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Introduction. Given a group presentation (or more generally! a 2-complex) one can
associate with it an object which has variously been called the co-initial graph, star-graph,
star-complex, and which has proved useful in several contexts [2], [6], [7], [8], [9], [10],
[12]. For certain mappings of 2-complexes (/):%—>£ ("strong mappings") one gets an
induced mapping 0st:3f"—•i?5' of the associated star-complexes. Then st is a covariant
functor from the category of 2-complexes (where the morphisms are strong mappings) to
the category of 1-complexes, and this functor behaves very nicely with respect to
coverings (Theorem 1).

Hyperbolic complexes arise when one considers assigning numbers ("weights") to the
edges of the star-complex of a 2-complex. The most well-known hyperbolic complexes are
the surface presentations

(xi, yx, . . . , xn, yn; f] [*,-, yi\) (n^2),
\ ,=i /

(xu...,xn;f[xf) (/iss3),
\ ,=i /

and the presentations of triangle groups

{a,b,c;ap,b\cr,abc), - + - + -< 1.
P q r

(More generally, as M. El-Mosalamy has remarked, an F-presentation (see [11, p. 126])
is hyperbolic (in the sense of this paper) if and only if its measure is positive.)

Gersten [5] proved that finite hyperbolic complexes have solvable word and
conjugacy problems. In this paper we give a simpler proof of a much more general result.
If 3V is a 2-complex and n is a positive integer we define a decision problem which we call
the dependence problem DP(«) for 3if. (The word problem is DP(1) and the conjugacy
problem is DP(2).) We show that if JC is a finite hyperbolic complex then DP(n) is
solvable for all n (Theorem 2). (Actually, we prove a somewhat stronger result, namely
that the "union" DP(°o) of all the problems DP(n) is solvable.)

It turns out that hyperbolic complexes are related to small cancellation complexes.
The "standard" small cancellation conditions are C(p), T(q), where l/p + 1/q *£ \. In [6]
we gave a formulation of the T(q) condition in terms of star-complexes. Here we
introduce a condition T(q), and we show that C{p), f (^-complexes are hyperbolic if
Up + llq<\ (Theorem 4).

In Theorem 5 we show that hyperbolicity is preserved when one subdivides a
non-periodic defining path of a hyperbolic complex.

t A presentation can be regarded as a 2-complex with a single vertex.

Glasgow Math. J. 30 (1988) 155-170.
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156 STEPHEN J. PRIDE

We wish to make this paper reasonably self-contained and accessible to com-
binatorial group-theorists; so we give below a fairly comprehensive collection of
definitions and background information regarding 1- and 2-complexes. This material is
entirely standard and can be found elsewhere, though not always in the form we require.

The headings of the sections of the paper are as follows.

1. Definitions and elementary concepts.
2. Star-complexes of 2-complexes.
3. Hyperbolic complexes.
4. The dependence problems for hyperbolic complexes.
5. Small cancellation complexes.
6. Subdividing defining paths.

In a sequel [13] to this paper, I will discuss, among other things, the dependence
problems for groups with "many" generators of order 2.

I thank M. El-Mosalamy, E. Fennessey, J. Howie and the referee for their useful
comments.

1. Definitions and elementary concepts. A 1-complex $? consists of two disjoint sets
V(%) (vertices), E{%) (edges) together with three functions i:E{%)^>V(%), T.E{%)-*.

V(Se), -U.E{%)^E{%) satisfying: i(e-1) = r(e), ( e " 1 ) " 1 ^ . e'^e for all e eE{%). A
non-empty path a in % is a sequence exe2- • -en ( n > l ) of edges with r(e,) = i(e,+1)
(1SSJ<M) . We define i{a), r(a) to be i{ex), r(en) respectively. The path is said to be
closed if i(a) = x(a). The length L(a) of a is n. The inverse a~l of a is the path
e~l. . . e^'ef1- We say that a is reduced if e, =£ e~+x for i = 1 , . . . , n - 1. Moreover, if a is
closed then we say that a is cyclically reduced if all its cyclic permutations are reduced.

With each vertex v of $£ we associate an empty path lv (or simply 1). This path has no
edges (thus L(lv) = 0). Moreover, i(l«) = T(1W) = v and I"1 = lv.

We say that the product fiy of two paths )3, y is defined if T(/3) = i(y). Then /Jy is the
path consisting of the edges of /3 followed by the edges of y.

A 1-complex is said to be connected if, given any two vertices u, v there is a path a
with i(a) = u, r(a) = v. A subcomplex of a 1-complex Sf is a subset of V{d£)\JE{S£)
which is closed under i, r, -1. If V c V{%) then the full subcomplex on V consists of V
together with all edges e of $£ where both i(e), r(e) belong to V. A maximal connected
subcomplex of a 1-complex is called a component.

If v is a vertex in a 1-complex % then

A circle is a connected 1-complex with only finitely many vertices, and such that
|Star(v)| =2 for each vertex v. A line is a 1-complex obtained from a circle by removing
one edge pair e, e~l.

Let %, ty be 1-complexes. A mapping (of l-complexes) <j>: <%^> °H is a function
sending vertices of S£ to vertices of °H, and paths in & to paths in °H, and satisfying:
(j>(lv) = l,^,,) for all v e V{S£); (p{a~x) = ^(a)'1 for all paths a in X; whenever a1a2 is
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defined {<xx, oc2 paths in $£) <t>(al)4>(a2) is defined, and <j>{ala2) = 4>{a^)(p{a2). The
mapping is said to be rigid if it preserves length, that is, L{tf>{a)) = L(a) for all paths a
(in other words, 0 takes edges to edges).

Suppose <f>: &—> % is rigid. Then

<t> Star(u) c Star(0(u)) for all 0 e

We say that # is locally injective (resp. locally surjective, locally bijective) if

is injective (resp. surjective, bijective) for all 0 e V{^£). These concepts are directly
connected to lifts. Let u be a vertex of % and let w be a vertex of % such that 0(u) = u
(we often say, in this regard, that u lies over u). If a is a path in 3f with i(a) = u then a
path <* in cfc such that i(df) = w and 0(ar) = a is called a /i/it of a at w. Now it is not difficult
to show that all possible lifts of paths of S£ exist if and only if <t> is locally surjective. Also,
one can show that lifts, when they exist, are unique, if and only if <f> is locally injective.
Thus the local bijectivity of <f> is equivalent to the condition that all possible lifts of paths
of S£ exist and are unique.

A 2-complex % is an object (#?;pA(Ae A)), where % is a 1-complex (called the
1-skeleton of 3C, and often denoted by 3if(1)) and each pA is a closed path in d£. The pk are
called defining paths. The elements of A are called indices. We will always assume in this
paper that the defining paths are non-empty and cyclically reduced.

When working with a 2-complex % as above, any use of terms such as "vertex",
"edge", "path", "connectedness", and so on, refers to the 1-skeleton of X. In particular,
V(X) = V(Se), E(X) = E{%). We say that X is finite if V{X), E{%), A are all finite.

For a 2-complex 3if, we define R(3C) to be the set of cyclic permutations of defining
paths and their inverses.

A 2-complex with a single vertex is called a presentation. If (^/;/3, ( ie / ) ) is a
presentation, and if the edges of <3/ are yu vj~\ y2, y j 1 , . . . then we will often use the
more standard notation

(yi,y2,-.-; A ('"£/))

for the presentation.
Let 3if be a 2-complex as above. We define an equivalence relation ~x (or simply ~)

on paths in 3C as follows. An elementary reduction of a path a- is a transformation of a to
axa2 if a has one of the forms a1yy~la2 (y any path), axpa2 (p e R{JC)). Then for two
paths a, a' we define a~xa' if and only if there is a sequence of paths a = a0)

alt.. . , am = a', where for i = 0, . . . , m - 1 one of or,, ai+1 is obtained from the other
by an elementary reduction. The —-equivalence class containing a is denoted by [a]x (or
simply by [a]). A path which is —-equivalent to an empty path is said to be contractible. If
a, P are paths such that a/5 is defined, then we define [a][)8] to be [cr/J]. This partial
product is easily seen to be well-defined. For a vertex v of JK, the fundamental group
n^SfC, v) of 31 at v has underlying set
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and the binary operation is the product defined above. If X is connected then the
isomorphism type of this group is independent of the choice of v. We can then refer to the
fundamental group of %.

Let J{, Z£ be 2-complexes. A mapping {of 2-complexes) from 3if to j£ consists of a
mapping of 1-complexes from 3if(1) to J?(1) which takes contractible paths in Vi to
contractible paths in 5£. If $: %-* X is a mapping of 2-complexes then we will usually use
the same letter <p to denote the underlying mapping of 1-complexes. However,
occasionally for emphasis we will use the symbol 0(1) to denote the underlying mapping of
1-complexes.

We say that a mapping of 2-complexes (f>: 3Jf—» JK is strong if it does not map any
edge to an empty path, and if (j)R(%) c R(3fC). We say that 0 is locally bijective if <j>m is
locally bijective and 4>~lR{JC) = R(%). If, in addition, % and % are connected then tf> is
called a covering. The importance of coverings stems from their connection with
subgroups of fundamental groups. We briefly record the main results.

(1.1) Let <t>:JC-*J{ be locally bijective, let a, P be paths in 3C with i(a) = i(P), and
let a, J3 be lifts of a, p with i(a) = i(p). / / a~p then a~p.

To prove this it suffices to deal with the case when p is obtained from a by an
elementary reduction. The general case then follows by induction. Thus suppose <* has
one of the forms alyy~1a2, axpa2 (p e R(%)) and P = a-la2. If a has the first form then
the local bijectivity of 0(1) guarantees that the subpath of a mapping onto yy~l will be
yy~x for some lift y of y, while if a has the second form then, since <p~lR(3£) = R(%T),
the subpath of a mapping onto p will belong to R(%). Thus in either case p is obtained
from a by an elementary reduction.

(1.2) / / <p:!K—*3£ is locally bijective and v is a vertex of 3C then the induced
homomorphism ^^'.n^JC, u ) - * ^ ^ , (f>(v)), defined by

is injective.

This follows from (1.1).

(1.3) Let y( be a connected 2-complex and let v be a vertex of JC. Let H be a subgroup
of nx{dC, v). Then there is a covering 4>H:3CH-*W and a vertex vH of %H such that

The construction is as follows.
Suppose %= {X; pk{X e A)). Let

X={[a]:i(a) = v}.

We say that two elements [a], [jS] of X are equivalent mod H if x(a) = r(/S) and
[a/3"1] e H. The equivalence class containing [or] is
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which we denote by H[a]. We define the 1-skeleton 2£H of 3CH as follows:

vertices H[a], [a]e X,

edges (H[a], e), e e E(X), [a] e X, x{a) = i{e).

For an edge (i/[ar], e), we set

[a], e) = H[a], r(H[a], e) = H[ae], (H[a\, e)'1 = (H[ae], e~l).

We take vH to be the vertex H[lv]. There is an obvious locally bijective mapping of
1-complexes $$•.%„->% which takes H[a] to T(OT) (H[a] e V(SeH)) and (H[a], e) to e
((H[a], e) e E{%H)). For a defining path pk = exe2. •. en of 3C, and a vertex H[a] of #fH
lying over i(pA), we let

]» e2)(//[ae1e2], e3). . . {H[aexe2. . .en^], en).

The defining paths of 9ifH are then all the p^>H[a]) (^ 6 A, [a] e X, r(a) = I(PA))-

2. Star-complexes of 2-complexes. Let 3if be a 2-complex. We can associate with %
a 1-complex 3T', called the star-complex of %, as follows:

vertex set of 3Fl E(%),

edge set of 3T' R(T).

If y is an edge of 3^\ then we define the inverse edge to be simply the inverse path
y"1. We also need to stipulate the endpoints of y. Ordinarily these would be denoted by
t(y), r(y). However, i(y), r(y) already have another meaning (§1). We thus use the
notation isx(y)> ^'(y)- We define tst(y) to be the first edge of y and Tst(y) to be the
inverse of the last edge of y.

It is easy to see that two vertices e, f of 3f" are in the same component only if
t(e) = i(/) , that is, only if there is a vertex v of 3Sf such that e, f e Star(u). For a vertex v
of 3if, we denote the full subcomplex of ST" on Star(v) by jt\v).

Let <p : 9£—* S£ be a strong mapping of 2-complexes. Then we have an induced (rigid)
mapping of 1-complexes

defined as follows:

on vertices of 3P\ #st(e) is the first edge of (j>(e),

on edges of 3t\ 0st(y) = 0(y).

It is easy to show that if v is a vertex of 9if then <pst maps ST"^) into
It is also easy to show that if \\>:!£-+M is another strong mapping then

(xlHp)st = %l>sl<pst. Thus st is a covariant functor from the category of 2-complexes (where
the mappings are strong mappings) to the category of 1-complexes.

We will say that a strong mapping (f> is reduced if 0st is locally injective.
In §1, we defined a mapping 0:$"-»3ir to be locally bijective if 0(1) is locally
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bijective and <j)~1R(X) = R(X). The next theorem shows that we could equally well have
defined <j> to be locally bijective if both <j>m and (j>st are locally bijective.

THEOREM 1. Let <f>:%^>3( be a strong mapping, and suppose that $(1) is locally
bijective. Then the following are equivalent:

(2.1) cf>st is locally bijective;
(2.2) 4>-1R(X) = R(%);
(2.3) for each vertex v ofHC, 0st maps ^\v) isomorphically onto

Proof. (2.1) => (2.2). Let y e R(JC) and suppose that 0(y) = y. Let tst(y) = e, and let
e be the unique edge of Star(t(y)) lying over e. By the local surjectivity of (f>st, there is an
element 6 e R{%) with ist(<5) = e and tf>st(<5) = y. Thus i{y) = i(<5) and <£(y) = <t>(6) = y.
Hence y = § by uniqueness of lifts, so y e R(%).

(2.2) => (2.3). Since 0(1) is locally bijective, <£st maps the vertex set Star(i)) of %*'($)
bijectively onto the vertex set Star(0(t))) of ^((^(v)). Now consider edges. Let yx, y2 be
edges of W\v) such that tf>st(yi) = PXYI). Then t(y,) = t(y2) (= fi) and <t>{yx) = 4>{y2),
so fi = y2 by uniqueness of lifts. Thus <£st is injective on edges of 9^st{v). To see that
^s t :3Tt(w)^ J^\HV)) is surjective on edges, let y be an edge of j/e\(f>{v)). By (2.2), the
(unique) lift y of y at v belongs to R{JC) and is thus an edge of ^(v). Moreover,
tf>st(y) = y.

(2.3) => (2.1). This is a consequence of the following obvious result. Let M and 93 be
1-complexes, each expressed as a disjoint union of subcomplexes:

si = KJsih ® = U %
16/ jeJ

Let 0: jtf —» 93 be a rigid mapping such that for each i el, 6 maps .s#, isomorphically onto
some 98y(l-). Then 0 is locally bijective.

This proves Theorem 1.

It should be remarked that, under the assumption that <pm is locally bijective, (2.1) is
equivalent to

(pst is locally surjective.

This is a consequence of the following easily proved fact: if \p:!£-*M is a strong
mapping, and if xpm is locally injective, then ipst is locally injective.

Mappings $: %-> % for which 0st is locally bijective (but where 0(1) may not be
locally bijective) have been considered by S. M. Gersten [5].

3. Hyperbolic complexes. A weight function on a 1-complex is a mapping m from
the edge set into U such that m{e~l) = m{e) for all edges e. If exe2. . .en is a path in the
1-complex (where the e, are edges) then the weight m(e1e2.. • en) of the path is defined to
be
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The situation we will be interested in is when we have a 2-complex X and a weight m
on JF1. We will use the notation (3fC, m) to denote this situation. For an element
y = exe2- • . en of R{3C) (where the e's are edges of %), we define m*{y) to be

If <j>: %—> 3Sf is a strong mapping then we obtain from m an induced weight function m on
3Pl via tf>st.

Following Gersten [4], we say that {JC, m) is hyperbolic if:

(3.1) m*(y)<L(y) -2 /or a// ye/?(3f),
(3.2) the weight of any non-empty cyclically reduced closed path in JIC1 is at least 2,
(3.3) there exists a non-negative real number N such that every reduced path in 9f"

has weight greater than or equal to —N.

Note that in Gersten's definition of hyperbolic, m is required to take non-negative
values, but we impose the weaker condition (3.3) here. This will enable us to obtain a
subdivision theorem (Theorem 5).

Note further that Gersten also considers pairs (3C, m), where m satisfies (3.2) and a
weakening of (3.1) where the strict inequality is replaced by =£ (in addition, m is no
longer required to take only non-negative values). As Gersten shows (and as one can very
easily prove), under these conditions there can be no reduced rigid mapping from a
sphere into % (Gersten's "weight test" for diagrammatic reducibility).

We will say that a complex X is hyperbolic if there is an m such that (3C, m) is
hyperbolic. We will say that a group is hyperbolic if it is isomorphic to the fundamental
group of a connected hyperbolic complex.

It is easy to see that if (35f, m) is hyperbolic and if <j>: 3C-* 3C is a strong mapping
which is rigid and reduced (for example, <f> could be a covering) then {JC, m) is
hyperbolic, where m is the induced weight function. We deduce, in particular (making use
of (1.2), (1.3) and Theorem 1) that the class of hyperbolic groups is closed under taking
subgroups.

4. The dependence problems for hyperbolic complexes. Let 3C be a 2-complex and
let (<w0, ft>i, . . . , a>k) be a sequence of non-empty cyclically reduced closed paths in 3Sf.
We write

( W j , ...,0)k)\-(00

if there is a subset {iu . . . , i,} of { 1 , . . . , k} and paths JJU . . . , rj, such that

If n is a positive integer or °°, then the dependence problem DP(n) asks for an
algorithm to decide for any sequence {w0, a>x,..., a>k) (0*zk<n) whether or not

, . . . , (Ok)\-(O0.
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Note that DP(1) and DP(2) are just the word problem and conjugacy problem for %,
respectively.

THEOREM 2. Suppose {dC, m) is hyperbolic and JK is finite. Then DP(°°) is solvable
for X.

In order to prove this result we introduce the concept of a diagram.

Let S be a tesselated sphere. We associate with 5 a 2-complex ^ as follows. The
vertices of % are the vertices of 5. Let e be an edge of 5 with endpoints u, v, and choose
an orientation of e, say running from u to v. Then e gives rise to an inverse pair e+, e_ of
edges of % with i(e+) = w, r(e_) = v. Let D be a region of 5 and choose a fixed but
arbitrary vertex w on 3D. Read around 3D in the clockwise direction starting at w. If we
traverse an edge e in the direction of its orientation we write down the symbol e+, and if
we traverse e against its orientation we write down e_. In this way we obtain a closed path
fiD. The defining paths of % are all the paths jSD as D ranges over the regions of S. (Note
that ^s is not uniquely denned; it depends on the choice of orientation of the edges of 5,
and also on which vertices we choose to start reading around the boundaries of regions.
However, this ambiguity is of no great consequence.)

A diagram over a 2-complex Z£ is a triple (5, 0 , <j>), where 5 is a finitely tesselated
sphere, 0 is a subset of the set of regions of 5, $ is a strong rigid mapping from

to if. The diagram is said to be reduced if #st is locally injective. The image of a path
under <p is called the label of the path. The regions in 0 are called distinguished regions.

(4.1) ((ol, co2, . . . , o)k)\-o)o if and only if there is a {reduced) diagram
{S, {DQ, D u . . . , D , } , </>) over % with <j>(pDo) = co0 and (<l>(PDl), ..., tf>(/3o,)) a sub-
sequence of ( a> i , . . . , o)k).

This result is proved by arguments like those in Section V.I of [11]. We sketch the
proof briefly. The "if" part is proved in a similar way to the proof of Lemma V.I.2 of
[11]. To prove the "only if" part, suppose (o)u . .. , cok) h co0. Then (OQ1 is equivalent in
i?(1) to a product

fl Y
where some subsequence (6h,..., 6,) of (6U ..., dr) is a subsequence of (a>u ..., cok)
and for i±jx, . . . , / /> <5,-e/?(i?). Among all products of the above form which are
equivalent to (OQ1 in if(1), choose one with r minimal. Then, starting with the usual
"bunch of lollipops" labelled as indicated and "sewing up the boundary" (see [11, pp.
237-238]), we obtain a diagram as required in (4.1). See overleaf.

As a consequence of (4.1) we have the following easily proved result.

(4.2) Assume !£ is finite. Suppose that for 0^l<n there are recursive functions g, of
I + 1 variables such that whenever (S, {Do, Du . . . , D,}, (p) is a reduced diagram over £6,
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the number of regions of S is bounded above by g,(L(/3Do), . . . , L(/3D,)). Then DP(n) is
solvable for &.

We now prove Theorem 2 by verifying that (4.2) holds. We will show that we can
take

where

g,(z0) zu .. . , z,) = 1 +
3 +

= 0, 1, 2, . . .),
i=O

£ = min{L(y) - m*(y) - 2: y e R(%)}.

Thus we must show that if 5 is a finitely tesselated sphere with regions Do, D1, . . . , Dr,
and if (5, {Do,... , D,}, 0) is a reduced diagram over 3C, then

(4.3)
;=o

We can assume that 5 has more than two regions, otherwise the result is trivial. Let

and let m be the induced weight function. Let

where 6 ranges over R(%). Now since S has more than two regions, each component of
<#s is a circle. If we remove all the edges of ^ which are cyclic permutations of
/3cb> • • •, /3D,1, we obtain a collection of circles and lines. Suppose there are c circles and
d lines. Then

i = 0

i = 0
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For each circle, the weight of the closed path going once around the circle is at least 2.
For each line, the weight of the path determined by the line is at least —TV. Thus

s 3= 2c - Nd

~ L(fiD).
I =0 ' 1=0

But we also have

t (L(fiD)-(2

i = 0

Eliminating s between these two inequalities, and using the fact that
21 V(«.s)| - \E(%)\ + 2(r + 1) = 2x(S) = 4, we obtain

re =£ -2 + (1 + N) £ L(PD) +1(2 + e)
i = 0

( = 0

1=0

which gives (4.3).

5. Small cancellation complexes. Throughout this section we will assume for
convenience that % is a 2-complex satisfying the condition that each defining path has
length greater than 1. This assumption will not be repeated.

A non-empty path n in % is called a piece if there are distinct elements na,
jzf}eR(%). The complex % satisfies the small cancellation condition C(p) (p a positive
integer) if no element of R(3fC) is the product of less than p pieces. This condition is only
of use when considered in conjunction with another small cancellation condition T(q),
where q is an integer greater than 2 and l/p + 1/q =£ \. In [6] we gave a formulation of the
T(q) condition in terms of star-complexes, namely, JK satisfies T(q) if and only if there
are no cyclically reduced closed paths in SK*1 of length / with 3^l<q. Let us now say that
3fC satisfies the f(q) condition if there are no non-empty cyclically reduced closed paths in
3Tl of length less than q.
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If 3if satisfies T(q) then it will also satisfy f(q) provided there are not distinct edges
y, 8 in 3T with ist(y) = ist(<5), rst(y) = rst(6).

Now observe that if we have y, 8 as above, then we have a piece of length 2, namely/ le.
For there are distinct paths a, fi with y = eocf ~\ 6 = e/3/"1. Conversely, if we have a
piece f~xe of length 2 then we have edges y, 6 in 3P' with ist(y) = ist(8) = e,
rst(y) = Tst(<5) =/ . Thus a T(q)-complex satisfies f(q) if and only if there are no pieces of
length 2.

Now if 3if satisfies t{q) then, since there are no pieces of length 2, 'X will satisfy C{p)
if and only if, for each defining path p, L{p) > p unless p contains an edge which is not a
piece. We will say that a C(p), f(^)-complex is non-degenerate if L(p)=*p for each
defining path p.

Having introduced the t(q) condition, let us now observe that ifq^5 then T(q) and
t(q) are the same property. For suppose jfc satisfied T(q) but not f(q) (q 5=5). Then in
Sf" there would be a reduced closed path of length 2. The square of this would then be a
reduced closed path of length 4, contradicting T(q).

We see in particular from the previous paragraphs that in a T(6)-complex there are
no pieces of length 2, and the complex satisfies C(3) if and only if for each defining path p,
L(p) 5= 3 unless p contains an edge which is not a piece. Some results concerning C(3),
7(6)-groups can be found in [3].

It is interesting to observe how the properties C(p), T(q), T(q) behave with respect
to mappings of 2-complexes.

THEOREM 3. Let <^>:'3C^*VCbe a strong mapping.

(i) / / <£(1) is locally injective and if 3C satisfies C(p) then % satisfies C(p).
(ii) If <pst is locally injective and if % satisfies T(q) (or f(q)) then % satisfies T(q) (or

t
Proof, (i) First observe that if n is a piece in $C then 0(ir) is a piece in %. For there

are distinct elements na, MJ5 e R(%), and then 0(ir)0(ar), 4>(n)4>(P) are elements of
R(JC), which are distinct (by uniqueness of lifts).

It now follows that if nxn2. . .nr is a factorization of an element y of R(X) into
pieces then 0(jr1)^>(^r2)- • • <t>(Xr) is a factorization of <p(f) into pieces. Thus r ^p.

(ii) It is a general result that the image of a cyclically reduced closed path under a
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locally injective mapping is a cyclically reduced closed path. Hence if 0st is locally
injective and if there is a cyclically reduced closed path in ̂  of a certain length /, then
there will be a cyclically reduced closed path in 3T' of length /.

Let us say that a group is a C(p), T(q)-group (or a C(p), f(q)-group) if it is
isomorphic to the fundamental group of a connected C(p), r(^)-complex (or a C(p),
f (^)-complex). Then using Theorem 3 together with (1.2), (1.3) and Theorem 1, we
obtain the following result.

COROLLARY. The class of C(p), T(q)-groups, and the class of C(p), T(q)-groups, is
closed under taking subgroups.

This result is essentially that of Comerford [1].

We now relate small cancellation complexes to hyperbolic complexes.

THEOREM 4. IfdCis a non-degenerate C(p), T(q)-complex, where 1/p + \\q < \, then
jf£ is hyperbolic.

Proof. Define a weight function m on 3T' by setting m{y) = 21 q for each edge
y e R(PC) of 3P'. Then the weight of any non-empty cyclically reduced closed path in S^1

is at least 2, since such a path has length at least q. Also, for any yeRffl), since
P, we have:

' ' p \ i

2

= 2.

Thus (3if, m) is hyperbolic.

COROLLARY. Any non-degenerate C(7), f (3)-, C(5), f (4)-, C(4), 7(5)-, or C(3),
T(7)-complex is hyperbolic.

We remark that, in general, non-degenerate C(6), f(3)-, C(4), f(4)-, and C(3),
T(6)-complexes need not be hyperbolic, as the presentations

(a, b, c;a-lb-lc-labc), {a, b;a-lb-lab), (a, b, t;a-
lb-xr\ tab)

show.

6. Subdividing defining paths. Let 3C= (%;pk(ke A)), where we assume that no
pA is a cyclic permutation of p " (v + A). Let \i be an element of A and suppose that afi is
a cyclic permutation of pM. Adjoin to % a new edge pair t, t'1 with i(t) = t(a),
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r(r) = x(a) giving a 1-complex S£o, and let

% = < % ; P A ( A 6 A , A # / I ) , o r 1 , # ) .

We say that 3if0 is obtained from X by subdividing the defining path

167

P • a

We will be particularly interested in the above operation in the case when p^ is not a
proper power. In this case, 3i$ is obtained from 3T* in a particularly simple way. Each of
the edges afi, fia is subdivided into two:

at 'P

The only exception to this is when one of a, j3 is empty. If /? (say), is empty, then the
edge a gets subdivided into three:

t r1

The remaining edges of 3T' which are cyclic permutations of pM are changed as follows:

(a = a,ar, a,, ar non-empty)

= Pfir, P,, j8, non-empty)

The edges of 3f" which are not cyclic permutations of p*1 are left unchanged.

THEOREM 5. If JC0 is obtained from 3C by subdividing a defining path which is not a
proper power, then f̂0 « hyperbolic if and only if % is hyperbolic.

We remark that if X is hyperbolic and jfC0 is obtained from % by subdividing a
denning path which is a proper power then Xo may not be hyperbolic. For example, let X
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be the presentation (a, b; {a~lb~xabf). Then X is hyperbolic (it satisfies C(8), T (4)).
However, if 3fo= {a, b, t; a~1b~1abt~1, ta~lb~lab) then JC0 is not hyperbolic.

In our proof of Theorem 5 we will take JK and 3£0 to be as in the discussion preceding
the statement of the theorem, and we will assume that pM is not a proper power. If one of
a, P is empty then, as above, we will assume that P is empty.

Suppose that m and m0 are weight functions on 3f", %% respectively which are
related to each other as follows. For each edge y which is not a cyclic permutation of p * \
m(y) = mo(y). For an edge arpat (resp. PraP,) of 3T" and the corresponding edge art~

lai
(resp. prtp,) of %$, m(afia,) = md(aj-1al) (resp. m(prap,) = mo(prtp,)). (With an eye
to future computations we let c (resp. d) denote the sum of the m-values of all edges of
ST* of the form arp<x, (resp. PraP,).) Finally

m{aP) = mo(at~1) + mo{tp) and

m(Pa) = mo(Pt) + mo{t~la) if P is non-empty, (6.1)

m(a) = mQ{cct~y) + mo(t) + mo(t~
la) if P is empty.

Then it is clear that (3.2) and (3.3) hold for (3if0, m0) if and only if they hold for
(X, m).

Moreover, suppose that (3.1) holds for (%, m0). Then (3.1) holds for {X, m). To
establish this we must show that

If P is non-empty we have

m*(pfl) = m(aP) + c + d + m(Pa)

= (mo(a-r1) + c + mo(r1or)) + (mo(/3f) + d + mo(tp))

< (L(a) + 1 - 2 ) + (L(p) + 1-2)

= L(pM)-2,

while if p is empty we have

= mt{aCl) + mt{t)

<(L(or) + l - 2 ) + ( l - 2 )

= L(p , ) -2 .

Now suppose that (3.1) holds for {%, m). Then (3.1) will hold for (3Sf0, m0) provided
the following conditions are satisfied.

mo{aCl) + c + mo{rxa) < L{a) - 1. (6.2)

mo(Pt) + d + mo(tp) < L(P) - 1 if p is non-empty,
mo(t) < - 1 if P is empty.
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These conditions are compatible with those already imposed. To see this, let

-d = m*(pll)-L(ptl) + 2

(note then that 6 > 0), and let K be any real number. Put

a

mQ{aT*) = K, moit^a) = L(a) - 1 - K - C - - ,

mo(t/5) — m(af5) — K and

mo(/fr) = m(/3ar) - L{a) + 1 + K + c + - if /3 is non-empty,

mo(t) = m(a) - L(a) + l + c + - if >3 is empty.

Then clearly (6.1) and (6.2) are satisfied. Also, (6.3) is satisfied. For, if /? is non-empty,
we have

= m(/Sor) - L(a) + l + K + c + - + d + m{afi) -K- L(/3)

Q
= (m(P<x) + c + d + m(aP)) - L{aP) + 2 + -

- . * !

On the other hand, if p is empty then

mo(t) + 1 = m(a) + c - L{a) + 2 + -

Note added in proof. Concepts of hyperbolicity in group theory are discussed in
great detail in a recently published paper by M. Gromov [14].
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