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Exact Filling of Figures with the
Derivatives of Smooth Mappings
Between Banach Spaces

D. Azagra, M. Fabian and M. Jiménez-Sevilla

Abstract. We establish sufficient conditions on the shape of a set A included in the space Ln

s
(X,Y )

of the n-linear symmetric mappings between Banach spaces X and Y , to ensure the existence of a

Cn-smooth mapping f : X → Y , with bounded support, and such that f (n)(X) = A, provided that X

admits a Cn-smooth bump with bounded n-th derivative and dens X = dens Ln(X,Y ). For instance,

when X is infinite-dimensional, every bounded connected and open set U containing the origin is the

range of the n-th derivative of such a mapping. The same holds true for the closure of U , provided that

every point in the boundary of U is the end point of a path within U . In the finite-dimensional case,

more restrictive conditions are required. We also study the Fréchet smooth case for mappings from R
n

to a separable infinite-dimensional Banach space and the Gâteaux smooth case for mappings defined

on a separable infinite-dimensional Banach space and with values in a separable Banach space.

1 Introduction

Several properties related to the set of derivatives of smooth bumps have been studied

recently. In particular, the questions as to how small, how large, and the shape of the
set of derivatives of a smooth bump defined on a Banach space, have been considered.

Ekeland’s variational principle [8] easily implies that if b is a continuous Gâteaux
smooth bump on a Banach space X, then the norm closure of b ′(X) contains the
origin as an interior point. If, in addition, X has the Radon–Nikodým property,
it follows from Stegall’s variational principle that the cone generated by the set of

derivatives C(b) := {λb ′(x) : x ∈ X, λ ≥ 0} is a residual set in X∗. It was proved
in [1] that if X has a C1-smooth and Lipschitzian bump, then there exists another
C1-smooth bump whose derivatives fill the whole dual space X∗. This result was gen-
eralized in [2] for higher orders of differentiability and for mappings, with bounded

support, from X to another Banach space Y , under certain conditions on X and Y .
Also, it was proved in [2] that, if X is a separable Banach space, then there always
exists a continuous Gâteaux smooth bump whose derivatives fill all of the dual space.
On the other hand, in [4] there is an example of a C1-smooth Lipschitzian bump on

ℓ2 such that the cone generated by the set of its derivatives has empty interior. Also, as
a consequence of a result of Hájek’s [11], we know that if f is a C1-smooth function
defined on c0 with locally uniformly continuous derivative, then f ′(c0) is contained
in a countable union of compact sets, and thus the cone generated by the set of its
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derivatives is of the first Baire category. We refer to [3, 9] for more information on
the size of the set of derivatives of a smooth bump.

The paper [6] studies the shape of the set of gradients of a C1-smooth bump de-

fined on R
n. It was proved there that such a set cannot be locally contained in a

hyperplane. It was also proved there that this set may fail to be simply connected,
and there was constructed a C1-smooth bump on R

n whose set of gradients fills in
any pre-fixed “reasonably looking” compact set containing the origin as an interior

point. For instance, this holds true for every compact convex set containing the origin
in its interior. In [7], the same problem was considered for C1-smooth and Lipschitz
bumps defined on infinite-dimensional Banach spaces. They proved the following:

Let X be an infinite dimensional Banach space with a C1-smooth and Lipschitz

bump. Let Ω ⊂ X∗ be an open connected set containing the origin and satisfying

that there exists a summable sequence a0, a1, a2, . . . of positive numbers such that

every η ∈ Ω̄ can be expressed as limi→∞ ξi for some sequence 0 = ξ0, ξ1, ξ2, . . .
in Ω such that ‖ξi+1 − ξi‖ < ai , and that the linear segment [ξi , ξi+1] lies in

Ω for every i = 0, 1, 2, . . . . Then there exists a C1-smooth and Lipschitz bump

b : X → [0, 1] so that b ′(X) = Ω.

From this result it follows that every open connected set in X, containing the origin,
is the range of the first derivative of a C1-smooth bump defined on X.

In this paper we provide, under weaker assumptions on Ω, a C1-smooth bump
so that b ′(X) = Ω. We study the analogous problem for higher order derivatives

and establish some results that generalize the above mentioned theorems in both
infinite-dimensional and finite-dimensional cases. If X and Y are Banach spaces and
n ∈ {0, 1, 2, . . .}, then Ln

s (X,Y ) stands for the (Banach) space of n-linear symmetric
mappings from X to Y . We define L0

s (X,Y ) = Y . We prove, for p ∈ {0, 1, . . . ,∞}:

If an infinite-dimensional Banach space X has a C p-smooth bump with bounded

derivatives, and dens X = dens Ln
s (X,Y ) for some 0 ≤ n ≤ p, then there exists a

C p-smooth mapping f : X → Y , with bounded support, such that f (n)(X) = U ,

where U ⊂ L
n
s (X,Y ) is a pre-set open bounded and connected set, containing

the origin. If, in addition, every point of the closure U of U is the end point of a

path within U , then there exists a Cn-smooth mapping g : X → Y , with bounded

support, such that g(n)(X) = U .

This result is close to being a characterization of the set of derivatives of a smooth
bump since, if the set U is the range of the n-th derivative of a Cn-smooth mapping,
then it is necessarily path-connected. However, when X is finite-dimensional, the

above result does not hold true and more restrictive conditions must be assumed, see
an example below. We prove the following result:

Let n, m, p ∈ N and consider an open, bounded, and connected subset U ⊂
L

p
s (R

n, R
m) containing the origin. If for every ε > 0 there is a finite family of

open connected subsets of U , covering U , each one with diameter less than ε, then

there exists a C p-smooth mapping f : R
n → R

m, with bounded support, so that

b(p)(R
n) = U .
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In the last section, we first consider mappings from R
n to an infinite-dimensional

separable Banach space Y . We prove:

If a nonempty open subset U ⊂ L(R
n,Y ) satisfies the conditions required in

the infinite-dimensional case (above), then there are Fréchet smooth mappings

b, g : R
n → Y , with bounded support, so that b ′(R

n) = U and g ′(R
n) = U .

Finally, we prove:

When X and Y are separable Banach spaces and X is infinite-dimensional, then

there exists a uniformly Gâteaux smooth mapping with bounded support

f : X → Y so that f (X) = BY and f ′(X) = BL1
s (X,Y ).

This sharpens results from [2] where smooth mappings b and g were constructed so
that BL1

s (Rn,Y ) ⊂ b ′(R
n) in the first case, and BY ⊂ g(X), BL1

s (X,Y ) ⊂ g ′(X) in the
second case.

2 The Case of C
n-Smooth and Lipschitz Mappings with Bounded Sup-

port

We begin with a lemma which tells us that, for a polygonal curve P in the space
of symmetric n-linear mappings Ln

s (X,Y ), one can always find a bump whose n-th
derivative’s range contains a suitable neighborhood of P and is contained in another
(larger but not much larger) neighborhood of P. This lemma is our main tool to con-

struct bumps with a prescribed range of derivatives. By a polygonal curve in a Banach

space Z we understand any set (z0, z1, . . . , zk) :=
⋃k−1

i=0 [zi , zi+1], where [zi , zi+1] is the

linear segment joining the points zi and zi+1 in Z, and k is any positive integer. We
say that this polygonal curve goes from z0 to zk.

Lemma 2.1 Let p ∈ {0, 1, . . . ,∞} and let n be an integer with 0 ≤ n ≤ p. Let X

be an infinite-dimensional Banach space admitting a C p-smooth bump b with bounded

derivatives, and let Y be another Banach space such that dens Ln
s (X,Y ) = dens X.

Consider a polygonal curve P in Ln
s (X,Y ) from 0 to a point Q. Then there is a constant

M > 1 (which only depends on the spaces and not on the polygonal curve) so that for

any ε > 0 there exists a C p-smooth mapping g : X → Y , with support in BX and with

bounded derivatives, such that

‖g(k)‖∞ := sup{‖g(k)(x)‖ : x ∈ X} ≤ 4ε, for k = 0, 1, . . . , n − 1,

P +
ε

M
BLn

s (X,Y ) ⊂ g(n)(X) ⊂ P + 2ε BLn
s (X,Y ),

and g(n) |δBX
≡ Q for some δ > 0.

Moreover, if n < i ≤ p, the i-th derivative g(i) is bounded by a constant which only

depends on i, ε, M and the length of the polygonal curve.

Proof First step: If X has a C p-smooth bump with bounded n-th derivative, by com-
posing it with a suitable C∞-smooth bump on R, we obtain a C p-smooth bump b
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with bounded image, bounded derivatives and with b(δBX) = 1 for some δ > 0.
We may assume that the support of b is included in 1

2
BX . By the results obtained

in [2], there is a C p-smooth mapping r : X → Y , with bounded derivatives, so that
r(n)(X) contains BLn

s (X,Y ). We may assume, up to suitable dilations (replacing r by
x 7→ λr( x

λ ), for λ > 0 small enough) and a translation, that the support of r is
included in BX and is disjoint from the support of b.

Second step: Notice that the derivatives b, b ′, . . . , b(n), r, r ′, . . . , r(n) are all bounded.

Denote by BPn(X,Y ) the unit ball of the Banach space P
n(X,Y ) of n-linear homoge-

neous and continuous polynomials from X to Y . Then for any element S ∈ BLn
s (X,Y ),

take R ∈ BPn(X,Y ), so that S is the n-th derivative of R and define then the mapping
h : X → Y , by

h(x) = b(x)R(x) + r(x), x ∈ X.

Clearly, the mapping h has support in BX , is C p-smooth with bounded derivatives
and h |rBX

≡ R |rBX
for some r > 0; then h(n) |rBX

≡ S. Let us fix M > 1 so that
M ≥ max{‖h(i)‖∞ : i = 0, 1, . . . , n − 1}. Equally, h(i) is bounded by a constant Mi ,

if n < i ≤ p. The constants M and Mi do not depend on the considered S ∈ BLn
s (X,Y ),

since the derivatives of the corresponding k-homogeneous polynomial R are bounded
by 1.

Third step: Let P = (R0 = 0, R1, . . . , Rs = Q) be a given polygonal. Then there is
a family of points {Q0 = 0, Q1, . . . , Qk = Q} satisfying that ‖Q j − Q j−1‖ ≤ 2ε

M
,

the polygonal curve P is included in
⋃

j(Q j + 2ε
M

BLn
s (X,Y )) and k 2ε

M
≤ l + 1, where l

denotes the length of the polygonal curve P. By the second step, there are C p-smooth
mappings h j : X → Y , j = 1, 2, . . . , k, with support in BX , with bounded derivatives,

and with ‖h(i)
j ‖∞ ≤ 2ε for i = 0, 1, . . . , n, ‖h(i)

j ‖∞ ≤ 2εMi

M
for i = n + 1, . . . , p, and

with

2ε

M
BLn

s (X,Y ) ⊂ h(n)
j (X) ⊂ 2εBLn

s (X,Y ),

h(n)
j |δBX

≡ Q j − Q j−1, for j = 1, . . . , n and some δ > 0.

Then we define the mapping g : X → Y by

g(x) = h1(x) +
( δ

2

) n

h2

( 2

δ
x
)

+ · · · +
( δ

2

) n(k−1)

hk

(( 2

δ

) k−1

x
)

, x ∈ X.

Notice that the support of g is included in BX and if we take γ =
δk

2k then g(n) |γBX
≡ Q.

Clearly, g is C p-smooth,

‖g(i)‖∞ ≤ ‖h(i)
1 ‖∞ +

δ

2
‖h(i)

2 ‖∞ + · · ·+
( δ

2

) k−1

‖h(i)
k ‖∞ ≤ 4ε, i = 0, 1, . . . , n− 1.

and
k

⋃

j=1

(Q j +
2ε

M
BLn

s (X,Y )) ⊂ g(n)(X) ⊂
k

⋃

j=1

(Q j + 2ε BLn
s (X,Y )).
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This implies that P + ε
M

BLn
s (X,Y ) ⊂ g(n)(X) ⊂ P + 2ε BLn

s (X,Y ).
Finally, for n < i ≤ p we have

‖g(i)‖∞ ≤
k

∑

j=1

2εMi

M

( 2

δ

) ( j−1)(i−n)

=
2ε Mi

M

( 2
δ )(i−n)k − 1

( 2
δ )(i−n) − 1

≤
4ε Mi

M

( 2

δ

) (i−n)((l+1)Mε−1)

Remark 2.2 When checking the proof of the above Lemma we observe that:

(i) When dim X < ∞ and dim Y = ∞, Lemma 2.1 holds if we replace C p-smooth-
ness with Fréchet smoothness and the inequalities and inclusions there hold for

n = 1.
(ii) When X and Y are separable Banach spaces and dim X = ∞, Lemma 2.1 holds if

we replace C p smoothness with uniformly Gâteaux smoothness and the inequal-
ities and inclusions there hold for n = 0, 1.

Now, when X is infinite-dimensional and under the above hypotheses on X and
Y , we can easily deduce that every open connected subset of Ln

s (X,Y ) that contains
the origin can be regarded as the range of a higher order derivative of some mapping
with bounded support. Thus we see that there are no restrictions on the shape of

an open connected set in order to be the range of a higher derivative of a smooth
mapping with bounded support.

Theorem 2.3 Let p ∈ {0, 1, . . . ,∞} and let X,Y be Banach spaces with dim X =

∞. Assume that X admits a C p-smooth bump with bounded derivatives and

dens L
n
s (X,Y ) = dens X

for some 0 ≤ n ≤ p. If U ⊂ Ln
s (X,Y ) is a pre-fixed open, bounded and connected set

with 0 ∈ U , then there is a C p-smooth mapping h : X → Y with bounded support such

that h(n)(X) = U .

Proof Let U be as above. Let D be a dense subset in U whose cardinality is equal to

the density of X. Add 0 to D. Let P denote the set of all polygonal curves lying in U ,
beginning at 0 and with vertices in D. Clearly, the cardinality of P is equal to dens X.
For every rational number 0 < ε < 1 and for every P ∈ P such that P +2ε BLn(X,Y ) ⊂
U we find a mapping gP,ε : X → Y satisfying the properties from Lemma 2.1. Let us

relabel the family of these bumps as {gα}α∈Γ, where card Γ = dens X.
Consider a bounded family of 3-separated points {xα}α∈Γ. Define

h(x) =

∑

α∈Γ

gα(x − xα), x ∈ X.

Let us check that the bump h fulfills the required conditions. Notice that for every
x ∈ X there is at most one non-zero summand in the above definition, which remains
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the same in a neighborhood of x. Thus, h is a C p-smooth mapping with bounded
support and h(n)(X) ⊂ U . Let us check that U ⊂ h(n)(X). Since U is connected and

open, for any Q ∈ U , there is a polygonal curve P = (Q0 = 0, Q1, . . . , Qm = Q)
and 0 < ε < 1/2 so that P + 4εBLn

s (X,Y ) ⊂ U . We may assume, by the density of D

in U , that Q0, Q1, . . . , Qm−1 ∈ D. Also, take Q ′
m ∈ D so that ‖Q ′

m − Q‖ < ε
M

. The
polygonal curve P ′

= {Q0 = 0, Q1, . . . , Qm−1, Q ′
m} ∈ P and, since P ′+2ε BLn

s (X,Y ) ⊂
P + 4εBLn

s (X,Y ) ⊂ U , the associated mapping gP ′,ε belongs to the family {gα}. From

Lemma 2.1 we obtain that Q ∈ P ′ + ε
M

BLn
s (X,Y ) ⊂ g(n)

P ′,ε(X) ⊂ h(n)(X) and the proof
is finished.

Remark 2.4 Notice that the above result is a generalization for the case 0 ≤ n ≤ p

of the results given in [7] for n = p = 1. We cannot deduce that h(n+1) is bounded.
Actually, if the n + 1-th derivative of h were bounded, then U should satisfy the fol-

lowing property: there exists M > 0 so that for every point x ∈ U , the points 0 and x

can be connected by a path within U of length bounded by M. However, for every Ba-
nach space of dimension bigger than one, there are open sets which do not have this
property. Our next theorem further extends the family of sets which can be written

as h(n)(X).

Theorem 2.5 Let X,Y be a Banach space with dim X = ∞. Assume that X has a

Cn-smooth bump with bounded n-th derivative and assume that

dens X = dens L
n
s (X,Y ).

Let U ⊂ Ln
s (X,Y ) be an open, bounded, connected set with 0 ∈ U , so that for every Q

in the boundary ∂U of U there exists a (continuous) path from 0 to Q through points

of U . Then there exists a Cn-smooth mapping h : X → Y such that h(n)(X) = U .

Proof Since we have already constructed a mapping with the required smoothness
conditions so that the image of the n-th derivative is U , we just need to construct a
mapping (with the same kind of smoothness) whose n-th derivative is included in

the closure of U and covers ∂U . If the reader prefers a direct proof (which does not
rely on Theorem 2.3), consider the argument below for every point of U .

Let D be a dense subset of U , with cardinality equal to the density of X. Take any
Q ∈ ∂U . By hypotheses, we select a path from 0 to Q through points of U . Therefore
we may choose a sequence Q0, = 0, Q1, Q2, . . . , of elements of D, with limit Q (in

norm), and polygonal curves Pi , included in U , from Qi−1 to Qi , so that, for every
i ≥ 2, the polygonal curves Pi , Pi+1, Pi+2, . . . are included in Q + 1

2i+2 BLn
s (X,Y ). Let

us denote by P the family of these obtained “infinite polygonal curves”. Then, every
P ∈ P can be identified with the infinite sequence of the points Qi , P = {Q0 =

0, Q1, Q2, . . . }. Finally, for every k ∈ N, we define

Pk =
{

R = {Q0 = 0, Q1, . . . , Qk} : there is P ∈ P whose

first k + 1 points are Q0 = 0, Q1, . . . , Qk

}

.
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For every R ∈
⋃∞

k=1 Pk we construct a Cn-smooth mapping gR : X → Y , with
bounded n-th derivative, and εR > 0 in the following way:

Step 1. For every R = {0, Q1} ∈ P1 there is a polygonal curve PR and 0 < εR <
1/23 so that PR + 2εRBLn

s (X,Y ) ⊂ U . By Lemma 2.1, there is a Cn-smooth mapping

gR : X → Y , with support in BX , such that ‖g(k)
R ‖∞ ≤ 4εR for k = 0, 1, . . . , n − 1,

and there is 0 < δR < 1 such that

g(n)
R |δR BX

≡ Q1 − Q0 = Q1, and g(n)
R (X) ⊂ PR + 2εR BLn

s (X,Y ).

Step 2. For every pair (Q1, Q2), where R = {0, Q1, Q2} ∈ P2 we select a polyg-

onal curve PQ1,Q2
from Q1 to Q2 so that PQ1,Q2

is included in a ball of radius 1
24 .

Take 0 < εR < 1
24 so that PQ1,Q2

+ 2εRBLn
s (X,Y ) ⊂ U . By Lemma 2.1, there is a

Cn-smooth mapping fR : X → Y , with support in BX , such that ‖ f (k)
R ‖∞ ≤ 4εR, for

k = 0, 1, . . . , n − 1, and there is 0 < γR < 1 such that

f (n)
R |γRBX

≡ Q2 − Q1, and Q1 + f (n)
R (X) ⊂ PQ1,Q2

+ 2εRBLn
s (X,Y ).

Then, if R ′
= {0, Q1}, we define

gR(x) =

( δR ′

8

) n

fR

( x

δR ′/8

)

, x ∈ X.

The mapping gR : X → Y is Cn-smooth, the support is included in
δR ′

8
BX and

‖g(k)
R ‖∞ ≤ δR ′

8
4εR ≤ 4εR, for k = 0, 1, . . . , n − 1. Also, there is 0 < δR < δR ′

8

with

g(n)
R |δR BX

≡ Q2 − Q1, and Q1 + g(n)
R (X) ⊂ PQ1,Q2

+ 2εRBLn
s (X,Y ).

Step 3. In general, for k ≥ 2 and for every R = {0, Q1, . . . , Qk−1, Qk} ∈ Pk, we
select a polygonal curve PQk−1,Qk

from Qk−1 to Qk so that PQk−1 ,Qk
is included in a ball

of radius 1
2k+2

. Take 0 < εR < 1
2k+2

so that PQk−1,Qk
+2εRBLn

s (X,Y ) ⊂ U . By induction on

k ∈ N we define, for every R = {0, Q1, . . . , Qk−1, Qk} ∈ Pk, a Cn-smooth mapping

gR : X → Y , whose support is included in
δR ′

8
BX , where R ′

= {0, Q1, . . . , Qk−1} and

‖g(k)
R ‖∞ ≤ 4 εR, for k = 0, 1, . . . , n − 1;

g(n)
R |δR BX

≡ Qk − Qk−1, for some 0 < δR <
δR ′

8
;

Qk−1 + g(n)
R (X) ⊂ PQk−1,Qk

+ 2εRBLn
s (X,Y ).

If j ≥ i and R = {0, Q1, . . . , Q j} ∈ P j , R ′
= {0, Q ′

1, . . . , Q ′
i } ∈ Pi , we shall

write R ′ ≤ R whenever Q1 = Q ′
1, . . . , Qi = Q ′

i . Let us select within 4 BX a family of
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points {xR : R ∈ Pk, k ∈ N} with the properties:

‖xR − xS‖ > 2, if R, S ∈ P1 and R 6= S,

‖xR − xS‖ ≥
δR ′

3
, if R ′ ≤ R, S, R ′ ∈ Pk and R, S ∈ Pk+1

‖xR − xR ′‖ ≤
δR ′

2
, if R ′ ≤ R,

xR + δRBX ⊂ 4BX.

From the above properties we deduce that (xR + BX) ∩ (xS + BX) = ∅, for R, S ∈
P1 and R 6= S; also, if R, S ∈ Pk+1, R ′ ∈ Pk, R ′ ≤ R, S and R 6= S, then

(xR +
δR ′

8
BX) ∩ (xS +

δR ′

8
BX) = ∅, (xR +

δR ′

8
BX) ⊂ (xR ′ + δR ′ BX).

Now, we define the mapping h : X → Y as the sum
∑∞

k=1 hk, where

hk(x) =

∑

R∈Pk

gR(x − xR), x ∈ X, k ∈ N.

Let us check that h fulfills the required conditions. For every x ∈ X there is a

neighborhood Ux of x and R0 ∈ Pk, where hk(y) = gR0
(y − xR0

), for y ∈ Ux.

Thus, ‖h(i)
k ‖∞ ≤ sup{‖g(k)

R ‖∞ : R ∈ Pk} ≤ sup{4εR : R ∈ Pk} ≤ 1/2k, for
i = 0, 1, . . . , n − 1. Therefore, the series

∑

k h(i)
k uniformly converges in X for every

i = 0, 1, . . . , n − 1 and h(i)
=

∑

k h(i)
k .

Now, recall that h(n)
1 (X) ⊂ U and U is bounded, thus h(n)

1 is bounded. Also, for

k ≥ 2 and R = {0, Q1, . . . , Qk−1, Qk} ∈ Pk, the polygonal curve PQk−1,Qk
is included

in a ball of radius 1
2k+2

, and then, −Qk−1 + PQk−1,Qk
is included in 1

2k+1
BLn

s (X,Y ). Since

g(n)
R (X) ⊂ −Qk−1 +PQk−1 ,Qk

+2εRBLn
s (X,Y ) ⊂

1
2k BLn

s (X,Y ), it follows that ‖h(n)

k ‖∞ ≤ 1
2k .

Thus,
∑

k h(n)

k is uniformly convergent on X and so the n-th derivative h(n)
=

∑

k h(n)

k

is a continuous and bounded mapping.
It remains to prove that h(n)(X) = U , the closure of U . Clearly, from the con-

struction of the mappings gR, we know that h(n)(X) ⊂ U . If Q ∈ ∂U , there is
P = {0, Q1, Q2, . . . } ∈ P so that Qi converges to Q. Consider Rk = {0, Q1, . . . , Qk},

k = 1, 2, . . . , and the associated sequence of points in X, (xRk
)k. Since R1 ≤ R2 ≤

· · · ≤ Rk ≤ Rk+1 ≤ · · · , we know that there exists the lim xRk
= x. Finally,

h(n)(xRk
) =

∑k
i=1 g(n)

Ri
(xRk

− xRi
) =

∑k
i=1(Qi − Qi−1) = Qk and then h(n)(x) = Q

which finishes the proof.

Remark 2.6 When n = 1 and Y = R, the condition we require for U ⊂ X∗ in
Theorem 2.3 is less restrictive than the condition required in [7]. In every Banach
space of dimension bigger than 1 there are examples of open bounded and connected

sets containing the origin with the properties required in Theorem 2.5,so that even
uncountably many points of the boundary of U cannot be end points of paths of
finite length within U . Theorem 2.5 allows us to enlarge the class of subsets of X∗

which are known to be the range of the derivative of a C1-smooth bump.
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Theorem 2.5 does not hold true when X is finite-dimensional. Next, we give an
example of an open bounded subset U ⊂ R

2 containing the origin and satisfying the

condition given in Theorem 2.5, so that the closure of U cannot be the range of the
first derivative of any C1-smooth bump on R

2.

Example Consider the open sets of the plane

Un =
{

(x, y) : 1 −
1

2n
< |x| < 1 −

1

2n + 1
, |y| < 2

}

, n ∈ N

and

U =

∞
⋃

n=1

Un ∪
{

(x, y) : 1 < max(|x|, |y|) < 2} ∪ {(x, y) : |x| <
1

4
, |y| < 2

}

.

Obviously, the closure of U satisfies the conditions required in Theorem 2.5. As-
sume that the closure of U is the image of a C1-smooth bump b : R

2 → R. Let us take

points (an, 0) ∈ Un converging to (1, 0) ∈ ∂U . By the assumption, there is a bounded
sequence of points (xn, yn) ∈ R

2 so that b ′(xn, yn) = (an, 0). By compactness, we
may assume that the points (xn, yn) converge to some (x, y) ∈ R

2. By continuity,
b ′(x, y) = (1, 0) and there is some δ > 0 so that A := b ′((x, y) +δB) ⊂ (1, 0) + 1

2
BR2 .

Since b ′ is continuous, the set A should be connected. But this is a contradiction,
since {(xn, yn)}n≥N ⊂ A ⊂ U ∩ ((1, 0) + 1

2
B) for some N ∈ N.

Nevertheless, we next show that if for every ε > 0 there is a finite collection of
open and connected subsets of U which cover U and have diameter less than ε, then
U is the image of a C1-smooth bump. The above example clearly shows that if we

drop this condition the conclusion does not necessarily hold.

Theorem 2.7 Let us consider n, m, p ∈ N and an open bounded and connected subset

U ⊂ L
p
s (R

n, R
m) containing the origin. Assume that for every ε > 0 there is a finite

family Fε of open (non-empty) subsets of U which cover U and are such that every

V ∈ Fε is connected and has diameter less than ε. Then there is a C p-smooth mapping

b : R
n → R

m with bounded support, so that b(p)(R
n) = U .

Proof We will use the following fact.

Lemma 2.8 Let n, m, p ∈ N, and consider a polygonal curve P in L
p
s (R

n, R
m) from 0

to a point Q. Then there is a constant M > 1 (which does not depend on the polygonal

curve), so that for any ε > 0 there exists a C p-smooth mapping g : R
n → R

m, with

support in BX and with bounded derivatives, such that

‖g(k)‖∞ := sup{‖g(k)(x)‖ : x ∈ X} ≤ 4ε, for k = 0, 1, . . . , p − 1,

g(p)(X) ⊂ P + 2ε B
L

p
s (Rn,Rm),

g(p) |δBX
≡ Q for some δ > 0.
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We omit the proof of this Lemma, since it is almost identical to that of Lemma 2.1.
The only difference is that in this case we do not have the mapping r at our dis-

posal (nor do we need it), so the definition of h in the second step must be changed
for h(x) = b(x)R(x); consequently we only obtain the inclusion g(p)(X) ⊂ P +
2ε B

L
p
s (Rn,Rm).

Let (εk)k be a summable sequence of positive numbers. We denote by Fk the finite
open covering of U given in the hypothesis for ε = εk. For every open subset V ∈ Fk,

we select a point T ∈ V , and denote the set consisting of all the points obtained in
this way by Fk. In order to avoid problems of notation, we may consider that the
selected points are all different and that Fk ∩ F j = ∅ whenever k 6= j. Notice that,
for every k, the finite set Fk is an εk-net of U .

By induction on k ∈ N, we are going to construct a sequence (hk)k of mappings
from X = R

n to R
m such that:

for each T ∈ Fk, h
(p)

k is constant equal to T on a nonempty open ball,

for each k ≥ 2, ‖(hk − hk−1)(p)‖∞ ≤ εk−1 and h
(p)

k (X) ⊂ U .

Construction of h1. Since U is connected, for every T ∈ F1, according to Lemma 2.8
there is a C p-smooth mapping gT : R

n → R
m, with support in BRn , so that there is

0 < δT < 1 with g
(p)

T |δT BRn≡ T and g
(p)

T (R
n) ⊂ U . Now we fix points {xT : T ∈ F1}

in R
n with the property that

‖xR − xS‖ > 2, if R, S ∈ F1, R 6= S.

We then define

h1(x) =

∑

T∈F1

gT(x − xT), x ∈ R
n,

If δ1 = inf{δT ; T ∈ F1}, for each T ∈ F1, h
(p)

1 is constant equal to T on the ball
BRn (xT , δ1). Since the mappings in the summand defining h1 have disjoint supports,

h
(p)

1 (R
n) is the union of the sets g

(p)

T (R
n) for T ∈ F1, and hence it is included in U .

Construction of hk. Let us fix k ≥ 2, V ∈ Fk−1 and SV the associated point in
Fk−1. Let us denote FV

k = Fk ∩ V and consider T ∈ FV
k . Since V is connected, by

Lemma 2.8, there is a C p-smooth mapping gT,V : R
n → R

m, with support in BRn ,

satisfying that g
(p)

T,V is constant equal to T − SV on some nonempty open ball WT,V

and SV + g
(p)

T,V (R
n) ⊂ V . Now, since FV

k is finite, by replacing the mappings gT,V with

x → (αT,V )pgT,V ((x − xT,V )/αT,V ), for suitable αT,V ∈ (0, 1) and xT,V ∈ R
n, we can

assume that the supports of the mappings {gT,V : T ∈ FV
k ,V ∈ Fk−1} are pairwise

disjoint and that, for every V ∈ Fk−1, the supports of the mappings {gT,V : T ∈ FV
k }

are included in a ball where the mapping hk−1 is constant equal to SV . Define

gk(x) =

∑

V∈Fk−1

∑

T∈FV
k

gT,V (x) and hk(x) = hk−1(x) + gk(x).
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If x ∈ WT,V then h
(p)

k (x) = h
(p)

k−1
(x) + g

(p)

k (x) = SV + (T − SV ) = T. Clearly,

h
(p)

k (R
n) = h

(p)

k−1
(R

n) ∪
(

⋃

V∈Fk−1

(

⋃

T∈FV
k

SV + g
(p)

T,V (R
n)

))

⊂ U ∪
(

⋃

V∈Fk−1

V
)

= U .

As the supports of the mappings g
(p)

T,V , T ∈ FV
k , V ∈ Fk−1 are pairwise disjoint,

(hk − hk−1)(p)(R
n) = g

(p)

k (R
n) is the union of the sets g

(p)

T,V (R
n), so it is included in

V −SV , which is contained in 2εk−1B
L

p
s (Rn,Rm). Therefore ‖(hk−hk−1)(p)‖∞ < 2εk−1.

Since the series of p-th derivatives
∑

k ‖(hk − hk−1)(p)‖∞ converges and the map-
ping h : R

n → R
m defined as the sum

∑∞

k=1(hk − hk−1) (with h0 = 0) has support
within the union of the balls BRn (xT , 1) for T ∈ F1, it is clear that h is C p-smooth on
R

n. On the other hand, h(p)(R
n) is a closed subset of U containing

⋃

k Fk, and
⋃

k Fk

is dense in U , hence we have that h(p)(R
n) = U .

Remark 2.9 The sufficient condition given in [6] to ensure the existence of a
C1-smooth and Lipschitzian bump b : R

n → R with b ′(R
n) = U implies that ev-

ery point in the boundary of U is the end point of a path of finite length within U .
However, as we have already pointed out after Theorem 2.5, for every n > 1 there are
examples of open sets in R

n satisfying the conditions required in Theorem 2.7 so that
even uncountably many points of the boundary of U cannot be end points of paths

of finite length within U . Thus, Theorem 2.7 enlarges the class from [6] of subsets of
R

n which are known to be the range of the derivative of a C1-smooth bump.

3 The Case of Fréchet or Gâteaux Smooth Lipschitzian Mappings
with Bounded Support

Let us consider now mappings from R
m to a separable infinite-dimensional Banach

space Y . In [2], the authors constructed a Fréchet smooth and Lipschitzian map-
ping f : R

m → Y with bounded support so that f ′(R
m) contains BL1

s (Rm,Y ). Notice
that since the support is compact, we cannot expect f to be C1-smooth. We present

here an improvement of the quoted result based on the techniques developed in the
preceding section.

Theorem 3.1 Let Y be an infinite-dimensional separable Banach space and let m ∈ N.

Let us consider an open bounded and connected subset U ⊂ L1
s (R

m,Y ) containing the

origin so that every point in the boundary of U is the end point of a path within U .

Then there are Fréchet smooth and Lipschitzian mappings b, g : R
m → Y with bounded

support so that b ′(R
m) = U and g ′(R

m) = U .

Proof In order to prove the first assertion, notice that L
1
s (R

m,Y ) is separable. Let
us fix a sequence (εn)n of positive numbers decreasing to 0. We deduce from Re-
mark 2.2(i), following arguments similar to those given in the proof of Theorem 2.3,
that there is a countable family {Un} of subsets of U and a sequence of Fréchet
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smooth mappings hn : R
m → Y so that

‖hn‖∞ ≤ 1, h ′
n(R

m) = Un,

∞
⋃

n=1

Un = U , and supp hn ⊂ BRm .

Now, replacing the mappings hn by bn(x) = rn gn( x−an

rn
) , x ∈ X, with suitable se-

quences of points (an)n in R
m and of positive numbers (rn)n, we may assume that

‖bn‖∞ ≤ ε2
n+1, b ′

n(R
m) = Un,

∞
⋃

n=1

Un = U , and supp bn ⊂ εnBRm \ εn+1BRm .

Now, we define b : R
m → Y , as b(x) =

∑

n bn(x). Clearly b is continuous and
Fréchet smooth in R

m \ {0}. An easy calculation shows that b is Fréchet smooth at 0.

Indeed, if εn+1 < |t| ≤ εn and v is a norm one vector in R
m, we have

|b(tv) − b(0)|

|t|
=

|bn(tv)|

|t|
≤ εn+1,

and this implies that b is Fréchet smooth at 0 and b ′(0) = 0.
Let us now prove the second assertion. Take M > 0 so that U ⊂ M BL1

s (Rm,Y ).
Take a dense sequence (Tn)n in MBL1

s (Rm,Y ) with T1 = 0 and Tn 6= 0 for n ≥ 2.
Fix a summable sequence of positive numbers (εn)n. We define P as the family of

sequences R = {Q1, Q2, . . . } satisfying

(a) Qi ∈ {0, Ti} and
∑

i≤n Qi ∈ U for every n ∈ N.

(b) There exists T ∈ U so that ‖T −
∑

i≤mk
Qi‖ ≤ εk, for some sequence 1 <

m1 < m2 < m3 < · · · and Qi = 0 whenever i /∈ {m1, m2, m3, . . . }. Moreover,
we may assume that there is a path from

∑

i≤mk
Qi to

∑

i≤mk+1

Qi within U ∩
(T + εk BL(Rm,Y )).

Define

Pn =
{

R = {Q1, . . . , Qn} : there exists P ∈ P

whose first n points are Q1, . . . , Qn

}

.

Notice that each set Pn is finite.
We obtain from Remark 2.2(i), as in the proof of Theorem 2.5, a family of Fréchet

smooth mappings hR : R
m → Y, R ∈ Pn, n ≥ 2, and a bounded family {xR, R ∈

Pn, n ∈ N} of points in R
m satisfying the following conditions:

(c) If R ∈ Pn, then supp hR ⊂ xR + snBRm and ‖hR‖∞ ≤ cn. If R, S ∈ Pn and
R 6= S, the supports of hR and hS are disjoint. The sequences (sn)n and (cn)n of
positive numbers decrease to 0 and satisfy the additional conditions which will
be deduced later from inequalities (3.2) and (3.3).

(d) If R = {Q1, . . . , Qn} and there are k non-zero elements with Qn 6= 0, then
sup{‖h ′

R(x)‖ : x ∈ R
m} ≤ εk−1 (when k ≥ 2),

∑

i≤n−1 Qi + h ′
R(R

m) ⊂ U and
hR(x) = Qn(x − xR) whenever x ∈ xR + δnBRm . If Qn = 0 then we assume that
gR ≡ 0.
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(e) If R ∈ Pn+1, S ∈ Pn and S < R, then supp hR ⊂ xS + δnBRm . (Here, and below,
S < R means that R is a “right” extension of S.) The sequence (δn)n satisfies

that δn < sn

2
and the additional conditions which will be deduced below from

inequalities (3.2) and (3.3).
(f) If R, S ∈ Pn+1 and R 6= S, then the balls B(xR, sn+1) and B(xS, sn+1) are separated

by the distance δn

2
.

Then we define for every n ∈ N,

bn =

∑

R∈Pn

hR and b =

∑

n

bn.

Clearly b is continuous and Fréchet smooth at x ∈ R
m whenever x is not a point of

accumulation of the set {xR : R ∈ Pn, n ∈ N}. Let us check that b is Fréchet smooth
at any point x ∈ R

m and that b ′(R
m) = U .

If x = limn xRn
, where Rn = {Q1, . . . , Qn} ∈ Pn and R1 < R2 < R3 < · · · , take

v ∈ R
m of norm one, N ∈ N and x + tv ∈ (xRN

+ sN BRm ) \ (xRN+1
+ sN+1BRm ). Then

∥

∥

∥

b(x + tv) − b(x)

t
−

∑

n

Qn(v)
∥

∥

∥
=

∥

∥

∥

∑

n≥N

(hR ′

n
(x + tv) − hRn

(x))

t
−

∑

n≥N

Qn(v)
∥

∥

∥
,

for suitable R ′
N < R ′

N+1 < · · · , R ′
i ∈ Pi and RN = R ′

N . Thus,

(3.1)
∥

∥

∥

b(x + tv) − b(x)

t
−

∑

n

Qn(v)
∥

∥

∥

≤
∥

∥

∥

hRN
(x + tv) − hRN

(x)

t
− QN(v)

∥

∥

∥
+

1

t

∑

n≥N+1

(‖hR ′

n
(x + tv)‖ + ‖hRn

(x)‖).

If hRN
is not identically zero, this implies that QN 6= 0. Assume that QN is the k-th

non-zero element of RN . Since ‖h ′
RN
‖∞ ≤ εk−1, where ε0 = M, we have that

∥

∥

∥

hRN
(x + tv) − hRN

(x)

t
− QN(v)

∥

∥

∥
≤ 2εk−1.

If QN = 0 the above summand is zero. Now, let us find a suitable upper bound for

the second summand of (3.1). Since x ∈ xRn
+ δnBRm , we have hRn

(x) = Qn(x − xRn
)

for every n ∈ N, and then

1

t

∑

n≥N+1

‖hRn
(x)‖ ≤

1

t

∑

n≥N+1

‖Qn‖‖x − xRn
‖ ≤

M

t

∑

n≥N+1

‖x − xRn
‖.

Since we are assuming that x + tv /∈ xRN+1
+ sN+1BRm , we deduce from (e) that |t| ≥

sN+1 − δN+1 ≥ sN+1 −
sN+1

2
=

sN+1

2
and thus

(3.2)
2M

sN+1

∑

n≥N+1

‖x − xRn
‖ ≤

2M

sN+1

∑

n≥N+1

δn = γ(N + 1).
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Now it is possible to assume that we have selected the sequences (sn)n and (δn)n so
that they satisfy limn γ(n) = 0.

Finally, if the summand 1
t

∑

n≥N+1 ‖hR ′

n
(x + tv)‖ is not zero, then x + tv ∈ xR ′

N+1
+

sN+1BRm . Since RN+1 6= R ′
N+1, we deduce from (f) that |t| ≥ δN

2
and then

(3.3)
1

t

∑

n≥N+1

‖hR ′

n
(x + tv)‖ ≤

2

δN

∑

n≥N+1

‖hR ′

n
(x + tv)‖ ≤

2

δN

∑

n≥N+1

cn = µ(N).

Again, it is possible to assume that we have selected the sequences (δn)n and (cn)n so
that they satisfy limn µ(n) = 0. This proves that b is Fréchet differentiable at x and
b ′(x) =

∑

i Qi .

Clearly, from the construction of b we have that b ′(R
m) ⊂ U . Now, if T ∈ U there

exists R = {Q1, Q2, . . . } ∈ P so that
∑

i Qi = T. Thus, the above implies that there
exists x ∈ R

m so that b ′(x) = T and then b ′(R
m) = U .

Finally, let us consider Gâteaux smooth mappings between two separable Banach

spaces X and Y . It was proved in [2] that when X is infinite-dimensional, there exists a
uniformly Gâteaux smooth Lipschitzian mapping f : X → Y with bounded support
so that f (X) contains BY and f ′(X) contains BL1

s (X,Y ). Next we construct f so that
the images of f and f ′ are exactly these two sets, that is to say, f (X) = BY and

f ′(X) = BL1
s (X,Y ).

Consider on L
1
s (X,Y ) the topology τ of the pointwise convergence on X. It is

well known that if X and Y are separable, then the topological space (BL1
s (X,Y ), τ ) is

separable and every element of (BL1
s (X,Y ), τ ) has a countable basis of neighborhoods.

We shall use the following lemma which is a slight modification of a result from [2].

We omit the proof of this lemma since it is straightforward.

Lemma 3.2 ([2]) Let X and Y be separable Banach spaces and (Vn)n be a decreasing

family of τ -closed, convex and symmetric subsets of 2BL1
s (X,Y ) which is a base of neigh-

borhoods of 0 in (2BL1
s (X,Y ), τ ). Then, there is a sequence (Tm)m ⊂ 2BL1

s (X,Y ), and an

increasing sequence of positive numbers (εn)n converging to 1 with the property that for

any T ∈ BL1
s (X,Y ),

(3.4) T = τ -sum
∑

k

Tmk
, for some subsequence (Tmk

)k.

Moreover, the partial sums satisfy the stronger condition

(3.5) T −
∑

i≤k

Tmi
∈ Vk and ‖

∑

i≤k

Tmi
‖ ≤ εk, k ∈ N.
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Proposition 3.3 Let X and Y be separable Banach spaces, where X is infinite-dimen-

sional. Then, there is a uniformly Gâteaux smooth and Lipschitzian mapping f : X → Y

with bounded support so that f (X) = BY , f ′(X) = BL1
s (X,Y ) and f ′ is ‖ · ‖-τ continu-

ous.

Proof We first construct uniformly Gâteaux smooth mappings g and h from X to
Y with bounded supports so that g(X) ⊂ BY , g ′(X) = BL1

s (X,Y ) and h(X) = BY ,
h ′(X) ⊂ BL1

s (X,Y ). Then, the required mapping f is defined as the sum of suitable

translations with disjoint supports of g and h, that is to say, f (x) = g(x−a)+h(x−b)
where (a + supp g) ∩ (b + supp h) = ∅.

Since X is separable, there exists an equivalent uniformly Gâteaux smooth norm
‖ · ‖ on X [8, p. 68] and thus, by composing it with a suitable C∞-smooth bump γ
on R, we get a uniformly Gâteaux smooth bump θ : X → R, θ(x) = γ(‖x‖), with the
properties θ(x) = 1 for ‖x‖ ≤ 1/2, θ(x) = 0 for ‖x‖ ≥ 1 and θ(X) = [0, 1]. Notice
that supx∈X ‖x‖‖θ ′(x)‖ = M < ∞ since supp θ ′ ⊂ BX \ 1

2
BX .

Let us denote by P the family of subsequences P = {Q1, Q2, . . .} of (Tn)n satis-

fying conditions (3.4) and (3.5) and Pn =
{

R = {Q1, . . . , Qn} : there exists P ∈

P whose first n points are Q1, . . . , Qn

}

. By induction on n, we shall construct a se-
quence (gn)n of mappings from X to Y so that g =

∑

n gn as follows.

First step: Definition of gn and g. Let us consider for every R = {Q1, . . . , Qn} ∈ Pn

the straight line L from Sn−1 :=
∑

k≤n−1 Qk to Sn :=
∑

k≤n Qn (from 0 to Q1 if

n = 1). By assumption, there is 0 < sn < 1 (for instance sn = 1 − εn) so that
L + snBL(X,Y ) ⊂ BL(X,Y ). Take mn ∈ N with max{2n+2, 2

sn
(1 + M)} ≤ mn. Let us

define

gR(x) =

mn
∑

i=1

Qn(x)

mn

θ(2i−1 x), x ∈ X.

Then, ‖gR‖∞ ≤ 1
2n . Also, if we put by gR,i(x) =

Qn(x)

mn
θ(2i−1x), x ∈ X, i = 1, . . . , mn,

then

‖g ′
R,i(x)‖ ≤

‖Qn‖

mn

+
‖Qn‖

mn

‖2i−1x‖‖θ ′(2i−1x)‖ ≤
2

mn

(

1 + M
)

≤ sn

and

(3.6) g ′
R(X) ⊂

mn
⋃

i=1

Qn
i

mn

+ snBL(X,Y ).

Therefore,

(3.7) Sn−1 + g ′
R(X) ⊂

mn
⋃

i=1

(

Sn−1 + Qn
i

mn
+ snBL(X,Y )

)

⊂ BL1
s (X,Y ).

Notice that g ′
R is a constant equal to

∑

k≤n Qn in 2−mn BX , if R = {Q1, Q2, . . . , Qn}.
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Let us consider a bounded family of points {xR : R ∈ P1} with ‖xR − xS‖ > 2
whenever R 6= S and replace gR by x 7→ gR(x − xR). Define

g1(x) =

∑

R∈P1

gR(x), x ∈ X.

Let us define r1 = 1 and δ1 =
1

2m1
. Then, supp g1 is included in the union of the

disjoint balls {B(xR, r1) : R ∈ P1} and g ′
1 is constant equal to Q1 in B(xR, δ1), if

R = {Q1} ∈ P1.

In general, for n ≥ 2, we consider 0 < δn < rn < 1 and points {xR : R ∈ Pn} so
that replacing the mappings gR by x → rngR( x−xR

rn
), for every R ∈ Pn, we can assume

that the support of the mapping gR is included in xS +δn−1BX , if S < R and S ∈ Pn−1,

that is to say xR + rnBX ⊂ xS + δn−1BX , and also g ′
R is constant equal Qn in B(xR, δn)

if R = {Q1, . . . , Qn} ∈ Pn. We also assume that B(xR, rn) ∩ B(xR ′ , rn), if R 6= R ′ and
R, R ′ ∈ Pn. Let us define for n ≥ 2

gn(x) =

∑

R∈Pn

gR(x) and g(x) =

∞
∑

n=1

gn(x), x ∈ X.

Obviously, g is continuous since the series
∑∞

n=1 gn converges uniformly in X.

Second step: The mapping g is uniformly Gâteaux smooth. Let us check first that g is
Gâteaux smooth. Fix x ∈ X, v ∈ BX and consider

ϕ : [−1, 1] → Y, ϕ(t) = g(x + tv),

ϕn : [−1, 1] → Y, ϕn(t) = gn(x + tv).

Then ϕ(t) =
∑

n ϕn(t), for |t| ≤ 1. Let us prove that the series of gradients
∑

n ϕ ′
n(t)

is uniformly convergent for |t| ≤ 1. If y = x + tv = limn xRn
for some sequence

R1 < R2 < · · · < Rn ∈ Pn, then g ′
n is constant equal Qn in a neighborhood of y and

we have

(3.8)
∑

n≥1

ϕ ′
n(t) =

∑

n≥1

Qn(v).

Otherwise, there is k ∈ N and R ′
1 < · · · < R ′

k = {Q ′
1, . . . , Q ′

n}, where R ′
i ∈ Pi so that

(3.9)
∑

n≥1

ϕ ′
n(t) =

k−1
∑

n=1

Q ′
n(v) + g ′

k(x + tv)(v)

https://doi.org/10.4153/CMB-2005-045-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-045-9


Exact Filling of Figures with the Derivatives of Smooth Mappings 497

Therefore for N ∈ N we deduce from inclusion (3.6) that,

∥

∥

∥

∑

n≥N

ϕ ′
n(t)

∥

∥

∥
=

∥

∥

∥

∑

n≥N

Qn(v)
∥

∥

∥
, in the case (3.8),(3.10)

∥

∥

∥

∑

n≥N

ϕ ′
n(t)

∥

∥

∥
≤

∥

∥

∥

k−1
∑

n=N

Q ′
k(v)

∥

∥

∥
+ ‖Q ′

k(v)‖ + sk, in the case (3.9)(3.11)

(assuming that k ≥ N , and 0 otherwise.)(3.12)

Inequalities (3.10) and (3.11) imply that
∑

n≥N ϕ ′
n(t) tends to 0 as N → ∞, uni-

formly on [−1, 1]. Thus ϕ is differentiable and ϕ ′(t) =
∑

n ϕ ′
n(t). In particular,

ϕ ′(0) =
∑

n g ′
n(x)(v). Since this can be done for every v in BX , we deduce that g is

Gâteaux smooth at x and g ′(x) =
∑

n≥1 g ′
n(x), where this sum is considered in the τ

topology. It is easy to check that the derivative g ′ is ‖ · ‖-τ continuous as well.
The uniform Gâteaux smoothness of g can be proved as in [2]. Let us give here

the proof for completeness. Fix v ∈ BX . Consider for every n ∈ N the mapping
Gn : X → Y defined as

Gn(x) = g ′
n(x)(v), x ∈ X.

On the one hand, it is straightforward to verify that the mapping Gn is uniformly con-
tinuous (this is a consequence of the uniform Gâteaux smoothness of the norm ‖ · ‖
since then x → ‖ · ‖ ′(x)(v) is uniformly continuous outside a ball containing the ori-
gin [8, p. 61]). On the other hand, it can be deduced from inequalities (3.10), (3.11)

and the strong property (3.5) related to the “directional uniform” convergence of the
series

∑

n Qn, that the series
∑

n Gn is uniformly convergent on X. In particular, this
implies that the limit mapping of the series G : X → Y , G(x) =

∑

n Gn(x) = g ′(x)(v)
is uniformly continuous on X. If v ranges over all elements of BX , we obtain that g is

uniformly Gâteaux smooth.

From the inclusion (3.7) and the expression of g ′ we have that g ′(X) ⊂ BL1
s (X,Y ).

Since for any T ∈ BL1
s (X,Y ) there is a sequence (Rn)n, Rn = {Q1, . . . , Qn} ∈ Pn with

∑

n≥1 Qn = T, we obtain that g ′(X) fills in BL1
s (X,Y ). Moreover, since the image of g

is bounded, we may assume, replacing g by x → rg(x/r) that g(X) ⊂ BY .

Third step: Construction of the mapping h. Consider a dense sequence (yn)n in the
unit sphere of Y and for every n ∈ N the family

(3.13) Pn =

{

σ = (σ(1), . . . , σ(n)) ∈ N
n :

∥

∥

∥

k
∑

i=1

ε2(i−1) yσ(i)

∥

∥

∥
≤ 1,

for k = 1, . . . , n
}

.

Fix 0 < ε < 1
12

and select a bounded family F = {xσ : σ ∈ Pn, n ∈ N} in X

satisfying the following conditions:

(1) if σ 6= σ ′, σ, σ ′ ∈ N
n, then ‖xσ − xσ ′‖ > 3 εn−1 ,

(2) if σ ∈ N
n, σ ′ ∈ N

n+1 and σ < σ ′, then ‖xσ − xσ ′‖ =
εn−1

4
.
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(Here σ < σ ′ means that σ ′ is a right extension of σ.)

Then, for every n and x ∈ X, we define hn : X → Y

hn(x) =

∑

σ∈Pn

ε2(n−1) yσ(n)θ
( x − xσ

εn−1

)

and h : X → Y , h(x) =
∑

n hn(x). It is easy to check that the mapping h is continuous,
has bounded support, is uniformly Gâteaux smooth and has bounded derivative.

Moreover, h(X) = BY . Indeed, for every y ∈ BY there is a sequence (σn)n where
σn ∈ Pn and σn < σn+1 so that y =

∑

n≥1 ε2(n−1) yσ(n). Then, if x = limn xσn
, we

have h(x) = y. Also from condition (3.13) we have that hn(X) ⊂ BY . Finally, if we
replace h by x 7→ h(rx) we may assume that h(X) = BY and h ′(X) ⊂ BL1

s (X,Y ).

Remark 3.4 It is worth observing that, by a slight modification of the proofs of
Propositions 3.1 and 3.3, we obtain the following result:

Let X and Y be separable Banach spaces and X infinite-dimensional. Let us consider

a bounded open subset U ⊂ L
1
s (X,Y ), M > 0 so that U ⊂ MBL1

s (X,Y ), and let (Vn)n

be a decreasing family of τ -closed, convex and symmetric subsets of 2MBL1
s (X,Y ) which

form a basis of neighborhoods of 0 in (MBL1
s (X,Y ), τ ). Assume that there exists a sequence

(Qn)n in U so that for every T ∈ U , there is a subsequence (Qni
)i with

(1) T −
∑k

i=1 Qni
∈ Vk, for every k ∈ N,

(2) the linear segment between Sk :=
∑k

i=1 Qni
and Sk+1 :=

∑k+1

i=1 Qni
(between 0 and

Qn1
if k = 0) is included in U , for every k = 0, 1, 2, . . . .

Then, there is a continuous and Gâteaux smooth mapping f : X → Y with bounded

support so that f ′(X) = U .
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[2] D. Azagra, R. Deville, and M. Jiménez-Sevilla, On the range of the derivatives of a smooth mapping

between Banach spaces. Math. Proc. Cambridge Philos. Soc. 134(2003), 163–185.
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Universidad Complutense

28040 Madrid

Spain

e-mail: Daniel Azagra@mat.ucm.es

Mathematical Institute

Czech Academy of Sciences
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