
http://dx.doi.org/10.4153/S0008439518000024
©Canadian Mathematical Society 2018

Newton Complementary Duals of f -Ideals

Samuel Budd and Adam Van Tuyl

Abstract. A square-freemonomial ideal I of k[x1 , . . . , xn] is said to be an f -ideal if the facet complex
andnon-face complex associatedwith I have the same f -vector. We show that I is an f -ideal if and only
if its Newton complementary dual Î is also an f -ideal. Because of this duality, previous results about
some classes of f -ideals can be extended to amuch larger class of f -ideals. An interesting by-product
of our work is an alternative formulation of the Kruskal–Katona theorem for f -vectors of simplicial
complexes.

1 Introduction

Let I be a square-freemonomial ideal of R = k[x1 , . . . , xn] where k is a ûeld. Associ-
atedwith any such ideal are two simplicial complexes. he non-face complex, denoted
δN(I), (also called the Stanley–Reisner complex) is the simplicial complexwhose faces
are in one-to-one correspondencewith the square-freemonomials not in I. Faridi [7]
introduced a second complex, the facet complex δF(I), where the generators of I de-
ûne the facets of the simplicial complex (see the next section for complete deûnitions).
In general, the two simplicial complexes, δN(I) and δF(I), can be very diòerent. For
example, the two complexes can have diòerent dimensions; as a consequence, the
f -vectors of δF(I) and δN(I), which enumerate all the faces of a given dimension,
can be quite diòerent.

If I is a square-freemonomial ideal with the property that the f -vectors of δF(I)
and δN(I) are the same, then I is called an f -ideal. he notion of an f -ideal was ûrst
introduced by Abbasi, Ahmad, Anwar, and Baig [1]. It is natural to ask if it is possible
to classify all the square-freemonomial ideals that are f -ideals. Abbasi et al. classiûed
all the f -ideals generated in degree two. his result was later generalized by Anwar,
Mahmood, Binyamin, and Zafar [3]who classiûed all the f -ideals I that are unmixed
and generated in degree d ≥ 2. An alternative proof for this result was found by Guo
andWu [10]. Gu,Wu, and Liu [9] later removed the unmixed restriction of [3]. Other
work related to f -ideals includes the papers [14, 15].

he purpose of this note is to show that the property of being an f -ideal is pre-
served a�er taking the Newton complementary dual of I. he notion of a Newton
complementary dual was ûrst introduced in a more general context by Costa and
Simis [5] in their study of Cremona maps; additional properties were developed by
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Dória and Simis [6]. Ansaldi, Lin, and Shin [2] later investigated the Newton com-
plementary duals ofmonomial ideals. Using the deûnition of [2], theNewton comple-
mentary dual of a square-freemonomial ideal I is

Î = ⟨ x1 ⋅ ⋅ ⋅ xn

m
∣ m ∈ G(I)⟩ ,

where G(I) denotes the minimal generators of I. With this notation, we prove the
following theorem.

heorem 1.1 (heorem 4.1) Let I ⊆ R be a square-free monomial ideal. hen I is an
f -ideal if and only if Î is an f -ideal.

Our proof involves relating the f -vectors of the four simplicial complexes δF(I),
δN(I), δF(Î), and δN(Î). An interesting by-product of this discussion is to give a
reformulation of the celebrated Kruskal–Katona theorem (see [12, 13]) which classi-
ûes what vectors can be the f -vector of a simplicial complex (seeheorem 3.7).
A consequence ofheorem 1.1 is that f -ideals come in “pairs”. Note that when I is

an f -ideal generated in degree d, Î gives us an f -ideal generated in degree n − d. We
can use the classiûcation of [1] of f -ideals generated in degree two to also give us a
classiûcation of f -ideals generated in degree n−2. his corollary and others are given
as applications ofheorem 1.1.

Our paper uses the following outline. In Section 2 we provide all the necessary
background results. In Section 3, we introduce the Newton complementary dual of a
square-freemonomial ideal, and we study how the f -vector behaves under this dual-
ity. In Section 4weproveheorem1.1 anddevote the rest of the section to applications.

2 Background

In this section, we review the required background results.
Let X = {x1 , . . . , xn} be a set of vertices. A simplicial complex ∆ on X is a subset of

the power set of X that satisûes the following:
(i) if F ∈ ∆ and G ⊆ F, then G ∈ ∆;
(ii) {x i} ∈ ∆ for i = 1, . . . , n.
An element F ∈ ∆ is called a face; maximal faces with respect to inclusion are called
facets. If F1 , . . . , Fr are the facets of ∆, then we write ∆ = ⟨F1 , . . . , Fr⟩.
For any face F ∈ ∆, the dimension of F is given by dim(F) = ∣F∣−1. Note that∅ ∈ ∆

and dim(∅) = −1. he dimension of ∆ is given by dim(∆) = max{dim(F) ∣ F ∈ ∆}.
If d = dim(∆), then the f -vector of ∆ is the d + 2 tuple

f (∆) = ( f−1 , f0 , f1 , . . . , fd),

where f i is number of faces of dimension i in ∆. We write f i(∆) if we need to specify
the simplicial complex.

Suppose that I is a square-freemonomial ideal of R = k[x1 , . . . , xn] with k a ûeld.
We use G(I) to denote the unique set of minimal generators of I. If we identify the
variables of R with the vertices X, we can associate with I two simplicial complexes.
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Figure 1: Facet and non-face complexes of I = ⟨x1x4 , x2x5 , x1x2x3 , x3x4x5⟩.

he non-face complex (or Stanley–Reisner complex) is the simplicial complex

δN(I) = {{x i1 , . . . , x i j} ⊆ X ∣ x i1 ⋅ ⋅ ⋅ x i j /∈ I} .

In otherwords, the faces of δN(I) are in one-to-one correspondencewith the square-
freemonomials of R not in the ideal I. he facet complex is the simplicial complex

δF(I) = ⟨{x i1 , . . . , x i j} ⊆ X ∣ x i1 ⋅ ⋅ ⋅ x i j ∈ G(I)⟩ .
he facets of δF(I) are in one-to-one correspondence with the minimal generator
of I.

In general, the two simplicial complexes, δN(I) and δF(I), constructed from I are
very diòerent. In this note, we are interested in the following family of monomial
ideals.

Deûnition 2.1 A square-freemonomial ideal I is an f -ideal if f (δN(I)) = f (δF(I)).

Example 2.2 We illustrate the above ideas with the following example. Let I =
⟨x1x4 , x2x5 , x1x2x3 , x3x4x5⟩ ⊆ R = k[x1 , x2 , x3 , x4 , x5] be a square-free monomial
ideal. hen Figure 1 shows both the facet and non-face complexes that are associated
with I.
From Figure 1, one can see that f (δF(I)) = f (δN(I)) = (1, 5, 8, 2), and therefore

I is an f -ideal. We note that I in this example is generated by monomials of diòerent
degrees. In most of the other papers on this topic (e.g., [1,3,9, 10, 14, 15]) the focus has
been on equigenerated ideals, i.e., idealswhere are all generators have the same degree.

Remark 2.3 It is important to note that δF(I) and δN(I) may be simplicial com-
plexes on diòerent sets of vertices, and, in particular, one must pay attention to the
ambient ring.
For example, consider I = ⟨x1 , x2x3 , x2x4 , x3x4⟩ ⊆ k[x1 , . . . , x5]. For this ideal,

δF(I) is a simplicial complex on {x1 , x2 , x3 , x4} with facets {{x1}, {x2 , x3}, {x2 , x4},
{x3 , x4}}. So f (δF(I)) = (1, 4, 3). he vertices of δN(I) are {x1 , x2 , x3 , x4 , x5}/{x1}.
Its facets are {{x2 , x5}, {x3 , x5}, {x4 , x5}}. From this description, we see that I is in
fact an f -ideal.

Note, however, that if I is an f -ideal, and if every generator of I has degree
at least two, then δF(I) and δN(I) must be simplicial complexes on the vertex set
{x1 , . . . , xn}. To see why, since every generator of I has degree ≥ 2, this implies that

233

https://doi.org/10.4153/S0008439518000024 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000024


S. Budd and A. Van Tuyl

{x i} ∈ δN(I) for all i = 1, . . . , n. So, n = f0(δN(I)) = f0(δF(I)), that is, δF(I) must
also have n vertices.

he above observation implies that the ideal I = ⟨x1x2⟩ ⊆ k[x1 , x2 , x3] cannot be
an f -ideal, since it is generated by amonomial of degree two, but δF(I) is a simplicial
complex on {x1 , x2}, but the vertices of δN(I) are {x1 , x2 , x3}.

Remark 2.4 Although the f -vector counts faces of a simplicial complex, we can
reinterpret the f j ’s as counting square-freemonomials of a ûxed degree. In particular,

f j(δN(I)) = #{m ∈ R j+1 ∣
m is a square-freemonomial of degree

j + 1 and m /∈ I j+1
}.

On the other hand, for the f -vector of δF(I) we have

f j(δF(I)) = #{m ∈ R j+1 ∣
m is a square-freemonomial of degree j + 1

that divides some p ∈ G(I) }.

Here, Rt , respectively It , denotes the degree t homogeneous elements of R, respec-
tively I.

We reûne Remark 2.4 by introducing a partition of the set of square-freemonomi-
als of degree d. his partition will be useful in Section 4. For each integer d ≥ 0, let
Md ⊆ Rd denote the set of square-freemonomial of degree d in Rd . Given a square-
freemonomial ideal I with generating set G(I), set

Ad(I) = {m ∈ Md ∣ m /∈ Id and m does not divide any element of G(I)} ,
Bd(I) = {m ∈ Md ∣ m /∈ Id and m divides some element of G(I)} ,
Cd(I) = {m ∈ Md ∣ m ∈ G(I)} ,
Dd(I) = {m ∈ Md ∣ m ∈ Id/G(I)} .

So, for any square-freemonomial ideal I and integer d ≥ 0, we have the partition

(2.1) Md = Ad(I) ⊔ Bd(I) ⊔ Cd(I) ⊔ Dd(I).
Using this notation, we have the following characterization of f -ideals.

Lemma 2.5 Let I ⊆ k[x1 , . . . , xn] be a square-free monomial ideal. hen I is an
f -ideal if and only if ∣Ad(I)∣ = ∣Cd(I)∣ for all 0 ≤ d ≤ n.

Proof Note that Remark 2.4 implies that

f j(δN(I)) = ∣A j+1(I)∣ + ∣B j+1(I)∣ for all j ≥ −1,
f j(δF(I)) = ∣B j+1(I)∣ + ∣C j+1(I)∣ for all j ≥ −1.

he conclusion now follows, since f j(δF(I)) = f j(δN(I)) for all −1 ≤ j ≤ n − 1 if and
only if ∣Ad(I)∣ = ∣Cd(I)∣ for all 0 ≤ d ≤ n. ∎

3 The Newton Complementary Dual and f -Vectors

We introduce the generalized Newton complementary dual of a monomial ideal as
deûned in [2] (based on [5]). We then show how the f -vector behaves under this
operation.
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Deûnition 3.1 Let I ⊆ R = k[x1 , . . . , xn] be amonomial idealwith G(I) = {m1 , . . . ,
mp}. Suppose thatm i = xα i ,1

1 xα i ,2
2 ⋅ ⋅ ⋅ xα i ,n

n for all i = 1, . . . , p. Let β = (β1 , . . . , βn) ∈ Nn

be a vector such that β i ≥ αk , l for all l = 1, . . . , n and k = 1, . . . , p. he generalized
Newton complementary dual of I determined by β is the ideal

Î[β] = ⟨ xβ

m
∣ m ∈ G(I)⟩ = ⟨ xβ

m1
,
xβ

m2
, . . . ,

xβ

mp
⟩ where xβ = xβ11 ⋅ ⋅ ⋅ xβn

n .

Remark 3.2 If I ⊆ R = k[x1 , . . . , xn] is a square-freemonomial ideal, then one can
take β = (1, . . . , 1) = 1, i.e., xβ = x1 ⋅ ⋅ ⋅ xn . For simplicity, we denote Î [1] by Î and call
it the complementary dual of I. Note that we have ˆ̂I = I.

Example 3.3 We return to the ideal I of Example 2.2. For this ideal we have

Î = ⟨ x1 ⋅ ⋅ ⋅ x5
x1x4

,
x1 ⋅ ⋅ ⋅ x5
x2x5

,
x1 ⋅ ⋅ ⋅ x5
x1x2x3

,
x1 ⋅ ⋅ ⋅ x5
x3x4x5

⟩ = ⟨x2x3x5 , x1x3x4 , x4x5 , x1x2⟩.

he next lemma is key to understanding how the f -vector behaves under the
duality.

Lemma 3.4 Let I ⊆ R = k[x1 , . . . , xn] be a square-free monomial ideal. For all
integers j = −1, . . . , n − 1, there is a bijection

{m ∈ R j+1 ∣ m a square-freemonomial that divides some p ∈ G(I)}
←→ {m ∈ În− j−1 ∣ m a square-freemonomial} .

Proof Fix a j ∈ {−1, . . . , n− 1}, let A denote the ûrst set, and let B denote the second
set. We claim that themap φ ∶ A→ B given by

φ(m) = x1x2 ⋅ ⋅ ⋅ xn

m
gives the desired bijection. his map is deûned, because if m ∈ A, there is a gener-
ator p ∈ G(I) such that m∣p. But that then means that x1 ⋅⋅⋅xn

p divides φ(m) = x1 ⋅⋅⋅xn
m ,

and consequently, φ(m) ∈ Î. Moreover, since deg(m) = j + 1, we have deg(φ(m)) =
n − j − 1. Finally, since m is a square-freemonomial, so is φ(m).

It is immediate that the map is injective. For surjectivity, let m ∈ B. It suõces
to show that the square-free monomial m′ = x1 ⋅⋅⋅xn

m ∈ A, since φ(m′) = m. By our
construction of m′ it follows that deg(m′) = j + 1. Also, because m ∈ B, there is
some p ∈ G(I) such that x1 ⋅⋅⋅xn

p divides m. But this then means that m′ divides p, i.e.,
m′ ∈ A. ∎

Remark 3.5 Using the notation introduced before Lemma 2.5, Lemma 3.4 gives a
bijection between B j+1(I)⊔C j+1(I) and Cn− j−1(Î)⊔Dn− j−1(Î) for all j = −1, . . . , n−1.

Lemma 3.4 can be used to relate the f -vectors of δN(I), δF(I), δN(Î), and δF(Î).

Corollary 3.6 Let I ⊆ R = k[x1 , . . . , xn] be a square-freemonomial ideal.
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(i) If f (δF(I)) = ( f−1 , f0 , . . . , fd), then

f (δN(Î)) = ((n
0
) − fn−1 , . . . , (

n
i
) − fn−i−1 , . . . , (

n
n − 1

) − f0 , (
n
n
) − f−1) .

(ii) If f (δN(I)) = ( f−1 , f0 , . . . , fd), then

f (δF(Î)) = ((n
0
) − fn−1 , . . . , (

n
i
) − fn−i−1 , . . . , (

n
n − 1

) − f0 , (
n
n
) − f−1) .

In both cases, f i = 0 if i > d.

Proof (i) Fix some j ∈ {−1, 0, . . . , n − 1}. By Remark 2.4 and Lemma 3.4, we have

f j(δF(I)) = #{m ∈ R j+1 ∣ m a square-freemonomial that divides some p ∈ G(I)}
= #{m ∈ În− j−1 ∣ m a square-freemonomial}
= #{m ∈ Rn− j−1 ∣ m a square-freemonomial}
− #{m /∈ În− j−1 ∣ m a square-freemonomial}

= ( n
n − j − 1

) − fn− j−2(δN(Î)).

Rearranging, and letting l = n − j − 2 gives

f l(δN(Î)) = ( n
l + 1

) − fn−l−2(δF(I)) for l = −1, . . . , n − 1,

as desired.
(ii) he proof is similar to (i). Indeed, if we replace I with Î we show that

f j(δF(Î)) = ( n
n − j − 1

) − fn− j−2(δN(I)) = ( n
j + 1

) − fn− j−2(δN(I))

for all j ∈ {−1, 0, . . . , n − 1}. ∎

We end this section with some consequences related to the Kruskal–Katona the-
orem; although we do not use this result in the sequel, we feel it is of independent
interest.

We follow the notation of Herzog–Hibi [11, Section 6.4]. heMacaulay expansion
of a with respect to j is the expansion

a = (a j

j
) + (a j−1

j − 1
) + ⋅ ⋅ ⋅ + (ak

k
),

where a j > a j−1 > ⋅ ⋅ ⋅ > ak ≥ k ≥ 1. his expansion is unique (see [11, Lemma 6.3.4]).
For a ûxed a and j, we use theMacaulay expansion of a with respect to j to deûne

a( j) = ( a j

j + 1
) + (a j−1

j
) + ⋅ ⋅ ⋅ + ( ak

k + 1
).

Kruskal–Katona’s theorem [12,13] then classiûeswhat vectors can be the f -vector of a
simplicial complex using theMacaulay expansion operation. his equivalence, aswell
as two new equivalent statements that use the complementary dual, are given below.
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heorem 3.7 Let ( f−1 , f0 , . . . , fd) ∈ Nd+2
+

with f−1 = 1. hen the following are
equivalent:

(i) ( f−1 , f0 , f1 , . . . , fd) is the f -vector of a simplicial complex on n = f0 vertices.
(ii) ft ≤ f (t)t−1 for all 1 ≤ t ≤ d.
(iii)

((n
0
) − fn−1 , . . . , (

n
i
) − fn−i−1 , . . . , (

n
n − 1

) − f0 , (
n
n
) − f−1)

is the f -vector of a simplicial complex on (n
1) − fn−2 vertices (where f i = 0 if i > d).

(iv)

( n
t + 1

) − [( n
t + 2

) − ft+1]
(n−t−2)

≤ ft for all 0 ≤ t ≤ d − 1.

Proof (i)⇔ (ii). his equivalence is the Kruskal–Katona theorem (see [12, 13]).
(i)⇔ (iii). his equivalence follows from Corollary 3.6 and the Kruskal–Katona

equivalence of (i)⇔ (ii). In particular, one lets I be the square-free monomial ideal
with f (δN(I)) = ( f−1 , f0 , . . . , fd), and then one uses Corollary 3.6 to show that (iii)
is a valid f -vector. he duality of I and Î is used to show the reverse direction.

(iii)⇔ (iv). Corollary 3.6 and the equivalence of (i)⇔ (ii) implies that the vector
of (iii) is an f -vector of a simplicial complex if and only if, for each 0 ≤ i ≤ n − 2,

( n
i + 2

) − fn−i−3 ≤ [( n
i + 1

) − fn−i−2]
(i+1)

.

he result now follows if we take i = n − 3 − t and rearrange the above equation. ∎

Discussion 3.8 Although this material is not required for our paper, it is prudent
to make some observations about the Alexander dual. Recall that for any simplicial
complex ∆ on a vertex set X, the Alexander dual of ∆ is the simplicial complex on X
given by

∆∨ = {F ⊆ X ∣ X/F /∈ ∆}.

It is well known (for example, see [11, Corollary 1.5.5]) that if ∆ = ⟨F1 , . . . , Fs⟩, then
N(∆∨), the non-face ideal of ∆∨ (i.e., the ideal generated by the square-free mono-
mials x i1 ⋅ ⋅ ⋅ x i j where {x i1 , . . . , x i , j} /∈ ∆) is given by

N(∆∨) = ⟨mF c1 , . . . ,mF cs ⟩,

where mF ci = ∏x∈F ci
x with F ci = X/Fi . But we can also write mF ci = (∏x∈X x)/mFi =

x1 ⋅⋅⋅xn
mFi

. Now tracing through the deûnitions, if I is square-freemonomial ideal, then

Î = N((δF(I))∨) ;

i.e., the complementary dual of I is the non-face ideal of the Alexander dual of the
facet complex of I. his, in turn, implies that δN(Î) = δN(N((δF(I))∨) = (δF(I))∨.
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Figure 2: Facet and non-face complexes of Î = ⟨x1x2 , x4x5 , x1x3x4 , x2x3x5⟩.

4 f -Ideals and Applications

We use the tools of the previous sections to prove our main theorem about f -ideals
and to deduce some new consequences about this class of ideals. Our main theorem
is an immediate application of Corollary 3.6.

heorem 4.1 Let I be a square-free monomial ideal of R = k[x1 , . . . , xn]. hen I is
an f -ideal if and only if Î is an f -ideal.

Proof Suppose f (δN(I)) = f (δF(I)) = ( f−1 , f0 , . . . , fd). hen by Corollary 3.6,
both δN(Î) and δF(Î) will have the same f -vector. For the reverse direction, simply
replace I with Î and use the same corollary. ∎

Remark 4.2 heorem 4.1 was ûrst proved by the ûrst author (see [4]) using the
characterization of f -ideals of [9]. he proof presented here avoids the machinery
of [9].

Example 4.3 In Example 3.3 we computed the ideal Î of the ideal I in Example 2.2.
Byheorem 4.1, the ideal Î is an f -ideal. Indeed, the simplicial complexes δN(Î) and
δN(Î) are given in Figure 2, and both simplicial complexes have f -vector (1, 5, 8, 2).
Note that the f -vector of δN(I) and δF(I) was (1, 5, 8, 2), so by Corollary 3.6,

f (δF(Î)) = f (δN(Î)) = ((5
0
) − 0, (5

1
) − 0, (5

2
) − 2, (5

3
) − 8, (5

4
) − 5, (5

5
) − 1)

= (1, 5, 8, 2).

heorem4.1 implies that f -ideals come in “pairs”. his observation allows us to ex-
tendmany known results about f -ideals to their complementary duals. For example,
we can now classify the f -ideals that are equigenerated in degree n − 2.

heorem 4.4 Let I be a square-free monomial of k[x1 , . . . , xn] equigenerated in de-
gree n − 2. hen the following are equivalent:
(i) I is an f -ideal.
(ii) Î is an f -ideal.
(iii) Î is an unmixed ideal of height n − 2 (i.e., all of the associated primes of I have

height n − 2) with p = 1
2(

n
2).
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Proof he equivalence of (i) and (ii) is heorem 4.1. Because the ideal Î is equigen-
erated in degree two, the equivalence of (ii) and (iii) is [1,heorem 3.5]. ∎

Following Guo, Wu, and Liu [9], let V(n, d) denote the set of f -ideals of
k[x1 , . . . , xn] that are equigenerated in degree d. We can now extend Guo, et al.’s
results.

heorem 4.5 Using the notation above, we have the following.
(i) For all 1 ≤ d ≤ n − 1, ∣V(n, d)∣ = ∣V(n, n − d)∣.
(ii) If n ≠ 2, then V(n, 1) = V(n, n − 1) = ∅. If n = 2, then ∣V(2, 1)∣ = 2.
(iii) V(n, n − 2) ≠ ∅ if and only if n ≡ 0 or 1 (mod 4).

Proof (i) Byheorem4.1, the complementary dual gives a bijection between the sets
V(n, d) and V(n, n − d).

(ii) Suppose that I ∈ V(n, 1), i.e., I is an f -ideal generated by a subset of the vari-
ables. So the facets of δF(I) are vertices, while δN(I) is a simplex. hen f0(δF(I)),
the number of variables that generate I,must be the same as f0(δN(I)), the number
of variables not in I. his implies that n cannot be odd. Furthermore, if n ≥ 4 is even,
then dim δF(I) = 0, but dim δN(I) = n

2 − 1 ≥ 1, contradicting the fact that I is an
f -ideal.

When n = 2, I1 = ⟨x1⟩ and I2 = ⟨x2⟩ are f -ideals of k[x1 , x2].
(iii) By (i), ∣V(n, n − 2)∣ ≠ 0 if and only if ∣V(n, 2)∣ ≠ 0. Now [9, Proposition 3.4]

shows that V(n, 2) ≠ ∅ if and only if n ≡ 0, 1 (mod 4). ∎

Remark 4.6 [9, Proposition 4.10] gives an explicit formula for ∣V(n, 2)∣, which we
will not present here. So by heorem 4.5(i), there is an explicit formula for
∣V(n, n − 2)∣.

We now explore some necessary conditions on the f -vector of δN(I) (equivalently,
δF(I)) when I is an f -ideal. We also give a necessary condition on the generators of
an f -ideal. As we shall see,heorem 4.1 plays a role in some of our proofs.

We ûrst recall some notation. If I ⊆ R is a square-freemonomial ideal, then we let

α(I) = min{deg(m) ∣ m ∈ G(I)} and ω(I) = max{deg(m ∣ m ∈ G(I)}.
We present some conditions on the f -vector; some of these results were known.

heorem 4.7 Suppose that I is an f -ideal in R = k[x1 , . . . , xn] with associated
f -vector f = f (δF(I)) = f (δN(I)). Let α = α(I) and ω = ω(I). hen
(i) f i = ( n

i+1) for i = 0, . . . , α − 2;
(ii) fα−1 ≥ 1

2(
n
α);

(iii) fω−1 ≤ 1
2(

n
ω);

(iv) if α = ω (i.e., I is equigenerated), then fα−1 = 1
2(

n
α);

(v) dim δF(I) = dim δN(I) = ω − 1 ≤ n − 2.

Proof (i) See [3, Lemma 3.7].
(ii) If I is generated by monomials of degree α or larger, then (2.1) becomes

Mα = Aα(I) ⊔ Bα(I) ⊔ Cα(I)
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since Dα(I) = ∅. Suppose fα−1 < 1
2(

n
α). Because fα−1(δN(I)) = ∣Aα(I)∣ + ∣Bα(I)∣, we

have ∣Cα(I)∣ > 1
2(

n
α). But since I is an f -ideal, by Lemma 2.5 we have

1
2
(n
α
) > fα−1(δN(I)) ≥ ∣Aα(I)∣ = ∣Cα(I)∣ >

1
2
(n
α
).

We now have the desired contradiction.
(iii) Suppose that fω−1(δF(I)) > 1

2(
n
ω) = 1

2(
n

n−ω). Since ω = ω(I), we must
have that α(Î) = n − ω. Since Î is also an f -ideal by heorem 4.1, (ii) implies that
fn−ω−1(δF(Î)) ≥ 1

2(
n

n−ω). But by Corollary 3.6, and since Î is an f -ideal,

fn−ω−1(δF(Î)) = fn−ω−1(δN(Î)) = ( n
n − ω

) − fω−1(δF(I)) < 1
2
( n
n − ω

).

his gives the desired contradiction.
(iv) We simply combine the inequalities of (ii) and (iii).
(v) Since ω = ω(I), there is a generator m of I of degree ω, and furthermore,

every other generator has smaller degree. So the facet of δF(I) of largest dimen-
sion has dimension ω − 1. Since I is an f -ideal, this also forces δN(I) to have a facet
of dimension of ω − 1. Note that ω(I) ≤ n − 1, since no f -ideal has x1 ⋅ ⋅ ⋅ xn as a
generator. ∎

Our ûnal result shows that if I is not an equigenerated f -ideal, then in some cases
we can deduce the existence of generators of other degrees.

heorem 4.8 Suppose that I is an f -ideal of k[x1 , . . . , xn]with α = α(I) < ω(I) = ω,
and let f = f (δF(I)) = f (δN(I)).
(i) If fα−1 > (n

α) − n + α, then I also has a generator of degree α + 1.
(ii) If fω−1 < ω, then I also has a generator of degree ω − 1.

Proof To prove (i), it is enough to prove (ii) and applyheorem4.1. Indeed, suppose
that fα−1 > (n

α) − n + α. hen the ideal Î is an f -ideal with ω(Î) = n − α and

fω(Î)−1(δF(Î)) = ( n
n − α) − fα−1 < n − α = ω(Î).

So by (ii) the ideal Î will have a generator of degree ω(Î)− 1, which implies that I has
a generator of degree α + 1.

(ii) Note that if α = ω − 1, then the conclusion immediately follows. So suppose
that α < ω − 1. We use the partition (2.1). Since I is generated in degrees ≤ ω, we have
Bω(I) = ∅. It then follows by Lemma 2.5 and Remark 2.4 that

fω−1 = ∣Aω(I)∣ = ∣Cω(I)∣ < ω.

Now suppose that I has no generators of degree ω− 1. So ∣Cω−1(I)∣ = 0, and conse-
quently, ∣Aω−1(I)∣ = 0, because I is an f -ideal. Because α < ω−1,wehaveDω−1(I) ≠ ∅.
hen, again by Lemma 2.5 and Remark 2.4, we must have fω−2 = ∣Bω−1(I)∣. Let
m ∈ Aω(I). A�er relabeling, we can assume that m = x1x2 ⋅ ⋅ ⋅ xω . Note that m/x i /∈ I
for i = 1, . . . ,ω. Indeed, if m/x i ∈ I, this implies that m ∈ I, contradicting the fact
that all elements of Aω(I) are not in I. So m/x i ∈ Bω−1(I) for all i. By deûnition,
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every element of Bω−1(I) must divide an element of Cω(I) (since Bω(I) = ∅). Be-
cause ∣Cω(I)∣ < ω, there is one monomial z ∈ Cω(I) such that m/x i and m/x j both
divide z. But since deg z = ω, this forces m = z. We now arrive at a contradiction,
since m ∈ Aω(I) ∩ Cω(I), but these two sets are disjoint. ∎

Remark 4.9 he ideal I of Example 2.2 is an f -ideal with α = α(I) = 2, and f2−1 =
8 > (52) − 5 + 2 = 7. So by heorem 4.8, the ideal I should have a generator of degree
α + 1 = 3, which it does. Alternatively, we could have deduced that I has a generator
of degree 2 from the fact that ω(I) = 3 and f3−1 = 2.

In our computer experiments,we only found f -ideals that had either α(I) = ω(I),
i.e., the f -ideals were equigenerated, or α(I) + 1 = ω(I). It would be interesting to
determine the existence of f -ideals with the property that α(I) + d = ω(I) for any
d ∈ N. heorem 4.8 would imply a necessary condition on the generators of these
ideals.
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