees
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is not efficiency but the linearity of polynomials. The linearity rules out apparent ineffi-
ciency including exponential blow-up. Nevertheless, it does not guarantee that the parallel
evaluation will improve efficiency.

First, the parallel evaluation may be useless because of the insufficient or ill-balanced
independent tasks. For instance, the following program is correct but does not achieve any
parallel speedup because the δ abstracted subterm, δyZ. a + y, cannot be simplified any
further:

sum [ ] = 0
sum (a : x) = (δyZ. a + y) (sum x)

Second, the speculative nature of the simplification in λas may provoke computations
that are unnecessary in the sequential evaluation. Recall the following example discussed
in Section 4.3, in which the δ abstraction forces to evaluate ⊥:

(λxτ . 1) (δzR. ⊥)

Third, the simplification of polynomials is slower than the usual evaluation. For instance,
the parallel implementation of poly calculates two coefficients of a linear polynomial, and
therefore, does about twice as much work as the sequential implementation. In general,
if a calculated linear polynomial contains k indeterminates, its simplification is about k +
1 times as slow as the usual evaluation. This overhead is often essential for reduction
parallelisation, as in the case of poly.

The number of indeterminates is commonly at most a constant, and hence, the overhead
of simplifying polynomials does not affect asymptotic complexity. Note, however, a small
program can be evaluated to a linear polynomial that contains many indeterminates. For
example, consider the following reduction process:

let g = λf . λx. δy. f (x + y) y in g (g (g (λv. λw. v + w))) 1
→ (λf . λx. δy. f (x + y) y)

((λf . λx. δy. f (x + y) y) (λx. δy. (λv. λw. v + w) (x + y) y)) 1
→ δy. (λx. δy. (λx. δy. (λv. λw. v + w) (x + y) y) (x + y) y) (1 + y) y
≡ δy0. (λx. δy1. (λx. δy2. (λv. λw. v + w) (x + y2) y2) (x + y1) y1) (1 + y0) y0

→ δy0. (δy1. (δy2. 1 + y0 + y1 + 2 × y2) y1) y0

→ λy0. 1 + 4 × y0

The underlined linear polynomial consists of three indeterminates, y0, y1 and y2, all of
which originate from the same δ abstraction in the function g. We can obtain more inde-
terminates by composing more gs in the same manner: g (g (· · · (g (g (λv. λw. v +
w))) · · · )) 1. The type system of λas does not reject such programs that involve many
indeterminates.

In usual partial evaluations and simplifications, a result of evaluation/simplification can
be large, and therefore, its duplication commonly introduces serious overheads. In λas ,
however, a simplification only results in a linear polynomial whose size is bounded by the
number of indeterminates. Therefore, if the number of indeterminates is at most constant,
the cost of duplicating linear polynomials instead of constants does not affect asymptotic
complexity.
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5 Related work

The characteristic feature of λas is its use of algebraic properties for simplifying functions.
This feature is closely related to partial evaluation (Jones, 1996). Given a subset of inputs,
which are called static, partial evaluation generates a program specialised for the static
inputs without knowing the other inputs, called dynamic. On one hand, online partial eval-
uation, in which usual evaluation may invoke partial evaluation at runtime, can implement
the function simplification in λas. When the evaluator encounters δx. e, it regards x as a
dynamic input and requests a partial evaluator to simplify e. On the other hand, δ abstrac-
tion can be used for expressing (semiring-based) online partial evaluation. For example,
given a function f (s, d), where s and d are, respectively, the static and dynamic input, its
partial evaluation with fixing the static input s to 1 can be expressed by (λs. δd. f (s, d)) 1.
From this perspective, one of the most closely related studies is the parallel partial evalua-
tion by Consel & Danvy (1992). While λas makes use of algebraic properties and requires
linearity over indeterminates to model efficient parallel reductions, their approach does
not impose any requirements on programs and therefore provides no support for parallel
programming, especially for developing efficient parallel reductions.

Several studies have shown the usefulness of partial evaluation or function simplifica-
tion for developing parallel reductions, including those on deriving parallel reductions on
arrays/lists and trees (Callahan, 1992; Fisher & Ghuloum, 1994; Hu et al., 1998; Chin et al.,
1998; Matsuzaki et al., 2005; Morihata & Matsuzaki, 2010; Raychev et al., 2015; Farzan
& Nicolet, 2017; Jiang et al., 2018; Farzan & Nicolet, 2019) and those on parallel querying
of semi-structured databases (Buneman et al., 2006; Cong et al., 2007, 2012). They gener-
ally focus on specific reduction patterns to enable automation of reduction parallelisation.
λas is designed to be a foundation for exploring automatically parallelisable reduction pat-
terns. As discussed in Section 2, the higher-order calculus enables us to express several
reduction patterns and uniformly study their parallelisation. Instead of the generality, λas

makes less account of automatic parallelisation.
λas focuses on linear polynomials on semiring operators. The importance of linear poly-

nomials in the context of parallel reductions has already been discussed. Xu et al. (2004)
developed an automatic parallelisation system for list reductions. Their idea is to trace
algebraic operators and the linearity condition using a type system. Matsuzaki et al. (2006)
and Sato & Iwasaki (2011) developed similar systems for automatic parallelisation of tree
reductions and reduction loops, respectively. λas is strongly influenced by those works and
provides a primitive construct, the δ abstraction, that enables us to uniformly study those
parallelisation strategies. The basic idea of λas is that their essence, that is, the use of alge-
braic properties for modelling complex reductions, is independent of the control structures
that express iterations/recursions.

A δ abstraction can be read as an annotation to express speculative evaluation. From
this viewpoint, λas is similar to the evaluation strategy approach for parallel computa-
tions (Marlow et al., 2010), in which parallelism is specified and controlled by evaluation
strategies. There is a crucial difference; however, in the evaluation strategy approach, pro-
grammers can control evaluation strategies only when the language does not specify the
order of evaluation. In contrast, a δ abstraction in λas requires subterm simplification that
the standard evaluation strategy does not allow.
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Castro et al. (2016; 2018) proposed a type-based approach for introducing parallelism
to purely functional programs. Their type system certifies not only the correctness but also
the cost of an obtained parallel program. Their approach, using a type system to support
parallelisation of functional programs, is somewhat similar to the current proposal, but
there are two essential differences. First, they focused on structured functional programs,
especially those specified by algorithmic skeletons (Cole, 1989). Algorithmic skeletons are
reusable parallel programming patterns such as map, reductions and prefix sum patterns.
The focus on structured programs enables their method to analyse programs in detail. In
contrast, the current proposal seeks to provide a foundation that can deal with complex
unstructured programs. Second, while their method mainly deal with programs that appar-
ently contain independent subexpressions, λas can be used to parallelise programs whose
divide-and-conquer implementations require breaking data dependencies using algebraic
properties.

Nishimura & Ohori (1999) proposed a higher-order functional programming language
that has a special construct, called a parallel map, for modelling parallel reductions. Similar
to λas, the parallel map is based on substitutions for indeterminates. λas refines their pro-
posal in the following aspects. First, their language does not explicitly account for algebraic
simplification; therefore, it is unclear when the parallel map implements efficient parallel
reduction. In contrast, λas explicitly deals with simplifications and provides a type system
that guarantees successful simplification. Moreover, the parallel map is based on com-
munications guided by the pointer structure of recursive data. Consequently, it uses a
‘pointer jumping’ strategy, which is less efficient than the standard divide-and-conquer
approach. In contrast, λas does not rely on pointer-based structures and can express the
divide-and-conquer strategy.

The operational semantics of λas interleaves the usual sort of evaluations of lambda
calculi with simplifications based on algebraic properties. These simplifications can be
regarded as a kind of semantic evaluations as they are based on the mathematical properties
of the operators. Accelerating evaluations of lambda calculi through semantic evaluations
is not a new idea. Terui (2012) showed that semantic evaluations enable efficient sequential
evaluations of lambda expressions, thereby leading to a precise bound on computational
costs. Kobayashi (2012) used type-based semantic evaluations to perform computations on
compressed data without decompression.

While λas is based on call-by-value evaluation, δ abstraction introduces a different eval-
uation strategy. The call-by-push-value calculus (Levy, 2003) enables a close analysis of
the effect of evaluation strategies by carefully distinguishing values and computations.
Unfortunately, the call-by-push-value calculus seems insufficient for expressing λas. In
λas, a δ abstraction generates a function, which is a computation in the call-by-push-value
calculus, by capturing an indeterminate in a polynomial, which is a value. In the call-by-
push-value calculus, the thunk construct can obtain a computation from a value; however,
it cannot introduce a new binder that captures an indeterminate. Nevertheless, a similar
calculus may be useful for providing a better understanding of λas.

6 Conclusion and future work

This paper has developed λas, a simply typed lambda calculus with algebraic simplifica-
tions. The key characteristic of λas is the δ abstraction whose function body is simplified
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using algebraic properties before its arguments’ arrival. The operational semantics and
type system of λas were formalised. The type system guarantees that the simplification
results in linear polynomials and, in turn, rules out the major possibility of unsuccessful
parallelisation. The usefulness of λas for modelling parallel reductions was demonstrated
on several non-trivial examples.

This is the first step in providing a foundation for parallel reductions based on lambda
calculi. There are many directions for further investigation.

6.1 Inferring evaluation costs

As discussed in Section 4.6, the type system of λas does not guarantee that parallel imple-
mentations are faster than sequential implementations. A precise cost inference for λas

is more challenging than those for usual lambda calculi because the cost depends on the
number of indeterminates used during simplifications, and moreover, a δ abstraction may
generate more than one, possibly unboundedly many, indeterminates. It is natural to seek
for a practical subset of λas in which the number of necessary indeterminates is known.
Indeed, every example discussed in Section 2 requires a constant number of indetermi-
nates. Such a subset might be obtained by considering structural recursions, as in the study
of Castro et al. (2016; 2018), and restrict duplication of δ-abstracted functions. If such a
subset is found, it might be worthwhile to consider non-linear polynomials as well because
exponential blow-ups cannot occur.

6.2 Strategy for introducing parallelism

It is hoped to have a good strategy of introducing δ abstractions. This issue is closely
related to cost inference. If evaluation costs can be precisely inferred, even the following
naive strategy may be useful: replace a λ abstraction to a δ abstraction if the introduction of
δ abstraction improves the estimated parallel evaluation cost. This strategy is, however, not
sufficient to deal with recursive functions that process large data, such as foldr and foldl.
As discussed in Section 2, to obtain efficient parallel reductions for large data processing,
we should combine δ abstractions with the divide-and-conquer approach.

6.3 Compilation to existing calculus

Although λas is a theoretical model for studying reduction parallelisation, it is desirable
to formulate a compilation of λas to an existing calculus (or an abstract machine) that
supports parallel evaluation. Such a compilation would lead to not only an understanding
of λas from a different perspective but also a better inference of parallel evaluation costs.
However, providing such a compilation is non-trivial.

A major difficulty is the implementation of indeterminates. As discussed in Section 4.6,
the evaluation of λas may lead to unboundedly many free variables (indeterminates),
which cannot be captured by usual variable environments. This situation has similarity
to the case of lazy evaluations, which use a heap for managing unboundedly many thunks
(Launchbury, 1993). However, a naive compilation using heaps is unsatisfactory because
it threads computations and thereby prohibit exploiting parallelism.
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6.4 Parallelisation of practical programs

The original motivation in developing λas is its application for reduction parallelisation
of programs written in practical programming languages. Although λas is extensible, it
is unclear whether it can incorporate practical, complex programming constructs and be
applied to reason on practical complex programs.
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