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The Chow ring of the Cayley plane

Atanas Iliev and Laurent Manivel

Abstract

We give a full description of the Chow ring of the complex Cayley plane OP2. For this,
we describe explicitly the most interesting of its Schubert varieties and compute their
intersection products. Translating our results into the Borel presentation, i.e. in terms of
Weyl group invariants, we are able to compute the degree of the variety of reductions Y8

introduced by the current authors in arXiv: math.AG/0306328.

1. Introduction

In this paper we give a detailed description of the Chow ring of the complex Cayley plane X8 = OP2,
the fourth Severi variety (not to be confused with the real Cayley plane F4/Spin9, the real part of
OP2, which admits a cell decomposition R0 ∪ R8 ∪ R16 and is topologically much simpler). This is
a smooth complex projective variety of dimension 16, homogeneous under the action of the adjoint
group of type E6. It can be described as the closed orbit in the projectivization P26 of the minimal
representation of E6.

The Chow ring of a projective homogeneous variety G/P has been described classically in two
different ways.

First, it can be described as a quotient of a ring of invariants. Namely, we have to consider the
action of the Weyl group of P on the character ring, take the invariant subring, and mod out by
the homogeneous ideal generated by the invariants (of positive degree) of the full Weyl group of G.
This is the Borel presentation [Bor53].

Second, the Chow ring has a basis given by the Schubert classes, the classes of the closures of the
B-orbits for some Borel subgroup B of E6. These varieties are the Schubert varieties. Their inter-
section products can in principle be computed by using Demazure operators [BGG73]. This is the
Schubert presentation.

We give a detailed description of the Schubert presentation of the Chow ring A∗(OP2) of the
Cayley plane. We describe explicitly the most interesting Schubert cycles, after having explained how
to understand geometrically a Borel subgroup of E6. Then we compute the intersection numbers.
In the final section, we turn to the Borel presentation and determine the classes of some invariants of
the partial Weyl group in terms of Schubert classes, from which we deduce the Chern classes of the
normal bundle of X8 = OP2 in P26. This allows us to compute the degree of the variety of reductions
Y8 ⊂ P272 introduced in [IM03], which was the initial motivation for writing this paper.
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The Chow ring of the Cayley plane

2. The Cayley plane

Let O denote the normed algebra of (real) octonions (see e.g. [Bae02]), and let O be its complexi-
fication. The space

J3(O) =





c1 x3 x2

x3 c2 x1

x2 x1 c3


 : ci ∈ C, xi ∈ O


 ∼= C27

of O-Hermitian matrices of order three is the exceptional simple complex Jordan algebra, for the
Jordan multiplication A ◦ B = 1

2(AB + BA).
The subgroup SL3(O) of GL(J3(O)) consisting of automorphisms preserving the determinant is

the adjoint group of type E6. The Jordan algebra J3(O) and its dual are the minimal representations
of this group.

The action of E6 on the projectivization PJ3(O) has exactly three orbits: the complement of the
determinantal hypersurface, the regular part of this hypersurface, and its singular part which is
the closed E6-orbit. These three orbits are the sets of matrices of rank three, two, and one respectively.

The closed orbit, i.e. the (projectivization of) the set of rank-one matrices, is the Cayley plane.
It can be defined by the quadratic equation

X2 = trace(X)X, X ∈ J3(O),

or as the closure of the affine cell

OP2
1 =





1 x y

x xx yx
y xy yy


 , x, y ∈ O


 ∼= C16.

It is also the closure of the two similar cells

OP2
2 =





uu u vu

u 1 v
uv v vv


 , u, v ∈ O


 ∼= C16

and

OP2
3 =





tt st t

ts ss s
t s 1


 , s, t ∈ O


 ∼= C16.

Unlike the ordinary projective plane, these three affine cells do not cover OP2. The complement of
their union is

OP2
∞ =





 0 x3 x2

x3 0 x1

x2 x1 0


 ,

q(x1) = q(x2) = q(x3) = 0,
x2x3 = x1x3 = x1x2 = 0


 ,

a singular codimension-3 linear section. Here, q(x) = xx denotes the non-degenerate quadratic form
on O obtained by complexification of the norm of O.

Since the Cayley plane is a closed orbit of E6, it can also be identified with the quotient of E6 by
a parabolic subgroup, namely the maximal parabolic subgroup defined by the simple root α6 in the
notation below. The semi-simple part of this maximal parabolic subgroup is isomorphic to Spin10.

◦ ◦ ◦ ◦

◦

•α1 α2 α3 α5 α6

α4
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Figure 1. Hasse diagram of the Cayley plane OP2.

The E6-module J3(O) is minuscule, meaning that its weights with respect to any maximal torus
of E6 are all conjugate under the Weyl group action. We can easily list these weights as follows.
Once we have fixed a set of simple roots of the Lie algebra, we can define the height of any weight ω
as the sum of its coefficients when we express ω in the basis of simple roots. Alternatively, this is
just the scalar product (ρ, ω), if ρ denotes, as usual, the sum of the fundamental weights, and the
scalar product is dual to the Killing form. The highest weight ω6 of J3(O) is the unique weight
with maximal height. We can obtain the other weights using the following process: If we have
some weight ω of J3(O), we express it in the basis of fundamental weights. For each fundamental
weight ωi on which the coefficient of ω is positive, we apply the corresponding simple reflection si.
The result is a weight of J3(O) of height smaller than that of ω, and we obtain all the weights
in this way. Figure 1 is the result of this process, where the highest weight ω6 corresponds to the
rightmost vertex. We do not write down the weights explicitly, but we keep track of the action of
the simple reflections: if we apply si to go from a weight to another one, we draw an edge between
them, labeled with an i.

3. The Hasse diagram of Schubert cycles

Schubert cycles in OP2 are indexed by a subset W 0 of the Weyl group W of E6, the elements of
which are minimal-length representatives of the W0-cosets in W . Here W0 denotes the Weyl group
of the maximal parabolic P6 ⊂ E6: it is the subgroup of W generated by the simple reflections
s1, . . . , s5, thus isomorphic to the Weyl group of Spin10.

But W0 is also the stabilizer in W of the weight ω6. Therefore, the weights of J3(O) are in
natural correspondence with the elements of W 0, and we can obtain very explicitly, from Figure 1,
the elements of W 0. Indeed, choose any vertex of the diagram, and any chain of minimal length
joining this vertex to the rightmost one. Let i1, . . . , ik be the consecutive labels on the edges of this
chain; then si1 · · · sik is a minimal decomposition of the corresponding elements of W 0, and every
such decomposition is obtained in this way.

For any w ∈ W 0, denote by σw the corresponding Schubert cycle of OP2. This cycle σw belongs
to Al(w)(OP2), where l(w) denotes the length of w. We have just seen that this length is equal to
the distance of the point corresponding to w in Figure 1, to the rightmost vertex. In particular, the
dimension of Ak(OP2) is equal to 1 for 0 � k � 3, to 2 for 4 � k � 7, and to 3 for k = 8 (and by
duality, this dimension is of course unaltered when k is changed into 16 − k).

The degree of each Schubert class can be deduced from the Pieri formula, which is particularly
simple in the minuscule case. Indeed, we have [Hil82, ch. V, Corollary 3.3, p. 176], if H denotes the
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Figure 2. Degrees of the Schubert cycles in the Cayley plane OP2.

hyperplane class,

σw.Hk =
∑

l(v)=l(w)+k

κ(w, v)σv ,

where κ(w, v) denotes the number of paths from w to v in Figure 1; that is, the number of chains
w = u0 → u1 → · · · → uk = v in W 0 such that l(ui) = l(w) + i and ui+1u

−1
i is a simple reflection.

In particular, the degree of σw is just κ(w,w0), where w0 denotes the longest element of W 0, which
corresponds to the leftmost vertex of the diagram. We include these degrees in Figure 2, the Hasse
diagram of OP2. Note that they can very quickly be computed inductively, beginning from the left:
the degree of each cycle is the sum of the degrees of the cycles connected to it in one dimension less.

We can already read several interesting pieces of information from Figure 2.

(1) The degree of OP2 ⊂ P26 is 78. This is precisely the dimension of E6. Is there a natural
explanation of this coincidence?

(2) One of the three Schubert varieties of dimension 8 is a quadric. This must be an O-line
in OP2, i.e. a copy of OP1 � Q8. Indeed, E6 acts transitively on the family of these lines, which is
actually parametrized by OP2 itself. In particular, a Borel subgroup has a fixed point in this family,
which must be a Schubert variety.

(3) The Cayley plane contains two families of Schubert cycles which are maximal linear sub-
spaces: a family of projective spaces P4, which are maximal linear subspaces in some O-line, and a
family of projective spaces P5 which are not contained in any O-line. We thus recover the results of
[LM03], from which we also know that these two families of linear spaces in OP2 are homogeneous.
Explicitly, we can describe both types in the following way.

Let z ∈ O be a non-zero octonion such that q(z) = 0. Denote by R(z) and L(z) the spaces of
elements of O defined as the images of the right and left multiplication by z, respectively. Similarly, if
l ⊂ O is an isotropic line, denote by R(l) and L(l) the spaces R(z) and L(z), if z is a generator of l.
When l varies, R(l) and L(l) describe the two families of maximal isotropic subspaces of O (this is
a geometric version of triality, see e.g. [Cha02]). Consider the sets





1 x y

x 0 0
y 0 0


 , y ∈ l, x ∈ L(l)


 and





1 x 0

x 0 0
0 0 0


 , x ∈ R(l)


 .

Their closures in PJ3(O) are maximal linear subspaces of OP2 of respective dimensions 5 and 4.
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4. What is a Borel subgroup of E6?

The Schubert varieties in OP2, by definition, are the closures of the B-orbits, where B denotes a
Borel subgroup of E6. To identify the Schubert varieties geometrically, we need to understand these
Borel subgroups better.

The Cayley plane OP2 = E6/P6 ⊂ PJ3(O) is one of the E6-grassmannians, if we mean by
this a quotient of E6 by a maximal parabolic subgroup. It is isomorphic to the dual plane ǑP2 =
E6/P1 ⊂ P̌J3(O), the closed orbit of the projectivized dual representation. By [LM03], we can
identify E6/P5 and E6/P3 to the varieties G(P1, OP2) and G(P2, OP2) of projective lines and planes
contained in OP2. Similarly, E6/P2 and E6/P3 can be interpreted as the varieties of projective lines
and planes contained in ǑP2.

The remaining E6-grassmannian E6/P4 is the adjoint variety Ead
6 , the closed orbit in the projec-

tivization Pe6 of the adjoint representation. By [LM03] again, E6/P3 can be identified to the variety
G(P1, Ead

6 ) of projective lines contained in Ead
6 ⊂ Pe6.

Now, a Borel subgroup B in E6 is the intersection of the maximal parabolic subgroups that
it contains, and there is one such group for each simple root. Each of these maximal parabolic
subgroups can be seen as a point on an E6-grassmannian, and the fact that these parabolic sub-
groups have a Borel subgroup in common means that these points are incident in the sense of Tits
geometries [Tit95].

Concretely, a point of E6/P3 defines a projective plane Π in OP2, a dual plane Π̌ in ǑP2, and a
line Λ in Ead

6 . Choose a point p and a line � in OP2 such that p ∈ � ⊂ Π, choose a point p̌ and
a line �̌ in ǑP2 such that p̌ ∈ �̌ ⊂ Π̌, and finally a point q ∈ Λ.

◦ ◦ ◦ ◦ ◦

◦

p̌ �̌ Λ � p

q

We call these data a complete E6-flag. By [Tit95], there is a bijective correspondence between the
set of Borel subgroups of E6 and the set of complete E6-flags: this is a direct generalization of
the usual fact that a Borel subgroup of SLn is the stabilizer of a unique flag of vector subspaces
of Cn.

We will not need this, but to complete the picture let us mention that the correspondence
between Π, Π̌ and Λ can be described as follows:

Π =
⋂
z∈Π̌

(TzǑP2)⊥ =
⋂
y∈Λ

yJ3(O).

This description of Borel subgroups will be useful to construct Schubert varieties in OP2. Indeed,
any subvariety of the Cayley plane that can be defined in terms of a complete (or incomplete) E6-flag
must be a finite union of Schubert varieties.

Let us apply this principle in small codimension. The data p̌, �̌ and Π̌ from our E6-flag are
respectively a point, a line and a plane in ǑP2. They define special linear sections of OP2, of respec-
tive codimensions 1, 2 and 3. We read from the Hasse diagram that these sections are irreducible
Schubert varieties.

Something more interesting happens in codimension-4, since we can read from the Hasse diagram
that a well-chosen codimension-4 linear section of OP2 should split into the union of two Schubert
varieties, of degrees 33 and 45. The most degenerate codimension-4 sections must correspond to
very special projective spaces P3 in ǑP2. We know from [LM03] that ǑP2 contains a whole family
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of projective spaces P3, in fact a homogeneous family parametrized by E6/P2,4. In terms of our
E6-flag, that means that a unique member of this family is defined by the pair (q, �).

We can describe explicitly a P3 in OP2 in the following way. Choose a non-zero vector z ∈ O , of
zero norm. Then the closure of the set



0 x 0

x 0 0
0 0 0


 , x ∈ L(z)


 ,

is a three-dimensional projective space P3
z in OP2. Let us take the orthogonal of this space with

respect to the quadratic form Q(X) = trace(X2), and cut it with OP2. We obtain two codimension-4
subvarieties Z1 and Z2, respectively the closures of the following affine cells Z0

1 and Z0
2 :

Z0
1 =





1 x y

x 0 xy
y yx yy


 , x ∈ L(z), y ∈ O


 , (1)

Z0
2 =





 0 u uv

u 1 v
vu v vv


 , u ∈ L(z), v ∈ O


 . (2)

The sum of the degrees of these two varieties is equal to 78. The corresponding cycles are linear
combinations of Schubert cycles with non-negative coefficients. But in codimension-4 we have only
two such cycles, σ′

4 and σ′′
4 , of respective degrees 33 and 45. The only possibility is that the cycles

[Z1] and [Z2] coincide, up to the order, with σ′
4 and σ′′

4 .
To decide which is which, let us cut Z1 with H1 = {c1 = 0}.

Lemma 4.1. The hyperplane section Y1 = Z1 ∩H1 has two components Y1,1 and Y1,2. One of these
two components, say Y1,1, is the closure of

Y 0
1,1 =





0 0 t

0 0 s
t s 1


 , q(s) = q(t) = 0, st = 0


 .

It is a cone over the spinor variety S10 ⊂ P15.

The proof of this lemma follows towards the end of this section.
Recall that the spinor variety S10 is one of the two families of maximal isotropic subspaces of

a smooth eight-dimensional quadric. Its appearance is not surprising, since we have seen on the
weighted Dynkin diagram of OP2 = E6/P6 that the semi-simple part of P6 is a copy of Spin10. At a
given point of p ∈ OP2, the stabilizer P6 and its subgroup Spin10 act on the tangent space, which is
isomorphic as a Spin10-module to a half-spin representation, say ∆+. From [LM03], we know that
the family of lines through p that are contained in OP2 is isomorphic to the spinor variety S10, since
it is the closed Spin10-orbit in P∆+.

In particular, to each point p of OP2 we can associate a subvariety, the union of lines through
that point, which is a cone C(S10) over the spinor variety. This is precisely what Y1,1 is. Note that
we get a Schubert variety in the Cayley plane. Moreover, since we can choose a Borel subgroup of
Spin10 inside a Borel subgroup of E6 contained in P6, we obtain a whole series of Schubert varieties
that are isomorphic to cones over the Schubert subvarieties of S10. These Schubert varieties can
be described in terms of incidence relations with an isotropic reference flag which in principle
can be deduced from our reference E6-flag. The Hasse diagram of Schubert varieties in S10 is shown
in Figure 3.

151

https://doi.org/10.1112/S0010437X04000788 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000788


A. Iliev and L. Manivel

• • •
• • •

• • •
• • • • •

•

•

1 1 1

1

1

2

1

3

2

5

2

5

7

12 12 12
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 3. Degrees of the Schubert cycles in S10.
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Figure 4. The Schubert cycles in OP2.

The identification of the cone of lines in OP2 through some given point, with the spinor
variety S10, is not so obvious. Consider the map

ν2 : O ⊕O → J2(O), ν2(x, y) =
(

xx xy
yx yy

)
.

We want to identify Pν−1
2 (0) with S10. The following result is due to P. E. Chaput.

Proposition 4.2. Let (x, y) ∈ ν−1
2 (0). The image of the tangent map to ν2 at (x, y) is a five-

dimensional subspace of J2(O), which is isotropic with respect to the determinantal quadratic form
on J2(O). Moreover, this induces an isomorphism between Pν−1

2 (0) and the spinor variety S10.

In fact, in this way we can obtain the two families of maximal isotropic subspaces in J2(O), just
by switching the two diagonal coefficients in the definition of ν2. The spin group Spin10 can also be
described very nicely.

But let us come back to the Schubert varieties in S10. Taking cones over them, we get Schubert
subvarieties that define a subdiagram of the Hasse diagram of OP2. We draw this subdiagram in
thick lines in Figure 4. We also indicate in Figure 4 the indexing of Schubert classes that we use
in the sequel, rather than the indexing by the Weyl group.

In principle, we are able to describe any of these Schubert varieties geometrically in terms of
our reference E6-flag.

Proof of Lemma 4.1. First note that Y1 does not meet the two affine cells OP2
1 and OP2

2 (see § 2).
Moreover, it is easy to check that Y1 ∩ OP2∞ has dimension at most 10, hence strictly smaller
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dimension than Y1. Therefore, Y1 is the closure of its intersection with OP2
3, namely

Y1 ∩ OP2
3 =





 0 st t

ts 0 s
t s 1


 , q(s) = q(t) = 0, st ∈ L(z)


 .

For a given non-zero s, the product st must belong to L(z) ∩L(s), the intersection of two maximal
isotropic spaces of the same family. In particular, this intersection has even dimension.

Generically, the intersection L(z) ∩ L(s) = 0, and we obtain

Y 0
1,1 =





0 0 t

0 0 s
t s 1


 , q(s) = q(t) = 0, st = 0


 ⊂ Y1.

We have seven parameters for s, and for each s 
= 0, t must belong to L(s), which gives four
parameters. In particular, Y 0

1,1 is irreducible of dimension 11, and its closure is an irreducible
component of Y1.

The intersection L(z) ∩ L(s) has dimension 2 exactly when the line joining z to s is isotropic,
which means that s belongs to the intersection of the quadric q = 0 with its tangent hyperplane
at z. This gives six parameters for s, and for each s, five parameters for t, which must be contained
in the intersection of the quadric with a six-dimensional linear space. Therefore, the closure of

Y 0
1,2 =





 0 st t

ts 0 s
t s 1


 , q(s) = q(t) = 0, dim L(z) ∩ L(s) = 2




is another component of Y1.
The remaining possibility is that s be a multiple of z, but the corresponding subset of OP2

3 has
dimension smaller than 11. Hence Y1 = Y1,1 ∪ Y1,2.

We conclude that Z1 has degree 45, while Z2 has degree 33. Indeed, if Z1 had degree 33, we
would read from the Hasse diagram that its proper hyperplane sections are always irreducible, and
we have just verified that this is not the case.

Note that Z1 and Z2 look very similar at first sight. Nevertheless, a computation similar to
the one we have just done shows that, if we cut Z2 by the hyperplane H2 = {c2 = 0}, we get
an irreducible variety, the difference with Z1 coming from the fact that we now have to deal with
maximal isotropic subspaces which are not on the same family. The difference between Z1 and Z2

is therefore just a question of spin.

5. Intersection numbers

We now determine the multiplicative structure of the Chow ring A∗(OP2). (For general facts on
Chow rings, we refer to [Ful98].) A priori, we have several interesting pieces of information on that
ring structure. We have already seen in § 2 that the Pieri formula determines combinatorially the
product with the hyperplane class. Another important property is that Poincaré duality has a very
simple form in terms of Schubert cycles: the basis (σw)w∈W 0 is, up to order, self-dual. More precisely
its dual basis is (σw∗)w∈W 0, where the involution w �→ w∗ is very simple to define on the Hasse
diagram: it is just the symmetry with respect to the vertical line passing through the cycles of middle
dimension. Finally, we know from Poincaré duality and general transversality arguments that any
effective cycle must be a linear combination of Schubert cycles with non-negative coefficients.

This is the information we have on any rational homogeneous space. For what concerns the
Cayley plane, we begin with an obvious observation.
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Proposition 5.1. The Chow ring A∗(OP2) is generated by the hyperplane class H, the class σ′
4,

and the class σ8 of an O-line.

More precisely, one can directly read from the Hasse diagram and from the Pieri formula that,
as a vector space, the Chow ring is generated by classes of type H i, σ′

4H
j and σ8H

k. For example,
we have the relations

H4 = σ′
4 + σ′′

4 , (3)

σ′
4H

4 = σ8 + 3σ′
8 + 2σ′′

8 , (4)

σ′′
4H4 = σ8 + 4σ′

8 + 3σ′′
8 , (5)

σ8H
4 = σ′

12 + σ′′
12, (6)

σ′
8H

4 = 3σ′
12 + 4σ′′

12, (7)

σ′′
8H4 = 2σ′

12 + 3σ′′
12. (8)

As a consequence, the multiplicative structure of the Chow ring will be completely determined once
we have computed the intersection products (σ8)2, σ′

4σ8 and (σ′
4)

2. (Note that the Hasse diagram
and the Pieri formula can be used to derive relations in dimension 9 and 13, but these relations are
not sufficient to determine the whole ring structure.)

Proposition 5.2. We have the following relations in the Chow ring:

σ2
8 = 1, (9)

σ′
4σ8 = σ′

12, (10)
σ′′

4σ8 = σ′′
12. (11)

Proof. Recall that σ8 is the class of an O-line in OP2, and that we know that the geometry of these
lines is similar to the usual line geometry in P2: namely, two generic lines meet transversely in one
point. This implies immediately that σ2

8 = 1.
To compute σ′

4σ8 and σ′′
4σ8, we cut the Schubert varieties Z1 and Z2 introduced in § 4, whose

class we know to be σ′
4 and σ′′

4 , with the O-line L defined in OP2 by the conditions x1 = x2 = r3 = 0.
We get transverse intersections

Z1 ∩ L =





r y 0

y 0 0
0 0 0


 , y ∈ L(z)


 ,

Z2 ∩ L =





0 y 0

y r 0
0 0 0


 , y ∈ L(z)


 .

These are two four-dimensional projective spaces P4
1 and P4

2 inside OP2, which look very similar.
But there is actually a big difference: P4

1 is extendable, but P4
2 is not! Indeed, a P5 in OP2 containing

P4
1 or P4

2 must be of the form, respectively,



r y s

y 0 0
s 0 0


 , y ∈ L(z)


 and





0 y 0

y r s
0 s 0


 , y ∈ L(z)


 ,

where s describes some line in O . In the second case, the equation sy = 0 must be verified identically,
and we can take s on the line Cz: thus P4

2 is extendable. But in the first case, we need the identity
ys = 0 for all y ∈ L(z), which would imply that L(z) ⊂ R(s): this is impossible, and P4

1 is not
extendable. The proposition follows (see the third observation at the end of § 3).
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We now have enough information to complete the multiplication table. First, we know by
Poincaré duality that

(σ8)2 = (σ′
8)

2 = (σ′′
8 )2 = 1, (12)

σ8σ
′
8 = σ′

8σ
′′
8 = σ8σ

′′
8 = 0, (13)

σ′
4σ

′
12 = σ′′

4σ′′
12 = 1, (14)

σ′
4σ

′′
12 = σ′′

4σ′
12 = 0. (15)

Suppose that we have

(σ′
4)

2 = µ0σ8 + µ1σ
′
8 + µ2σ

′′
8 ,

(σ′′
4 )2 = ν0σ8 + ν1σ

′
8 + ν2σ

′′
8 ,

σ′
4σ

′′
4 = γ0σ8 + γ1σ

′
8 + γ2σ

′′
8 ,

for some coefficients to be determined. Cutting with σ8, we get µ0 = ν0 = 1. Equations (3), (4) and
(5) give the relations

µ0 + γ0 = 1, µ1 + γ1 = 3, µ2 + γ2 = 2, ν0 + γ0 = 1, ν1 + γ1 = 4, ν2 + γ2 = 3.

In particular, γ0 = 0. Now, we compute (σ′
4)

2(σ′′
4 )2 in two ways to obtain the relation

γ2
1 + γ2

2 = µ0ν0 + µ1ν1 + µ2ν2.

Eliminating the µi and νi, we get that 7γ1 + 5γ2 = 19. But γ1 and γ2 are non-negative integers, so
the only possibility is that γ1 = 2, γ2 = 1. Thus

(σ′
4)

2 = σ8 + σ′
8 + σ′′

8 , (16)

(σ′′
4 )2 = σ8 + 2σ′

8 + 2σ′′
8 , (17)

σ′
4σ

′′
4 = 2σ′

8 + σ′′
8 (18)

and this easily implies that

σ′
4σ

′
8 = σ′

12 + 2σ′′
12, (19)

σ′
4σ

′′
8 = σ′

12 + σ′′
12, (20)

σ′′
4σ′

8 = 2σ′
12 + 2σ′′

12, (21)
σ′′

4σ′′
8 = σ′

12 + 2σ′′
12. (22)

6. The Borel presentation

We now turn to the Borel presentation of the Chow ring of OP2. This is the ring isomorphism

A∗(OP2)Q � Q[P]W0/Q[P]W+ ,

where Q[P]W0 denotes the ring of W0-invariant polynomials on the weight lattice, and Q[P]W+ is the
ideal of Q[P]W0 generated by W -invariants without constant term (see [Bor53, Proposition 27.3],
or [BGG73, Theorem 5.5]).

The ring Q[P]W0 is easily determined: it is generated by ω6, and the subring of W0-invariants
in the weight lattice of Spin10. It is therefore the polynomial ring in the elementary symmetric
functions e2i = ci(ε1, . . . , ε5), 1 � i � 4, and in e5 = ε1 · · · ε5.

The invariants of W , the full Weyl group of E6, are more difficult to determine, although we know
their fundamental degrees. But since we know how to compute the intersection products of any two
Schubert cycles, we just need to express the W0-invariants in terms of the Schubert classes. This can
be achieved, following [BGG73], by applying suitable difference operators to these invariants.
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Since we give a prominent role to the subsystem of E6 of type D5, it is natural to choose for
the first five simple roots the usual simple roots of D5, that is, in a Euclidian six-dimensional space
with orthonormal basis ε1, . . . , ε6,

α1 = ε1 − ε2, α2 = ε2 − ε3, α3 = ε3 − ε4, α4 = ε4 − ε5,

α5 = ε4 + ε5, α6 = −1
2
(ε1 + ε2 + ε3 + ε4 + ε5) +

√
3

2
ε6.

The fundamental weights are given by the dual basis:

ω1 = ε1 +
1√
3
ε6,

ω2 = ε1 + ε2 +
2√
3
ε6,

ω3 = ε1 + ε2 + ε3 +
3√
3
ε6,

ω4 =
1
2
(ε1 + ε2 + ε3 + ε4 − ε5) +

√
3

2
ε6,

ω5 =
1
2
(ε1 + ε2 + ε3 + ε4 + ε5) +

5√
3
ε6,

ω6 = −1
2
(ε1 + ε2 + ε3 + ε4 + ε5) +

√
3

2
ε6.

The action of the fundamental reflections on the weight lattice is especially simple in the basis
ε1, . . . , ε5, α6. Indeed, s1, s2, s3 and s4 are just the transpositions (12), (23), (34) and (45).
The reflection s5 affects ε4, ε5 and α6, which are changed into −ε5,−ε4 and α6 + ε4 + ε5. Finally,
s6 changes each εi into εi + α6/2, and of course α6 into −α6.

It is then reasonably simple to compute the corresponding divided differences with Maple.
We obtain the following proposition.

Proposition 6.1. The fundamental W0-invariants are given, in the Chow ring of the Cayley plane,
in terms of Schubert cycles by:

e2 = −3
4
H2, (23)

e4 = −27
8

σ′
4 +

21
8

σ′′
4 , (24)

e5 =
3
16

σ′
5 −

21
32

σ′′
5 , (25)

e6 = −27
16

σ′
6 +

87
32

σ′′
6 , (26)

e8 =
21
128

σ8 +
291
256

σ′
8 −

519
256

σ′′
8 . (27)

This allows one to compute any product in the Borel presentation of the Chow ring of OP2.

7. Chern classes of the normal bundle

Let N denote the normal bundle to the Cayley plane OP2 ⊂ PJ3(O). We want to compute its
Chern classes (see e.g. [Ful98]).

First note that the restriction of J3(O) to the Levi part L � Spin10 × C∗ of the parabolic
subgroup P6 of E6 is

J3(O)|L � Wω6 ⊕Wω5−ω6 ⊕Wω1−ω6 .
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Indeed, there is certainly the line generated by the highest weight vector, which gives a stable line
on which L acts through the character ω6. After ω6, there is in J3(O) a unique highest weight,
ω5 − ω6, which generates a 16-dimensional half-spin module. Finally, the lowest weight of J3(O) is
−ω1, whose highest W0-conjugate is ω1 − ω6 and generates a copy of the natural 10-dimensional
representation of Spin10. Since these three modules give 1 + 16 + 10 = 27 dimensions, we have the
full decomposition.

Geometrically, this decomposition of J3(O) must be interpreted as follows. We have chosen a
point p of OP2, corresponding to the line p̂ = Wω6 . The tangent space to OP2 at that point is given
by the factor Wω5−ω6 . (More precisely, only the affine tangent space T̂ is a well-defined P6-submodule
of J3(O), and it coincides with Wω6 ⊕Wω5−ω6 .) The remaining term Wω1−ω6 corresponds to the
normal bundle. To be precise, if Np denotes the normal space to OP2 at p, there is a canonical
identification

Np � Hom(p̂,J3(O)/T̂ ) = Hom(Wω6,Wω1−ω6).
In other words, the normal bundle N to OP2 is the homogeneous bundle Eω1−2ω6 defined by the
irreducible P6-module Wω1−2ω6 .

Since ω1 = ε1 + 1
2ω6, the weights of the normal bundle are the ±εi − 3

2ω6, and its Chern class is

c(N ) =
5∏

i=1

(1 + εi − 3
2ω6)(1 − εi − 3

2ω6)

=
5∏

i=1

((1 + 3
2H)2 − ε2

i )

=
5∑

i=0

(−1)i(1 + 3
2H)10−2ie2i,

where e10 = e2
5. We know how to express this in terms of Schubert classes, and the result is as

follows.

Proposition 7.1. In terms of Schubert cycles, the Chern classes of the normal bundle to OP2 ⊂
PJ3(O) are:

c1(N ) = 15H,

c2(N ) = 102H2,

c3(N ) = 414H3,

c4(N ) = 1107σ′
4 + 1113σ′′

4 ,

c5(N ) = 2025σ′
4H + 2079σ′′

4H,

c6(N ) = 5292σ′
6 + 8034σ′′

6 ,

c7(N ) = 4698σ′
6H + 7218σ′′

6H,

c8(N ) = 2751σ8 + 9786σ′
8 + 7032σ′′

8 ,

c9(N ) = 963σ8H + 3438σ′
8H + 2466σ′′

8H,

c10(N ) = 153σ8H
2 + 549σ′

8H
2 + 387σ′′

8H2.

Note that, as expected, we get integer coefficients, while the fundamental W 0-invariants are only
rational combinations of the Schubert cycles. This is a strong indication that our computations are
correct.
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8. The final computation

We shall compute the degree of the variety of reductions Y8 introduced in [IM03]: we refer to that
paper for the definitions, notations, and the proof of the facts we use in this section. This variety Y8

is a smooth projective variety of dimension 24, embedded in P272. A P1-bundle Z8 over Y8 can be
identified with the blow-up of the projected Cayley plane X8 in PJ3(O)0, the projective space of
trace-zero Hermitian matrices of order three, with coefficients in the Cayley octonions.

Let H denote the pull-back to Z8 of the hyperplane class of PJ3(O)0, and E the exceptional
divisor of the blow-up. We want to compute

deg Y8 = H(3H − E)24.

We use the fact that the Chow ring of the exceptional divisor E ⊂ Z8, since it is the projec-
tivization of the normal, is the quotient of the ring A∗(OP2)[e] by the relation given by the Chern
classes of the normal bundle N of X8, namely

e9 +
9∑

i=1

(−1)ici(N )e9−i = 0.

The normal bundle N of X8 is related to the normal bundle N of X8 = OP2 by an exact sequence
0 → O(1) → N → N → 0, from which we can compute the Chern classes of N :

c1(N ) = 14H,

c2(N ) = 88H2,

c3(N ) = 326H3,

c4(N ) = 781σ′
4 + 787σ′′

4 ,

c5(N ) = 1244σ′
4H + 1292σ′′

4H = 2536σ′
5 + 1292σ′′

5 ,

c6(N ) = 2756σ′
6 + 4206σ′′

6 ,

c7(N ) = 1942σ′
6H + 3012σ′′

6H = 1942σ′
7 + 4954σ′′

7 ,

c8(N ) = 809σ8 + 2890σ′
8 + 2078σ′′

8 ,

c9(N ) = 154σ8H + 548σ′
8H + 388σ′′

8H = 702σ′
9 + 936σ′′

9 ,

c10(N ) = −σ8H
2 + σ′

8H
2 − σ′′

8H2 = 0.

The fact that we get c10(N ) = 0, which must hold since N has rank nine, is again a strong indication
that we have made no mistake.

To complete our computation, we must compute the intersection products H25−iEi in the Chow
ring of Z8. For i > 0, this can be computed on the exceptional divisor; since the restriction of the
class E to the exceptional divisor is just the relative hyperplane section, that is, the class e, we
have H25−iEi = H25−iei−1, the later product being computed in A∗(E). We still denoted by H the
pull-back of the hyperplane section from OP2.

Lemma 8.1. Let σ ∈ A16−k(OP2). Then σe8+k = σsk(N ), where sk(N ) denotes the kth Segre class
of the normal bundle N . The former product is computed in A∗(E), and the latter in A∗(OP2).

Proof. The proof is by induction, using the relation e9 +
∑9

i=1(−1)ici(N )e9−i = 0, and the fact
that the Segre classes are related to the Chern classes by the formally similar relation sk(N ) +∑9

i=1(−1)ici(N )sk−i(N ) = 0.
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We use the later relation to determine the Segre classes inductively. We obtain

s1(N ) = 14H,

s2(N ) = 108H2,

s3(N ) = 606H3,

s4(N ) = 2763σ′
4 + 2757σ′′

4 ,

s5(N ) = 21 624σ′
5 + 10752σ′′

5 ,

s6(N ) = 75 492σ′
6 + 112 602σ′′

6 ,

s7(N ) = 240 534σ′
7 + 596 598σ′′

7 ,

s8(N ) = 711 489σ8 + 2462 397σ′
8 + 1750 947σ′′

8 ,

s9(N ) = 8768 196σ′
9 + 11600 304σ′′

9 ,

s10(N ) = 53 127 900σ′
10 + 30193 704σ′′

10 ,

s11(N ) = 206 857 602σ′
11 + 74823 228σ′′

11 ,

s12(N ) = 491 985 531σ′
12 + 669 523 221σ′′

12 ,

s13(N ) = 2657 712 312σ13 ,

s14(N ) = 5875 513 812σ14 ,

s15(N ) = 12 591 161 406σ15 .

This immediately gives the degree of Y8:

deg Y8 = 324 +
24∑

k=9

(−1)k
(

24
k

)
324−kH25−ksk−9(N ).

Theorem 8.2. The degree of the variety of reductions Y8 is

deg Y8 = 1047 361 761.
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