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Short Probabilistic Proof of the
Brascamp–Lieb and Barthe Theorems
Joseph Lehec

Abstract. We give a short proof of the Brascamp–Lieb theorem, which asserts that a certain general
form of Young’s convolution inequality is saturated by Gaussian functions. The argument is inspired by
Borell’s stochastic proof of the Prékopa–Leindler inequality and applies also to the reversed Brascamp–
Lieb inequality, due to Barthe.

1 Introduction

A Brascamp–Lieb datum on Rn is a finite sequence

(1.1) (c1,B1), . . . , (cm,Bm),

where ci is a positive number and Bi : Rn → Rni is linear and onto. The Brascamp–
Lieb constant associated with this datum is the smallest real number C such that the
inequality

(1.2)

∫
Rn

m∏
i=1

( fi ◦ Bi)
ci dx ≤ C

m∏
i=1

(∫
Rni

fi dx
) ci

holds for every set of non-negative integrable functions fi : Rni → R. The Brascamp–
Lieb theorem [9, 13] asserts that (1.2) is saturated by Gaussian functions. In other
words if (1.2) holds for every set of functions f1, . . . , fm of the form

fi(x) = e−〈Ai x,x〉/2,

where Ai is a symmetric positive definite matrix on Rni , then (1.2) holds for every set
of functions f1, . . . , fm.

The reversed Brascamp–Lieb constant associated with (1.1) is the smallest con-
stant Cr such that for every set of nonnegative measurable functions f1, . . . , fm, f
satisfying

(1.3)
m∏

i=1
fi(xi)

ci ≤ f
( m∑

i=1
ciB
∗
i xi

)
for every (x1, . . . , xm) ∈ Rn1 × · · · × Rnm we have

(1.4)
m∏

i=1

(∫
Rni

fi dx
) ci

≤ Cr

∫
Rn

f dx.
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586 J. Lehec

It was shown by Barthe [1] that, again, Gaussian functions saturate the inequality.
The original paper of Brascamp and Lieb [9] relies on symmetrization techniques.
Barthe’s argument uses optimal transport and works for both the direct and the re-
versed inequality. More recent proofs of the direct inequality [5, 6, 10, 11] all rely on
semi-group techniques. There are also semi-group proofs of the reversed inequality,
at least when the Brascamp–Lieb datum has the property

BiB
∗
i = idRni , ∀i ≤ m,

m∑
i=1

ciB
∗
i Bi = idRn ,

(1.5)

called frame condition in the sequel. This was achieved by Barthe and Cordero-
Erausquin [2] in the rank 1 case (when all dimensions ni equal 1) and Barthe and
Huet [3] in any dimension.

The purpose of the present article is to give a short probabilistic proof of the
Brascamp–Lieb and Barthe theorems. Our main tool will be a representation for-
mula for the quantity

ln
(∫

eg(x) γ(dx)
)
,

where γ is a Gaussian measure. Let us describe it briefly. Let (Ω,A,P) be a proba-
bility space, let (Ft )t∈[0,T] be a filtration, and let (Wt )t∈[0,T] be a Brownian motion
taking values in Rn (we fix a finite time horizon T). Assuming that the covariance
matrix A of the random vector W1 has full rank, we let H be the Cameron–Martin
space associated with W , namely the Hilbert space of absolutely continuous paths
u : [0,T]→ Rn starting from 0, equipped with the norm

‖u‖H =
(∫ T

0
〈A−1u̇s, u̇s〉 ds

) 1/2
.

In the sequel we call a drift any adapted process U which belongs to H almost surely.
The following formula is due to Boué and Dupuis [8] (see also [7, 12]).

Proposition 1.1 Let g : Rn → R be measurable and bounded from below. Then

log
(

Eeg(WT )
)

= sup
{

E
(

g(WT + UT)− 1

2
‖U‖2

H

)}
,

where the supremum is taken over all drifts U .

In [7], Borell rediscovered this formula and showed that it yields the Prékopa–
Leindler inequality (a reversed form of Hölder’s inequality) very easily. Later,
Cordero and Maurey noticed that under the frame condition, both the direct and
reversed Brascamp–Lieb inequalities could be recovered this way (this was not pub-
lished but is explained in [12]). The purpose of this article, following Borell, Cordero,
and Maurey, is to show that the Brascamp–Lieb and Barthe theorems in full general-
ity are direct consequences of Proposition 1.1.
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Short Probabilistic Proof of the Brascamp–Lieb and Barthe Theorems 587

2 The Direct Inequality

Replace fi by x 7→ fi(x/λ) in inequality (1.2). The left-hand side of the inequal-
ity is multiplied by λn and the right-hand side by λ

∑m
i=1 ci ni . Therefore, a necessary

condition for C to be finite is
m∑

i=1
cini = n.

This homogeneity condition will be assumed throughout the rest of the article.

Theorem 2.1 Assume that there exists a positive definite matrix A satisfying

(2.1) A−1 =
m∑

i=1
ciB
∗
i (BiAB∗i )−1Bi .

Then the Brascamp–Lieb constant is

C =
( det(A)∏m

i=1 det(BiAB∗i )ci

) 1/2
,

and there is equality in (1.2) for the Gaussian functions

(2.2) fi : x ∈ Rni 7→ e−〈(Bi AB∗i )−1x,x〉/2, i ≤ m.

Remark If the frame condition (1.5) holds, then A = idRn satisfies (2.1) and the
Brascamp–Lieb constant is 1.

Proof Because of (2.1), if the functions fi are defined by (2.2), then

m∏
i=1

(
fi(Bix)

) ci
= e−〈A

−1x,x〉/2.

The equality case follows easily (recall the homogeneity condition
∑

cini = n).
Let us prove the inequality. Let f1, . . . , fm be nonnegative integrable functions on

Rn1 , . . . ,Rnm , respectively and let

f : x ∈ Rn 7−→
m∏

i=1
fi(Bix)ci .

Fix δ > 0, let gi = log( fi + δ) for every i ≤ m, and let

g(x) =
m∑

i=1
cigi(Bix).

The functions (gi)i≤m, g are bounded from below. Fix a time horizon T, let (Wt )t≥T

be a Brownian motion on Rn, starting from 0 and having covariance A, and let H be
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588 J. Lehec

the associated Cameron–Martin space. By Proposition 1.1, given ε > 0, there exists a
drift U such that

log
(

Eeg(WT )
)
≤ E
(

g(WT + UT)− 1

2
‖U‖2

H

)
+ ε

=
m∑

i=1
ciEgi(BiWT + BiUT)− 1

2
E‖U‖2

H + ε.

(2.3)

The process BiW is a Brownian motion on Rni with covariance BiAB∗i . Set Ai =
BiAB∗i and let Hi be the Cameron–Martin space associated with BiW . Equality (2.1)
gives

〈A−1x, x〉 =
m∑

i=1
ci〈A−1

i Bix,Bix〉

for every x ∈ Rn. This implies that

‖u‖2
H =

m∑
i=1

ci‖Biu‖2
Hi

for every absolutely continuous path u : [0,T]→ Rn, so that (2.3) becomes

log
(

Eeg(WT )
)
≤

m∑
i=1

ciE
(

gi(BiWT + BiUT)− 1

2
‖BiU‖2

Hi

)
+ ε.

By Proposition 1.1 we have

E
(

gi(BiWT + BiUT)− 1

2
‖BiU‖2

Hi

)
≤ log

(
Eegi (BiWT )

)
for every i ≤ m. We obtain (dropping ε, which is arbitrary)

(2.4) log
(

Eeg(WT )
)
≤

m∑
i=1

ci log
(

Eegi (BiWT )
)
.

Recall that f ≤ eg and observe that

m∏
i=1

(
E(egi (BiWT)

) ci ≤
m∏

i=1

(
E fi(BiWT)

) ci
+ O(δc),

for some positive constant c. Inequality (2.4) becomes (dropping the O(δc) term)

(2.5) E f (WT) ≤
m∏

i=1

(
E fi(BiWT)

) ci
.

Since WT is a centered Gaussian vector with covariance TA,

E f (WT) =
1

(2πT)n/2 det(A)1/2

∫
Rn

f (x)e−〈A
−1x,x〉/2T dx,

and there is a similar equality for E fi(BiWT). Then it is easy to see that letting T tend
to +∞ in inequality (2.5) yields the result (recall that

∑
cini = n).
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Short Probabilistic Proof of the Brascamp–Lieb and Barthe Theorems 589

Example (Optimal constant in Young’s inequality) Young’s convolution inequality
asserts that if p, q, r ≥ 1 and are linked by the equation

(2.6)
1

p
+

1

q
= 1 +

1

r
,

then
‖F ∗ G‖r ≤ ‖F‖p‖G‖q,

for all F ∈ Lp and G ∈ Lq. When either p, q, or r equals 1 or +∞, the inequality is a
consequence of Hölder’s inequality and is easily seen to be sharp. On the other hand
when p, q, r belong to the open interval (1,+∞), the best constant C in the inequality

‖F ∗ G‖r ≤ C‖F‖p‖G‖q,

is actually smaller than 1. Let us compute it using the previous theorem. Observe
that by duality C is the best constant in the inequality

(2.7)

∫
R2

f c1 (x + y)gc2 (y)hc3 (x) dxdy ≤ C
(∫

R
f
) c1
(∫

R
g
) c2
(∫

R
h
) c3

,

where

c1 =
1

p
, c2 =

1

q
, c3 = 1− 1

r
.

In other words, C is the Brascamp–Lieb constant in R2 associated with the data

(c1,B1), (c2,B2), (c3,B3),

where B1 = (1, 1), B2 = (0, 1) and B3 = (1, 0). According to the previous result, we
have to find a positive definite matrix A satisfying

A−1 =
3∑

i=1
ciB
∗
i (BiAB∗i )−1Bi .

Letting A =
( x z

z y
)

, this equation turns out to be equivalent to

(1− c2)xy + yz + c2z2 = 0,

(1− c3)xy + xz + c3z2 = 0,

c1 + c2 + c3 = 2.

The third equation is just the Young constraint (2.6). The first two equations admit
two families of solutions: either (x, y, z) is a multiple of (1, 1,−1) or (x, y, z) is a
multiple of (

c3(1− c3), c2(1− c2),−(1− c2)(1− c3)
)
.
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590 J. Lehec

The constraint xy − z2 > 0 rules out the first solution. The second solution is fine,
since c1, c2 and c3 are assumed to belong to the open interval (0, 1). By Theorem 2.1,
the best constant in (2.7) is

C =
( det(A)∏3

i=1 det(BiAB∗i )ci

) 1/2
=
( (1− c1)1−c1 (1− c2)1−c2 (1− c3)1−c3

cc1
1 cc2

2 cc3
3

) 1/2
.

In terms of p, q, r, we have

C =
( p1/p q1/q r ′1/r ′

p ′1/p ′ q ′1/q ′ r1/r

) 1/2
,

where p ′, q ′, r ′ are the conjugate exponents of p, q, r, respectively. This is indeed the
best constant in Young’s inequality first obtained by Beckner [4].

3 The Reversed Inequality

Theorem 3.1 Again assume that there is a matrix A satisfying (2.1). Then the reversed
Brascamp–Lieb constant is

Cr =
( det(A)∏m

i=1 det(BiAB∗i )ci

) 1/2
.

There is equality in (1.4) for the following Gaussian functions

fi : x ∈ Rni 7−→ e−〈Bi AB∗i x,x〉/2, i ≤ m.

f : x ∈ Rn 7−→ e−〈Ax,x〉/2.

Remark Observe that under condition (2.1), the Brascamp–Lieb constant and the
reversed constant are the same, but the extremizers differ.

We shall use the following elementary lemma.

Lemma 3.2 Let A1, . . . ,Am be positive definite matrices on Rn1 , . . . ,Rnm , respectively
and let

A =
( m∑

i=1
ciB
∗
i A−1

i Bi

)−1
.

Then for all x ∈ Rn

〈Ax, x〉 = inf
{ m∑

i=1
ci〈Aixi , xi〉,

m∑
i=1

ciB
∗
i xi = x

}
.

Proof Let x1, . . . , xm and let

(3.1) x =
m∑

i=1
ciB
∗
i xi .
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Short Probabilistic Proof of the Brascamp–Lieb and Barthe Theorems 591

Then by the Cauchy–Schwarz inequality (recall that the matrices Ai are positive defi-
nite),

〈Ax, x〉 =
m∑

i=1
ci〈Ax,B∗i xi〉 =

m∑
i=1

ci〈BiAx, xi〉

≤
( m∑

i=1
ci〈A−1

i BiAx,BiAx〉
) 1/2( m∑

i=1
ci〈Aixi , xi〉

) 1/2

= 〈Ax, x〉1/2
( m∑

i=1
ci〈Aixi , xi〉

) 1/2
.

Besides, given x ∈ Rn, set xi = A−1
i BiAx for all i ≤ m. Then (3.1) holds and there is

equality in the above Cauchy–Schwarz inequality. This concludes the proof.

Proof of Theorem 3.1 The equality case is a straightforward consequence of the hy-
pothesis (2.1) and Lemma 3.2; details are left to the reader.

Let us prove the inequality. There is no loss of generality assuming that the func-
tions f1, . . . , fm are bounded from above (otherwise replace fi by max( fi , k), let k
tend to +∞, and use monotone convergence). Fix δ > 0 and let gi = log( fi + δ) for
every i ≤ m. By (1.3) and since the functions fi are bounded from above, there exist
positive constants c,C such that the function

g : x ∈ Rn 7−→ log
(

f (x) + Cδc
)
,

satisfies

(3.2)
m∑

i=1
cigi(xi) ≤ g

( m∑
i=1

ciB
∗
i xi

)
for every x1, . . . , xm. Observe that the functions (gi)i≤m, g are bounded from below.
Let (Wt )t≤T be a Brownian motion on Rn having covariance matrix A. Set Ai =
BiAB∗i , then A−1

i BiW is a Brownian motion on Rni with covariance matrix

(A−1
i Bi)A(A−1

i Bi)
∗ = A−1

i (BiAB∗i )A−1
i = A−1

i .

Let Hi be the associated Cameron–Martin space. By Proposition 1.1 there exists a
(Rni -valued) drift Ui such that

(3.3) log
(

Eegi (A−1
i BiWT )

)
≤ E
(

gi(A−1
i BiWT + (Ui)T)− 1

2
‖Ui‖2

Hi

)
+ ε.

By (3.2) and (2.1)

m∑
i=1

cigi(A−1
i BiWT + (Ui)T) ≤ g

( m∑
i=1

ciB
∗
i (A−1

i BiWT + (Ui)T)
)

= g
(

A−1WT +
m∑

i=1
ciB
∗
i (Ui)T

)
.
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592 J. Lehec

The Brownian motion (A−1W )t≤T has covariance matrix A−1A(A−1)∗ = A−1. Let
H be the associated Cameron–Martin space. Lemma 3.2 shows that〈

A
( m∑

i=1
ciB
∗
i xi

)
,

m∑
i=1

ciB
∗
i xi

〉
≤

m∑
i=1

ci〈Aixi , xi〉

for every x1, . . . , xm in Rn1 , . . . ,Rnm , respectively. Therefore,∥∥∥ m∑
i=1

ciB
∗
i ui

∥∥∥ 2

H
≤

m∑
i=1

ci‖ui‖2
Hi
.

for every sequence of absolutely continuous paths (ui : [0,T]→ Rni )i≤m. Thus mul-
tiplying (3.3) by ci and summing over i yields

m∑
i=1

ci log
(

Eegi (A−1
i BiWT )

)
≤

E
[

g
(

A−1WT +
m∑

i=1
ciB
∗
i (Ui)T

)
− 1

2

∥∥ m∑
i=1

ciB
∗
i Ui

∥∥ 2

H

]
+

m∑
i=1

ciε.

Hence, using Proposition 1.1 again and dropping ε again,

(3.4)
m∑

i=1
ci log

(
Eegi (A−1

i BiWT )
) ci

≤ log
(

Eeg(A−1WT )
)
.

Recall that fi ≤ egi for every i ≤ m and that eg = f + Cδc. Since δ is arbitrary,
inequality (3.4) becomes

m∏
i=1

(
E fi(A−1

i BiWT)
) ci ≤ E f (A−1WT).

Again, letting T tend to +∞ in this inequality yields the result.

4 The Brascamp–Lieb and Barthe Theorems

So far we have seen that both the direct inequality and the reversed version are satu-
rated by Gaussian functions when there exists a matrix A such that

(4.1) A−1 =
m∑

i=1
ciB
∗
i (BiAB∗i )−1Bi .

In this section, we briefly explain why this yields the Brascamp–Lieb and Barthe the-
orems.

Applying (1.2) to Gaussian functions gives

(4.2)
m∏

i=1
det(Ai)

ci ≤ C2 det
( m∑

i=1
ciB
∗
i AiBi

)
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Short Probabilistic Proof of the Brascamp–Lieb and Barthe Theorems 593

for every sequence A1, . . . ,Am of positive definite matrices on Rn1 , . . . ,Rnm . Let Cg

be the Gaussian Brascamp–Lieb constant, namely the best constant in the previous
inequality. We have Cg ≤ C , and it turns out that applying (1.4) to Gaussian func-
tions yields Cg ≤ Cr (one has to apply Lemma 3.2 at some point).

It is known (see Carlen and Cordero [10]) that there is a dual formulation of (1.2)
in terms of relative entropy. In the same way, there is a dual formulation of (4.2). For
every positive matrix A on Rn, one has

log det(A) = inf
B>0

{
tr(AB)− n− log(det(B))

}
,

with equality when B = A−1. Using this and the equality
m∑

i=1
cini = n, it is easily seen

that Cg is also the best constant such that the inequality

(4.3) det(A) ≤ C2
g

m∏
i=1

det(BiAB∗i )ci

holds for every positive definite matrix A on Rn.

Example Assume that m = n, that c1 = · · · = cn = 1 and that Bi(x) = xi for
i ∈ [n]. Inequality (4.2) trivially holds with constant 1 (and there is equality for
every A1, . . . ,An). On the other hand, (4.3) becomes

det(A) ≤
n∏

i=1
aii ,

for every positive definite A, with equality when A is diagonal. This is Hadamard’s
inequality.

Lemma 4.1 If A is extremal in (4.3), then A satisfies (4.1).

Proof Compute the gradient of the map

A > 0 7→ log det(A)−
m∑

i=1
ci log det(BiAB∗i ).

Therefore, if the constant Cg is finite and if there is an extremizer A in (4.3),
then A satisfies (4.1) and together with the results of the previous sections we get
the Brascamp–Lieb and Barthe equalities C = Cr = Cg . Although it may happen
that Cg < +∞ and no Gaussian extremizer exists, there is a way to bypass this is-
sue. For the Brascamp–Lieb theorem, there is an abstract argument showing that is
it is enough to prove the equality C = Cg when there is a Gaussian extremizer. This
argument relies on:

(a) a criterion for having a Gaussian extremizer, due to Barthe [1] in the rank 1 case
(namely when the dimensions ni are all equal to 1) and Bennett, Carbery, Christ
and Tao [6] in the general case;
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(b) a multiplicativity property of C and Cg due to Carlen, Lieb, and Loss [11] in the
rank 1 case and obtained in full generality in [6] again.

There is no point repeating this argument here, and we refer to [6, 11] instead. This
settles the case of the C = Cg equality. As for the C = Cr equality, we observe that
the above argument can be carried out verbatim once the mutliplicativity property
of the reversed Brascamp–Lieb constant is established. This is the purpose of the rest
of the article.

Definition 4.2 Given a proper subspace E of Rn, for i ≤ m, we let

Bi,E : E→ BiE
x 7→ Bix,

Bi,E⊥ : E⊥ → (BiE)⊥

x 7→ qi(Bix),

where qi is the orthogonal projection onto (BiE)⊥. Observe that both Bi,E and Bi,E⊥

are onto. Now we let Cr,E be the reversed Brascamp–Lieb constant on E associated
with the datum

(c1,B1,E), . . . , (cm,Bm,E)

and Cr,E⊥ be the reversed Brascamp–Lieb constant on E⊥ associated with the datum

(c1,B1,E⊥), . . . , (cm,Bm,E⊥).

Proposition 4.3 Let E be a proper subspace of Rn, and assume that E is critical, in the
sense that

dim(E) =
m∑

i=1
ci dim(BiE).

Then Cr = Cr,E ×Cr,E⊥ .

Bennett, Carbery, Christ and Tao proved the corresponding property for C and
Cg , we adapt their argument to prove the multiplicativity of Cr.

Let us prove the inequality Cr ≤ Cr,E × Cr,E⊥ first. This does not require E to be
critical. Let f1, . . . , fm, f be functions on Rn1 , . . . ,Rnm ,R respectively, satisfying

m∏
i=1

fi(zi)
ci ≤ f

( m∑
i=1

ciB
∗
i zi

)
for all z1, . . . , zm. Fix (x1, . . . , xn) ∈ B1E × · · · × BmE. Since (Bi,E⊥)∗yi = B∗i yi

for every yi ∈ (BiE)⊥, applying the reversed Brascamp–Lieb inequality on E⊥ to the
functions

y ∈ (BiE)⊥ 7→ fi(xi + y), i ≤ m

yields

m∏
i=1

(∫
(Bi E)⊥

fi(xi + yi) dyi

) ci

≤ Cr,E⊥

∫
E⊥

f
( m∑

i=1
ciB
∗
i xi + y

)
dy

= Cr,E⊥

∫
E⊥

f
( m∑

i=1
ci(Bi,E)∗xi + y

)
dy.

https://doi.org/10.4153/CMB-2013-040-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-040-x


Short Probabilistic Proof of the Brascamp–Lieb and Barthe Theorems 595

For the latter equality, observe that (Bi,E)∗xi = p(B∗i xi), where p is the orthogonal
projection with range E and use the translation invariance of the Lebesgue measure.
Applying the reversed Brascamp–Lieb inequality (this time on E) and using Fubini’s
theorem we get

m∏
i=1

(∫
Rni

fi dx
) ci

≤ Cr,ECr,E⊥

∫
Rn

f dx,

which is the result.
We start the proof of the inequality Cr,ECrE⊥ ≤ Cr with a couple of simple observa-
tions.

Lemma 4.4 Upper semi-continuous functions having compact support saturate the
reversed Brascamp–Lieb inequality.

Proof The regularity of the Lebesgue measure implies that given a nonnegative in-
tegrable function fi on Rni and ε > 0 there exists a nonnegative linear combination
of indicators of compact sets gi satisfying

gi ≤ fi and

∫
Rni

fi dx ≤ (1 + ε)

∫
Rni

gi dx.

The lemma follows easily.

The proof of the following lemma is left to the reader.

Lemma 4.5 If f1, . . . , fm are compactly supported and upper semi-continuous on
Rn1 , . . . ,Rnm respectively, then the function f defined on Rn by

f (x) = sup
{ m∏

i=1
fi(xi)

ci ,
m∑

i=1
ciB
∗
i xi = x

}
is compactly supported and upper semi-continuous as well.

Remark If the Brascamp–Lieb datum happens to be degenerate, in the sense that
the map (x1, . . . , xm) 7→

∑m
i=1 B∗i xi is not onto, then the Brascamp–Lieb constants

are easily seen to be +∞. Still the previous lemma remains valid, provided the con-
vention sup∅ = 0 is adopted.

Let us prove that Cr,E ×Cr,E⊥ ≤ Cr. By Lemma 4.4, it is enough to prove that the
inequality

m∏
i=1

(∫
Bi E

fi dx
) ci

×
m∏

i=1

(∫
(Bi E)⊥

gi dx
) ci

≤ Cr

(∫
E

f dx
)(∫

E⊥
g dx

)
holds for every set of compactly supported upper semi-continuous functions ( fi)i≤m

and (gi)i≤m, where f and g are defined by

f : x ∈ E 7→ sup
{ m∏

i=1
fi(xi)

ci ,
m∑

i=1
ci(Bi,E)∗xi = x

}
,

g : y ∈ E⊥ 7→ sup
{ m∏

i=1
gi(yi)

ci ,
m∑

i=1
ci(Bi,E⊥)∗yi = y

}
.
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Let ε > 0. For i ≤ m, define a function hi on Rni by

hi(x + y) = fi(x/ε)gi(y), x ∈ BiE, y ∈ (BiE)⊥,

and let

h : z ∈ Rn 7→ sup
{ m∏

i=1
hi(zi)

ci ,
m∑

i=1
ciB
∗
i zi = z

}
.

By definition of the reversed Brascamp–Lieb constant Cr,

(4.4)
m∏

i=1

(∫
Rni

hi dx
) ci

≤ Cr

∫
Rn

h dx.

Using the equality
∑m

i=1 ci dim(BiE) = dim(E), we get

ε− dim(E)
m∏

i=1

(∫
Rni

hi dx
) ci

=
m∏

i=1

(∫
Bi E

fi dx
) ci

×
m∏

i=1

(∫
(Bi E)⊥

gi dx
) ci

.

On the other hand, we let the reader check that for every x ∈ E, y ∈ E⊥,

h(εx + y) ≤ f (x)gε(y),

where

gε(y) = sup
{

g(y ′), |y − y ′| ≤ Kε
}

and K is a constant depending on the diameters of the supports of the functions fi .
Therefore

ε− dim E

∫
Rn

h dx =

∫
E×E⊥

h(εx + y) dxdy ≤
(∫

E
f dx

)(∫
E⊥

gε dx
)
.

Inequality (4.4) becomes

m∏
i=1

(∫
Bi E

fi dx
) ci

×
m∏

i=1

(∫
(Bi E)⊥

gi dx
) ci

≤ Cr

(∫
E

f dx
)(∫

E⊥
gε dx

)
.

By Lemma 4.5, the function g has compact support and is upper semi-continuous.
This implies easily that

lim
ε→0

∫
E⊥

gε dx =

∫
E⊥

g dx,

which concludes the proof.
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Poincaré Probab. Stat. 49(2013), no. 3, 885–899.

[13] E. H. Lieb, Gaussian kernels have only Gaussian maximizers. Invent. Math. 102(1990), no. 1,
179–208. http://dx.doi.org/10.1007/BF01233426
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