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The open channel in a uniform representation
of the turbulent velocity profile across all
parallel geometries
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A uniform representation of the mean turbulent velocity profile in the sum of a wall
function and a wake function, already introduced for other parallel geometries, is applied
to an open channel. The open channel with its wake function is thus found to coherently fit
in to the same theoretical picture previously drawn for plane Couette, plane closed-channel
and circular-pipe flow, and to share with them a universal law of the wall and a universal
logarithmic law with a common value of von Kármán’s constant.
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1. Background and introduction

The now well-established concept of law of the wake introduced by Coles (1956) for
boundary layers extends well beyond boundary layers alone. As explained by Coles
himself, and recalled by Panton (2007) and Luchini (2018), the equally well-established
separation of a parallel turbulent velocity profile into a wall layer and a defect layer (going
back to Millikan 1939) can be equivalently recast as a uniform representation of the mean
velocity profile in the sum of a law of the wall and a law of the wake, or wall function f (z+)

and wake function G(Z) when one more explicitly refers to an analytical interpolation of
those. In formula

u+ = f (z+) + G(Z), (1.1)

where u(z) is the mean streamwise velocity profile as a function of the wall-normal
coordinate z, u+ = u/uτ and z+ = z/� are their dimensionless values in wall units, with
� = ν/uτ , uτ = √

τw/ρ being the so called viscous length and shear velocity, τw is
the wall shear stress and ρ, ν the fluid’s density and kinematic viscosity, Z = z/h is
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Figure 1. Wake functions of different geometries as calculated in Luchini (2018) and displayed in
Luchini (2019).

the dimensionless coordinate in outer units and h the geometrical height or half-height
(accordingly as specified in the definition of G) of the channel. Together h and � compose
the shear-based Reynolds number Reτ = huτ /ν = h/�.

Perhaps not equally well perceived, until recent, is that the wake function G(Z)

constitutes a non-negligible contribution to the velocity profile of a parallel flow, of the
same order of magnitude as it is in boundary layers, and decays relatively slowly (linearly)
for Z → 0. Its omission can muddy efforts to empirically determine the wall function
f (z+) and the logarithmic law which describes the overlap layer. Much confusion in the
literature and disagreement among the experts has, in the present author’s opinion, been
caused by the widespread but unverified presumption that the wake function could be
safely neglected. Such a presumption, on the other hand, has august precedent: the 4th
edition of Schlichting (1960) on p. 509 states that with the logarithmic law alone ‘excellent
agreement is obtained not only for points near the wall but for the whole range up to the
axis of the pipe’, tantamount to saying, in more recent terminology, that the wake function
G(Z) is negligible for a pipe flow. In contrast, as outlined in figure 1, present data show
that the wake function of pipe flow is one of the largest.

Whereas Panton (2007) extracted his representation of the wake function from a
preassumed expression of the logarithmic law, and remarked that his result was sensitive
to the parameter values of the latter, Luchini (2018) devised a method to separate the
wall and wake functions without preassuming either, based on the difference of velocity
profiles at multiple Reynolds numbers in the same geometry. A lengthy examination, of
all the experimental and numerical data that could be recovered at the time from the
literature, led to the conclusion that a single geometry-independent wall function and three
individual wake functions, respectively for pipe flow, plane-duct (closed-channel) flow
and plane-Couette flow provided the best fit, in agreement with the theoretical expectation
that the wall function must be universal. Analytical interpolations of such functions from
Luchini (2018) are collected for convenience in table 1 here. A computer implementation
is available at https://CPLcode.net/Applications/FluidMechanics/TurbMeanFlow/.
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The turbulent open channel in a uniform representation

Universal wall function:

f (z+) = log(z+ + 3.109)

0.392
+ 4.48 + 7.3736 + (0.4930 − 0.02450z+)z+

1 + (0.05736 + 0.01101z+)z+ e−0.03385z+

Wake function for turbulent plane-Couette flow:
G(Z) = (Z − 0.5)/(exp(−25(Z − 0.5)) − 1)

Wake function for turbulent closed-channel flow:

G(Z) = Z − 0.57Z7

Wake function for turbulent circular-pipe flow:

G(Z) = 2Z − 0.67Z7

Table 1. Wall and wake functions for three classical parallel geometries.

In the overlap layer, � � z � h, these results are consistent with the asymptotic
expansion proposed by Luchini (2017), which extends the classical logarithmic law with a
higher-order, O(Re−1

τ ) term in the form

u+ = κ−1 log(z+) + A1g Re−1
τ z+ + B. (1.2)

Here κ is von Kármán’s constant, A1 is a new universal constant, and the geometry
parameter g = −hpx/τw is related to the hydraulic diameter and takes on the fixed values
of g = 2 for circular-pipe flow, g = 1 for plane-channel flow and g = 0 for plane-Couette
flow. Equation (1.2) stems from the ansatz that the pressure gradient px alone (as opposed
to some other feature of the outer flow) drives the first higher term in an asymptotic
expansion of u+ in powers of �/h = Re−1

τ , of which the classical logarithmic law is the
leading term; it is justified by the observation that, whereas other influences from the
outer region can be reasonably expected to decay when z becomes smaller and smaller,
the pressure gradient is constant with z and keeps its value all along. Relying upon the
assumption of independence from ν and h (which already underpins the logarithmic law)
compounded with linear dependence on px, and using dimensional analysis along similar
lines to Afzal & Yajnik (1973) and Jiménez & Moser (2007), Luchini (2017) determined
the corrected logarithmic law to be linear in the wall-normal coordinate z at first order,
and eventually of the form (1.2). The best-fit values for the constants appearing in (1.2),
according to Luchini (2017, 2018), are

κ = 0.392, A1 = 1, B = 4.48, (1.3a–c)

respectively. When passing to the uniform representation (1.1), and recognizing that
Re−1

τ z+ = Z, the second term of (1.2) morphs into the first term of the Taylor expansion
of G(Z) in powers of Z, as it must do in the general theory of matched asymptotic
expansions, and accordingly the wake functions reported in table 1 contain linear terms
with coefficients 0, 1, 2 for respectively plane-Couette, closed-channel and circular-pipe
flow. The values of the κ and B constants from (1.3a–c) also appear in the wall-function
expression from table 1, thus making its large-z+ behaviour consistent with (1.2).

As laid out in Luchini (2018, 2019), the validity of the corrected logarithmic law
(1.2) extends for 200� � z � 0.5h, and therefore the uniform composite formula (1.1)
using table 1 is an accurate representation of the complete velocity profile, well within
present-day experimental and numerical error, for all Reτ � 400. For the sake of
illustration, figure 2 shows three direct numerical simulation (DNS) velocity profiles for
plane-Couette, closed-channel and circular-pipe flow at Re � 1000 compared with the
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Figure 2. Velocity profile vs wall-normal coordinate in wall units from (1.1) (solid lines) compared with
numerical data (black dots), for three different geometries at Reτ � 1000. The DNS data for the circular-pipe
flow are taken from El Khoury et al. (2013). The DNS data for the closed-plane-duct flow are taken from Lee
& Moser (2015). The DNS data for plane-Couette flow are taken from Pirozzoli, Bernardini & Orlandi (2014).
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Figure 3. Same data as figure 2, replotted as a difference to the logarithmic law.

corresponding predictions from table 1. Figure 3 shows the same data again, but with
the logarithmic law subtracted in order to magnify their difference.

The very good fit of velocity profiles in three different parallel geometries to (1.1) using
a single wall function and wake functions that start linear in Z, with coefficients consistent
with those geometrically derived from the corresponding pressure gradients, supports the
universality of the logarithmic law and the conjecture that the pressure gradient governs
its first-order correction, in addition to the general accuracy and reliability of table 1.
The only visible difference to a sharp eye is a downwards displacement of approximately
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Figure 4. Comparison between the velocity profile computed in the boundary-layer DNS of Sillero, Jimenez
& Moser (2013) at momentum-thickness Reynolds number Reθ = 6500 and the law of the wall from table 1,
which was obtained from a fit of parallel-flow data only. Both are plotted as a difference to the logarithmic law.
From figure 33 of Luchini (2018).

−0.15 velocity wall units between the Couette numerical simulation and its uniform
representation in the central part of figure 3; but we have reason to believe that even this
difference is at least partially unreal, and can be ascribed to the numerical discretization
used by Pirozzoli et al. (because a similar difference can be observed in the simulation of
turbulent closed-channel flow by the same numerical method in Bernardini, Pirozzoli &
Orlandi 2014). Delving into this point would lead us off topic, thus let us restrict ourselves
to warning the reader that, as shown in § 7 of Luchini (2018), a residual spread of order
of magnitude ±0.1 is typical of today’s available numerical data (including among data
of different authors for the same configuration), and better than can be achieved in most
experiments.

As an additional confirmation of its universality, the present wall-function formula
a posteriori turned out to match remarkably well the 0 ≤ z+ ≤ 200 range of the
zero-pressure gradient boundary layer of Sillero et al. (2013), without any further fitting
or tweaking (see figure 4 adapted from Luchini 2018). We can deduce that the wall region
of a turbulent boundary layer is not just similar but practically identical to a parallel flow
of the same pressure gradient, despite the outer layer being different.

2. Open channel

Although less thoroughly studied in the literature than the three above classical
geometries, an infinite open-surface channel at zero Froude and Mach numbers is another
homogeneous parallel flow that lends itself well to DNS and to the analysis techniques of
Luchini (2018). Sufficiently high-Reynolds DNS data for this flow have recently become
available from Yao, Chen & Hussain (2022).

In the limit of zero Froude number (infinite gravity) the, say water–air, open surface
of a channel becomes flat (with no surface waves) and, in the additional limit of infinite
density and dynamic-viscosity contrast with the overlying fluid, stress-free. Its geometry
can then be schematized as a doubly infinite fluid slab of height h with boundary conditions
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Figure 5. Mean velocity profiles from Yao et al. (2022).

u = v = w = 0 at z = 0 and uz = vz = w = 0 at z = h. In laminar flow these would also
be the symmetry conditions that characterize the centreline of a closed channel with a solid
wall at height z = 2h, and the open-channel problem is therefore sometimes confused with
a half-channel, but we must be wary that turbulent perturbations (contrary to the mean
flow) have no mirror symmetry in a true half-channel, and are therefore different in the
two cases. The turbulent mean velocity profiles of an open channel and a half-channel are
nevertheless quite similar at first sight, and only identification of the wake function can
critically characterize their difference.

Yao et al. (2022) performed DNS of open-channel flow at Reτ = 180, 550, 1000
and 2000, a similar range of values as used for other geometries before them. Their
mean velocity profiles, replotted here thanks to their published data files, can be seen in
figure 5, with the exclusion of Reτ = 180 which is too small for the present purposes.
From an interpolation of these data Yao et al. derive an estimate of von Kármán’s
constant κ = 0.363, different and in fact smaller than those inferred by other authors
for closed-channel flow; they remark that a region with this approximate constant value
turns up in a plot of the logarithmic derivative of the velocity profile (see figure 6) for
Reτ = 2000 and 500 ≤ z+ ≤ 1200, and deduce that perhaps a logarithmic region has
already developed for open-channel flow at this Reynolds number, in contrast to the
much higher Reynolds-number threshold believed to be necessary for a closed channel.
In fairness, they also comment that high-order corrections to the logarithmic law were in
the past introduced by Afzal & Yajnik (1973) and Jiménez & Moser (2007) to better fit
the mean velocity profile, and that the possibility of a universal κ for open and closed
channels as Reτ → ∞ cannot be excluded until higher-Reτ studies are performed. They
do not seem to be specifically aware of Luchini (2018).

Starting from our previous observation that the uniform representation (1.1) and the
asymptotic correction (1.2) shift the asymptotic range for the validity of a logarithmic law
from Reτ greater than tens of thousands down to Reτ � 400, here we want to explore the
alternate possibility that when seen in this framework Yao et al.’s data, equipped with a
suitable wake function unique to the open channel, are in fact compatible with the same
universal wall function and universal von Kármán’s constant as the other parallel flows
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Figure 6. Logarithmic derivative of the mean velocity profiles from Yao et al. (2022).

summarized in § 1. If this turns out to be true, we shall at the same time quantitatively
determine the wake function, which can be useful in its own right to predict open-channel
velocity profiles at all other Reynolds numbers.

To this end, figure 7 displays the same data as figure 6 with the linear correction

A1g Re−1
τ z+ (2.1)

(where A1 = 1 from (1.3a–c), and g = 1 for an open as well as for a closed channel)
subtracted. As can be seen, the picture looks quite different: whereas in figure 6 the three
profiles never really match, in figure 7 the Reτ = 1000 and Reτ = 2000 (and to a lesser
degree Reτ = 550) derivative profiles match one another over more than the first half of the
plot. Most importantly, their common behaviour also matches the universal law of the wall
from table 1, which is plotted on top of the same figure, including a fraction of the constant
plateau that the latter develops for z+ � 200, with its universal value of A0 = 1/κ = 2.55.
This plateau ends at z+ � 600 for Reτ = 2000 and z+ � 300 for Reτ = 1000, i.e. z+ �
0.3Reτ , somewhat earlier than z+ � 0.5Reτ which was the observed upper bound for a
closed channel. In contrast what in figure 6 looked like a plateau for Re = 2000 only, has
now become an oblique line which is actually part of the wake region. Most convincingly
for the physical existence of the linear correction (2.1), the three separate ramps visible in
figure 6 for each Reynolds number have disappeared. The top of the logarithmic region
being lower also explains why Reτ = 550 barely fails to fit: from equating the beginning
of the logarithmic region (z = 200� as in all other geometries) to its end (z = 0.3h for an
open channel as opposed to z = 0.5h for a closed one) one derives that Reτ � 666 is here
the necessary condition for an overlap logarithmic region to exist at all, whereas it was
Reτ � 400 for a closed channel.

Once reasonable confidence has been gained that the velocity profiles for an open
channel at multiple Reynolds numbers match the universal law of the wall from table 1
in its applicable range, it remains to be seen whether the remaining part of the three
velocity profiles matches one and the same wake function within acceptable error for (1.1)
to hold. In order to extract the shape of the wake function from (1.1) we only need to
subtract the universal wall function from each velocity profile and plot the difference in
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Figure 7. Logarithmic derivative of the mean velocity profiles from Yao et al. (2022), with the linear
correction (2.1) subtracted.

G(Z) = Z − 0.71Z3

Table 2. Wake-function interpolation for the open-channel flow.

outer coordinates. Such a plot is displayed in figure 8, where one should be wary that
the magnified vertical scale makes errors look bigger. In reality the three wake function
estimates sit within ±0.1 of each other, or 0.5 % of u+ ≈ 20, which is the statistical
variation of numerical simulations of different origins and/or different Reynolds numbers
analysed by Luchini (2018), and better than what can be achieved in most experiments.
We believe that figure 8, combined with its resemblance to analogous plots formerly
drawn for closed-duct, plane-Couette and circular-pipe flow, is sufficient evidence for the
existence of a Reynolds-independent, initially linear, wake function of open-channel flow.
A simple analytical interpolation of this function is proposed in table 2, and superposed
to the empirically derived curves in figure 8. As further evidence that this approach
can be expected to predict the velocity profile at higher Reynolds numbers, in private
communication J. Yao found that his yet unpublished simulation of the open channel at
Reτ = 4200 is also well matched by the present formulas.

3. Concluding remarks

After 100 years since its conception by Prandtl, the universality of the logarithmic law, of
the law of the wall and of the law of the wake is still a matter of debate among scientists.
Being such the situation an absolute truth can hardly be claimed, and one must confine
oneself to offering arguments in favour of one or another position. Eventually Occam’s
razor (the philosophical principle that ‘if you have two competing ideas to explain the same
phenomenon, you should prefer the simpler one’) will be our only guidance. The present
author in a number of papers has been furthering arguments in favour of universality, more
specifically that if the wake function is properly accounted for, and is assumed to contain
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Figure 8. Wake function estimates of the open-channel flow at different Reynolds numbers and their
common analytical interpolation.

a linear-in-Z initial term which matches (in the sense of matched asymptotic expansions)
a rational asymptotic correction to the logarithmic law, mean turbulent velocity profiles
not only for different Reynolds numbers but also for different geometries collapse onto a
uniform representation of the form (1.1)–(1.2).

The present paper adds the open channel to the collection of geometries that fit this
framework. A coherent table containing a single universal wall function and four wake
functions (one for each geometry of plane closed channel, plane Couette, circular pipe
and now plane open channel) is all that is needed to provide a very accurate prediction of
mean turbulent velocity profiles at all shear Reynolds numbers higher than a few hundred.
We believe this table to be a valuable practical tool, and at the same time the simplest
explanation currently available for such phenomena.

The interpolated wake functions of an open and closed channel are compared in figure 9.
One can first of all observe that they are of the same order of magnitude and share the same
initial slope, consistent with the general idea that these two flows behave similarly and have
the same pressure gradient. The observation that they share their initial slope, in particular,
is a strong supporting argument for the role of the pressure gradient proposed by Luchini
(2017) in determining such slope, since other influences such as the boundary condition at
the opposite wall and even the distance to the opposite wall are obviously different in the
two cases and only the pressure gradient is the same.

Other than this, one can observe that the wake function for the open channel is milder
and peaks at a lower value than that for a closed channel, but at the same time departs
earlier from its linear behaviour, which makes for a somewhat shorter range of the overlap
layer. A subtler but also interesting observation is that the two wake functions exhibit
different negative slopes at Z = 1. This is unexpected because both the closed and the
open channel rigorously have uz = 0 at z = h, and this condition clearly cannot be verified
by the uniform representation (1.1) if the wake functions have different slopes. What
actually happens, as can only be seen by looking at the horizontally magnified figure 10,
is that for the open channel uz abruptly (and non-monotonically) adjusts to zero in a thin
boundary layer of thickness O(Re−1

τ ) near the free surface. As a matter of fact (1.1) is
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Figure 10. Abrupt approach to zero of the velocity derivative near the upper free surface.

not precisely uniformly valid for an open channel, but only so outside this thin region.
Physically one should be aware that the velocity derivative approaches a non-zero limit
du+/dZ ≈ 1 ÷ 1.5 outside this free-surface boundary layer, and in this respect closed-
and open-channel flows are essentially different.

In closing, the wake function is of a similar order of magnitude, and should never be
neglected, for an open as well as for a closed channel. Among other consequences, the
open channel is just a marginally better approximation of an infinite logarithmic layer (a
frequent representation of the atmospheric boundary layer) than the closed channel is. How
to best simulate an infinite logarithmic layer is left as a challenge for further investigation.
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