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Abstract

A pair of symmetric dual multiobjective fractional programming problems is formulated and
appropriate duality theorems are established.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 90 C 31, 90 C 32.

1. Introduction

Dorn [5] defined a program and its dual to be symmetric if the dual of the
dual is the original problem. Dantzig, Eisenberg and Cottle [4] and Mond
[7] gave symmetric dual theorems for programs involving a scalar functions
f{x ,y), x GR" , y el™ under the condition that / (• , y) is convex and
f{x, •) is concave. More recently, Mond and Weir [8] have given a different
pair of symmetric dual nonlinear programs which allows for a weakening of
the convexity hypothesis for f(x, y). Chandra, Craven and Mond [2] formu-
lated a pair of symmetric dual fractional programs under suitable convexity
hypothesis.

In [10] Weir and Mond discuss symmetric duality in multiobjective pro-
gramming, generalizing [4] and [8]. The duals given there reduce to those
known for scalar valued symmetric programming and also some more recent
results in multiobjective programming duality.

This work was done while the author was an Honorary Visiting Fellow, Department of Mathe-
matics, Australian Defence Force Academy, Campbell, ACT, 2600, Australia.
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68 T. Weir [2]

The purpose of this paper is to formulate a pair of symmetric dual
multiobjective fractional programs under suitable convexity assumptions.
The relationship of the symmetric dual programs presented here to dual,
nonsymmetric, fractional programming problems is also discussed.

2. Notation and preliminaries

The following conventions for vectors in Rn will be used:
x > y if and only if xt> yt,, i = 1, 2, ... , n;
x ^ y if and only if x(. ^ yt,, i = 1, 2 , . . . , « ;
x > y if and only if xf ^ y,., z = 1, 2 , ... , n, but x ^ y, « > 2;
* ^ y is the negation of * > y.

If .F is a twice differentiate functions from R " x f to R, then V^F"
and V F denote gradient (column) vectors of F with respect to x and y
respectively, and V F and V F denote respectively the (m x m) and
(n x m) matrices of second partial derivatives.

If F is a twice differentiable function from I ' x f - t R * , then VXF
and V F denote respectively the (n x k) and (m x k) matrices of first
partial derivatives. Consider the multiobjective programming problem:

(P) minimize f{x) subject to x e X .

Here / : R" -• Rh and X c R" . A feasible point z is said to be an efficient
solution of (P) if f((z) > ft(x) for all i = 1, 2, . . . , fc implies ft(z) = ft{x)
f o r a l l i=l,2,... , k .

A feasible point z is said to be properly efficient [6] if it is efficient for
(P) and if there exists a scalar M > 0 such that, for each / ,

for some j such that fAx) > fAz) wherever x is feasible for (P) and
f ( x ) < f ( )

A feasible point z is said to be a weak minimum [1] if there exists no
other feasible point x for which f(z) > f(x). If a feasible point z is
efficient then it is also a weak minimum.

3. Duality

Consider the following pair of multiobjective symmetric fractional pro-
grams:

https://doi.org/10.1017/S1446788700032559 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032559
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Primal (FP)

. . . (nx{x,y) nk{x,y)\'
minimize I -j-. r , . . . , -*-. r

\d{(x,y) dk(x,y)J
subject to

t

Dual (FD)

maximize

subject to

1=1

k

>,(̂ ,V nt - «.V dt)>0, co>0, co'e = 1, JC > 0.

nx{u,v) nk{u,v)\'
dx{u,v)'"" dk(u,v)J

k

u J^coi(diVxni - ntVxd()<0, co > 0, co'e = 1, v ^ 0.

Here e = ( 1 , 1 , . . . , l ) ' e K f c ; nt, i = 1, 2 , . . . , k, and dn i = l , 2 , . . . ,
k, are twice difFerentiable functions from R" x Rm to R, n{(-,y) and
dt(x , • ) , i = 1, 2 , . . . , k, are convex « . (x , •) and </,.(•, y ) , i = 1, 2 , . . . ,
k, are concave. It is assumed throughout that in the feasible regions ni > 0 ,
i — 1, 2, ... , k, and that each dt is bounded.

In order to simplify notation we rewrite the primal and dual programs as
follows.
Primal (FP')

minimize q = (? , , q2, ... , qk)'

subject to

(1) qi = ni{x,y)/di{x,y), i = 1, 2, . . . , fc,

(2)

(3)
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(4) a) > 0, we = 1, x > 0.

Dual (FD')

maximize p = {px, p2, ... , pkf

subject to

(5) Pi = ni{u, v)/dt(u,v), 1 = 1 , 2 , . . . , * ,

(6)

k

(7) «'53G).-(Vx/I.--^«v*d«)^°' co>0, o)'e=l, v>0.

The following weak and strong duality theorems are stated in terms of
(FP') and (FP') but apply equally to (FP) and (FD).

THEOREM 1 (weak duality). Let (x, y, w) be feasible for (FP') and let
(u,v,w) be feasible for (FP ' ) . Then q^p.

PROOF. From (4) and (7)

(x - u)' b>, (%(w, v) -Pidik{u, v))] > 0.

The convexity and concavity assumptions imply that «,(-, v) - pl dt{-, v),
i = 1, 2 , . . . , k, are convex; thus

1=1 1=1

and from (5)

k

(9) ^2coi(ni(u,v)-pidi(u,v))>0.

From (3) and (8)

L/=l
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The convexity and concavity assumptions imply nt(x, •) - qtdt(x, •), / =
1, 2 , . . . , k, are concave; thus

k k

J ] »,(«,(*, v) - qi dt{x, «)) < J^ <»,(«,(•*. y) ~ Qt
 dt(x, y))

and from (1)

k

(10) J2(0l(ni(x,v)-qidi(x,v)) < 0.
i=i

Combining (9) and (10) gives

k

(11) J^a)i(qi-

If, for some /, qt > pt a n d for all j ^ i, q^ < pj, t h e n since dl > 0 ,
i = 1, 2 , . . . , k, o n e wou ld ob ta in a con t r ad ic t ion to (11); hence q^p .

THEOREM 2 (strong duality). Let (JC0 , y0, w0) be a properly efficient solu-
tion for (FP') ;fixw = w0 in (FD); <fe/z«e $0 *y qOi = nt(x0, yo)/dt(xo, y0),
i — 1, 2, . . . , k. Assume that

« positive or negative definite and that the set

(13)

is linearly independent. Then {x0, y0, co0) is a properly efficient solution of
(FD').

PROOF. Since (xQ, y0, wQ) is a properly efficient solution of (FP') then

it is also a weak minimum. Hence there exist a € Mm, b e Ek r e Rm,
j g l , t €Rk, z e R " , such that the following Fritz John conditions are
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satisfied at (x0, yQ, co0) [3]:

(14) ai + bidi-(O0i{Vy

(15)

(16)

4 X ' - sy0)] - r =
1=1

= 0,

t'co0 =

(a,r,s,t,z)>0,

(17) ( r - 5 y 0 ) ' ( V y « f c - «Ol-Vy rf,) - t( = 0,

(18) '

(19)

(20)

(21) ( f l , 6 , r , s , / , 2 ) # 0 .

Since co0 > 0 and t ^ 0, then / = 0.
Multiplying (16) by (r - sy0Y and applying (17) gives

(r ~ Wo) =
.1=1

Since (12) is assumed positive or negative definite then

(22) r = sy0.

Thus, from (16),

and since, by assumption, the set (13) is linearly independent then

(23) b = sco0.

If s = 0, then b = 0; from (14), a = 0; from (22) r = 0; from (15) z = 0;
this combined with t = 0 contradicts (21); hence i1 > 0 and b > 0. From
(22), y0 > 0 and from (15) and (23)

From (15), (23) and (19) it also follows that
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Thus, (x0, yQ, coQ) is feasible for (FD) and the objective values of (FP')
and (FD') are equal there. Clearly, (x0, y0, co0) is efficient for (FD'). If
(JC0 , y0, (o0) were improperly efficient, then for some feasible {ui, vt, co0)
w i t h p u = n i { u i , v i ) / d i ( u i , v t ) , i = 1 , 2 , ... , k , a n d f o r s o m e i , p u -
qOi > M for any M > 0 . Since dt, i = 1,2, ... , k, is bounded it follows
that

k

( = 1

which contradicts weak duality, equation (ii). Thus (x0, y0, co0) is properly
efficient for (FD;).

4. Special cases

(i) If «,.(*, y) = ft{x) + y'h(x), i = 1, 2 , . . . , k , and dt{x, y) = gi(x),
i= 1 , 2 , . . . , k, where ft, g . : R " - » R , i = 1 , 2 , . . . , i t , and h:Rn -^ E m

then programs (FP) and (FD) reduce to

(PI) minimize ((fl(x) + y'h[x))/g1(x), . . . , (fk(x)+y'h(x))/gk(x))'

subject to
h(x)<0, y'h(x)>0, x>0,

and

(Dl) maximize ((/,(«) + vth(u))/gl(u),... , (fk(u) + v'h(u))/gk(u))'

subject to

v'hm/gtiu)) > 0,

k

«' E «,•*,•(«) v((/;-(«)+vh(u))/gi(u)) < o,
i=i

co > 0, co'e= 1, v ̂ 0 .

(Here V = Vx.)
Since in (PI) y'h(x) > 0, ^,(x) > 0, i = 1, 2, . . . , k, we can take y = 0

and thus eliminate y from the problem. The problem (PI) is thus equivalent
to

(P2) minimize ( / , ( * ) / * , ( * ) , f2(x)/g2(x),..., fk(x)/gk(x))'

subject to
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This is a standard multiobjective fractional programming problem, with non-
negativity constraints. Program (Dl) is a Mond-Weir type dual for (P2).

(ii) If, in (FP) and (FD), dt{x, y) = 1, we obtain symmetric dual problems
of Weir and Mond [10]; there duality is proved under somewhat weaker
convexity conditions.

(iii) If, in (FP) and (FD), k = 1, then we obtain pair of scalar symmetric
dual fractional programs of Chandra, Craven and Mond [2].
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