ON RADICALS OF SUBMODULES OF FINITELY GENERATED MODULES

BY
ROY L. McCASLAND AND MARION E. MOORE

Abstract

The concept of the M-radical of a submodule B of an R-module A is discussed (R is a commutative ring with identity and A is a unitary R-module). The M-radical of B is defined as the intersection of all prime submodules of A containing B. The main result of the paper is that if $\sqrt{(B: A)}$ denotes the ideal radical of $(B: A)$, then $M-\operatorname{rad} B=$ $\sqrt{(B: A)} A$, provided that A is a finitely generated multiplication module. Additionally, it is shown that if A is an arbitrary module, $\sqrt{(B: A)} A \subseteq\langle C\rangle$ $\subseteq M-\operatorname{rad} B$, where $C=\left\{r a \mid a \in A\right.$ and $r^{\prime \prime} a \in B$, for some $\left.n \in \mathbb{Z}^{+}\right\}$.

Since the radical of an ideal plays an important role in the study of rings, one would naturally seek a counterpart in the module setting. Indeed, such a concept has been discussed [4] e.g., where the radical of a submodule B of an R-module A is defined as the radical of the annihilator ideal of A / B, that is, the radical of a submodule is still an ideal. However, some information seems to be lost here. For example, if one merely takes the \mathbb{Z}-module A to be $\mathbb{Z} \oplus \mathbb{Z}(\mathbb{Z}=$ integers $)$, then for every non-zero cyclic submodule B of A, ann $A / B=0$. Hence the radical (as defined in [4]) of every non-zero cyclic submodule of A is also zero.

In what follows all rings are commutative with identity and all modules are unitary. $I \triangleleft R$ means that I is an ideal of R.

We define the M-radical of a submodule B of an R-module A to be the intersection of all prime submodules of A containing B. A submodule T of A is a prime submodule provided that $T \neq A$ and for $r \in R, a \in A \backslash T$ such that $r a \in T$, it follows that $r A \subseteq T$. Equivalently, T is a prime submodule of A whenever $I D \subseteq T$, (with $I \triangleleft R$, and D a submodule of A) implies that $I \subseteq(T: A)$ or $D \subseteq T$ [3].

The problem now becomes that of characterizing (internally) the M-radical of B (denoted $\operatorname{rad} B$). We solve the problem completely for submodules of finitely generated multiplication modules. A is a multiplication module provided for each submodule B of $A, B=I A$ for some $I \triangleleft R$. In fact, if $(B: A)$ denotes the annihilator ideal of A / B and the (ring) radical of an ideal I is denoted by \sqrt{I}, then the main result of the paper can be stated as follows:

Let B be a submodule of a finitely generated multiplication module A (over a ring $R)$. Then $\operatorname{rad} B=\sqrt{(B: A)} A$.
(C) Canadian Mathematical Society 1984.

We observe that this result fails for the example above, for if B is any non-zero cyclic submodule of $A=\mathbb{Z} \oplus \mathbb{Z}$, then $\sqrt{(B: A)} A=0$. Clearly this is not $\operatorname{rad} B$ since $B \subseteq$ $\operatorname{rad} B$. However, it is always the case that $\sqrt{(B: A)} A \subseteq \operatorname{rad} B$, and we record this fact in the following lemma.

Lemma 1. Let B be a submodule of an R-module A. Then $\sqrt{(B: A)} A \subseteq \operatorname{rad} B$.
Proof. If $\operatorname{rad} B=A$ the result is immediate. Otherwise, if P is any prime submodule of A which contains B, we have $(B: A) \subseteq(P: A)$. To show that $(P: A)$ is a prime ideal, suppose that $r s \varepsilon(P: A)$, so that $r s A \subseteq P$. Either $s A \subseteq P$ or $s a \varepsilon A \backslash P$ for some $a \varepsilon$ A. In the latter case since P is a prime submodule and $r(s a) \varepsilon P$, we must have $r A \subseteq$ P. Thus $r \varepsilon(P: A)$ or $s \varepsilon(P: A)$ and $(P: A)$ is prime. Hence $\sqrt{(B: A)} \subseteq(P: A)$ and thus $\sqrt{(B: A)} A \subseteq(P: A) A \subseteq P$. Since P is an arbitrary prime submodule containing B, we have $\sqrt{(B: A)} A \subseteq \operatorname{rad} B$.

Bass proved that if A is a finitely generated module over a commutative ring R, and if $I \triangleleft R$ such that $I A=A$, then $(1-i) A=0$ for some $i \in I$ [1, Lemma 4.6]. By a parallel argument one can actually prove the following result.

Result 2. If A is a finitely generated R-module, P is a prime ideal of R containing ann A, and $I \triangleleft R$ such that $I A \subseteq P A$, then $I \subseteq P$.

We remark that if A is a finitely generated R-module and P is a prime ideal of R containing ann A, it now follows that $(P A: A)=P$.

Lemma 3. If A is a finitely generated multiplication R-module and P is a prime ideal of R containing ann A, then $P A$ is a prime submodule of A.

Proof. Note that $P A \neq A$ and suppose that $I \triangleleft R$ and B is a submodule of A such that $I B \subseteq P A$. If $B=K A, K \triangleleft R$, then $I B=I(K A) \subseteq P A$. Result 2 implies that $I K \subseteq P$, hence $I \subseteq P=(P A: A)$ or $K \subseteq P$, then $B=K A \subseteq P A$ and the proof is complete.

Theorem 4. Let A be a finitely generated multiplication R-module and let B be a submodule of A. Then $\mathrm{rad} B=\sqrt{(B: A)} A$.

Proof. By Lemma $1, \sqrt{(B: A)} A \subseteq \operatorname{rad} B$. Since A is a multiplication module, rad $B=(\operatorname{rad} B: A) A$. It suffices then to show that $(\operatorname{rad} B: A) \subseteq \sqrt{(B: A)}$. Let P be any prime ideal such that $(B: A) \subset P$. Since P is a prime ideal containing ann $A=(0: A)$, then $P A$ is a prime submodule of A containing $B=(B: A) A$. Hence $(\operatorname{rad} B: A) A=\operatorname{rad}$ $B \subseteq P A$, so that $(\operatorname{rad} B: A) \subseteq P$. Consequently, $(\operatorname{rad} B: A) \subseteq \sqrt{(B: A)}$.

Corollary 5. If Q is a primary submodule of the finitely generated multiplication R-module A, then rad Q is a prime submodule of A.
(Here we have used the concept of primary submodule as defined in [2]).
Proof. By theorems 8.2.9 and 8.3.2 of [2], $\sqrt{(Q: A)}$ is a prime ideal containing ann A. Therefore $\operatorname{rad} Q=\sqrt{Q: A} A$ is a prime submodule of A by Lemma 3.

Finally, we remark that in case that A fails to satisfy the hypothesis of Theorem 4, we can produce a somewhat sharper bound for $\operatorname{rad} B$, which in general is distinct from $\sqrt{(B: A)} A$. This bound is obtained by first noting that $C=\left\{r a \mid a \in A\right.$ and $r^{n} a \in B$, for some $\left.n \in \mathbb{Z}^{+}\right\} \subseteq B$, [3]. It is then not difficult to show that $\sqrt{(B: A)} A \subseteq\langle C\rangle$ ($=$ the submodule generated by C).

Consequently, we must have in the arbitrary setting, $\sqrt{(B: A)} A \subseteq\langle C\rangle \subseteq \operatorname{rad} B$. Of course, in case that A is a finitely generated multiplication R-module, these three submodules coincide (Theorem 4).

Acknowledgement. The authors wish to thank W. H. Gustafson for indicating the proof due to Bass which appears [1] and to the referee for his/her suggestions.

References

1. H. Bass, Algebraic K-Theory, New York, Q.A. Inc., 1968.
2. Thomas W. Hungerford, Algebra, New York, Springer-Verlag, 1974.
3. Roy L. McCasland, Dissertation, University of Texas at Arlington, 1983.
4. O. Zariski and P. Samuel, Commutative Algebra, Vol. I., 1958.

Department of Mathematics
Texas Tech University
Lubbock, Texas 79409
Department of Mathematics
University of Texas at Arlington
Arlington, Texas 76019

