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A Maass space in higher genus

Winfried Kohnen and Hisashi Kojima

Abstract

We show that for arbitrary even genus 2n with n ≡ 0, 1 (mod 4) the subspace of Siegel cusp
forms of weight k+n generated by the Ikeda lifts of elliptic cusp forms of weight 2k can be
characterized by certain simple relations among the Fourier coefficients. These generalize
the classical Maass relations in genus 2.

1. Introduction

For positive integers n and k, let Sk(Γn) be the space of Siegel cusp forms of weight k with respect
to the full Siegel modular group Γn := Spn(Z) ⊂ GL2n(Z) of genus n.

Suppose that n = 2 and k is even. Then as is well known there exists a certain Hecke-invariant
subspace S∗

k(Γ2) ⊂ Sk(Γ2) called the Maass space which is Hecke-equivariantly isomorphic to
S2k−2(Γ1) (‘Saito–Kurokawa lift’). If F ∈ S∗

k(Γ2) is a Hecke eigenform, then its spinor zeta function
is equal to

ζ(s − k + 1)ζ(s − k + 2)L(f, s),
where L(f, s) is the Hecke L-function of a normalized Hecke eigenform f ∈ S2k−2(Γ1). As is easy to
see by a formal calculation and is well known, the standard zeta function of F then equals

ζ(s)L(f, s + k − 1)L(f, s + k − 2).

The space S∗
k(Γ2) can be explicitly described as the image of a certain linear map from the ‘plus

subspace’ S+
k− 1

2

of the space of cusp forms of weight k − 1
2 and level 4 to Sk(Γ2) and can also be

characterized in terms of certain linear relations among the Fourier coefficients of the forms (‘Maass
relations’). This was intensively studied in the late 1970s and early 1980s by Andrianov, Eichler
and Zagier, Maass, Saito and Kurokawa, Zagier and others; for a survey of some of the results, see
e.g. [EZ85, ch. II, § 6].

Recently, in a significant breakthrough, Ikeda [Ike01] generalized the Saito–Kurokawa lift to
higher genus. More precisely, for f ∈ S2k(Γ1) a normalized Hecke eigenform and n ≡ k (mod 2),
he explicitly constructed a Hecke eigenform F ∈ Sk+n(Γ2n) such that its standard zeta function is
equal to

ζ(s)
2n∏
j=1

L(f, s + k + n − j),

where again L(f, s) is the Hecke L-function of f . The existence of such an F was previously con-
jectured by Duke and Imamoglu.

In [Koh02], generalizing the corresponding result in genus 2, one of the authors gave an explicit
linear version of Ikeda’s lifting map as a map from S+

k+ 1
2

to Sk+n(Γ2n) where S+
k+ 1

2

again denotes

the ‘plus subspace’ of forms of weight k + 1
2 and level 4.
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In [Koh02] a conjectural description of the image of this lifting map in terms of conditions on
the Fourier coefficients was also given. In the case n = 1, this condition comes down to saying
that the T th Fourier coefficients of a form in the Maass space, where T is a rational, half-integral,
symmetric, positive definite (2, 2)-matrix, for T primitive depend only on the discriminant of T (see
[Koh02, § 8, Proposition 4]). Note that in the latter case this description holds true and in fact is
a well-known classical result of Zagier [Zag81].

The main purpose of this paper is to prove the conjecture of [Koh02] for all n with n ≡ 0, 1
(mod 4) (Theorem 3) and as a consequence in these cases give a characterization of the image of the
lifting in terms of certain linear relations among the Fourier coefficients, generalizing the classical
Maass relations (Corollary 4).

The proof proceeds by using certain specific results of [Koh02] on the Fourier coefficients of Ikeda-
lifted forms combined with projecting a Siegel cusp form to one of its Fourier–Jacobi coefficients
φT0 of index T0, where T0 is a certain special matrix of size 2n − 1 and producing forms in fact in
S+

k+ 1
2

in this way, analogously to the case of genus 2. Note that such a proof was partly suggested

in [Koh02].
The assumption n ≡ 0, 1 (mod 4) seems to be essential to our arguments, since the existence of

T0 can be guaranteed only in the latter cases. Of course, this does not mean that our proof cannot
be generalized to the cases n ≡ 2, 3 (mod 4) by modifying the arguments slightly in a somewhat
different direction.

In § 2, we will recall several facts on certain polynomials attached to rational, symmetric matrices
of even size that enter in connection with Ikeda’s lifting map. In § 3, we will recall Ikeda’s lifting
theorem and its linear version given in [Koh02]. Section 4 contains the statement of our results,
while their proofs are given in § 5.

Notation. If A and B are matrices of appropriate sizes over a commutative ring R, we put A[B] :=
B′AB where B′ is the transpose of B.

If A and B are square matrices over R, we often write A ⊕ B for the diagonal block matrix(
A 0
0 B

)
.

If A is a square matrix over R, we call A even if all its diagonal elements are in 2R. If R is an
integral domain of characteristic different from 2, the matrix 1

2A then will be called half-integral.

We denote by R(n,1) the set of column vectors of length n with components in R.
If a real, symmetric matrix T is positive definite, we write T > 0.
For a positive integer k, we let S+

k+ 1
2

be the space of cusp forms of weight k + 1
2 and level 4

having a Fourier expansion of the form ∑
m�1,(−1)km≡0,1 (mod 4)

c(m)e2πimz

(where z ∈ H = the complex upper half-plane) [Koh80], [Shi73].
If F ∈ Sk(Γn) is a Siegel cusp form of weight k and genus n, we write its Fourier expansion in

the form

F (Z) =
∑
T>0

A(T )e2πi tr(TZ)

(where Z ∈ Hn = the Siegel upper half-space of genus n), where T runs over all rational, half-integral,
symmetric, positive definite matrices of size n.
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2. Preliminaries

Let T ∈ M2n(Q) be a rational, half-integral, symmetric, non-degenerate matrix of size 2n.
We denote by

DT := (−1)n det(2T )

the discriminant of T . Then DT ≡ 0, 1 (mod 4) and we write DT = DT,0f
2
T with DT,0 the corre-

sponding fundamental discriminant and fT ∈ N.
Let us fix a prime p. Recall that one defines the local singular series of T at p by

bp(T ; s) :=
∑
R

νp(R)−sep(tr(TR)) (s ∈ C)

where R runs over all symmetric (2n, 2n)-matrices with entries in Qp/Zp and νp(R) is a power of p
equal to the product of denominators of elementary divisors of R. Furthermore, for x ∈ Qp we have
put ep(x) := e2πix′

where x′ denotes the fractional part of x.
As is well known, bp(T ; s) is a product of two polynomials in p−s with coefficients in Z.

More precisely, one has

bp(T ; s) = γp(T ; p−s)Fp(T ; p−s),

where

γp(T ;X) := (1 − X)
(

1 −
(

DT,0

p

)
pnX

)−1 n∏
j=1

(1 − p2jX2)

and Fp(T ;X) ∈ Z[X] has constant term 1.
A fundamental result of Katsurada [Kat99] states that the Laurent polynomial

F̃p(T ;X) := X− ordp fT Fp(T ; p−n−1/2X)

is symmetric, i.e.

F̃p(T ;X) = F̃p(T ;X−1).

If p does not divide fT , then Fp(T ;X) = F̃p(T ;X) = 1.
Denote by V = (F2n

p , q) the quadratic space over Fp where q is the quadratic form obtained
from the quadratic form x �→ T [x] (x ∈ Z2n

p ) by reducing modulo p. We denote by 〈x, y〉 :=
q(x + y) − q(x) − q(y) (x, y ∈ F2n

p ) the associated bilinear form and let

R(V ) := {x ∈ F2n
p | 〈x, y〉 = 0 ∀ y ∈ F2n

p , q(x) = 0}
be the radical of V . We put sp := sp(T ) = dim R(V ) and denote by W an orthogonal complementary
subspace of R(V ).

According to [Kit84], one defines a polynomial by

Hn,p(T ;X) :=




1, if sp = 0,
[(sp−1)/2]∏

j=1

(1 − p2j−1X2), if sp > 0, sp odd,

(1 + λp(T )p(sp−1)/2X)
[(sp−1)/2]∏

j=1

(1 − p2j−1X2), if sp > 0, sp even,

where for sp even we have put

λp(T ) :=

{
1, if W is a hyperbolic subspace or sp = 2n,

−1, otherwise.
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According to [Koh02], for µ ∈ Z, µ � 0, define ρT (pµ) by

∑
µ�0

ρT (pµ)Xµ :=

{
(1 − X2)Hn,p(T ;X), if p|fT ,

1, otherwise.

We extend the function ρT multiplicatively to the whole of N by defining∑
a�1

ρT (a)a−s :=
∏
p|fT

((1 − p−2s)Hn,p(T ; p−s)).

It follows from the definitions that
√

a ρT (a) is an integer.
Finally, let

D(T ) := GL2n(Z)\{G ∈ M2n(Z) ∩ GL2n(Q) | T [G−1] half-integral},
where GL2n(Z) operates by left-multiplication. Then D(T ) is finite as is easy to see. For a ∈ N with
a|fT put

φ(a;T ) :=
√

a
∑
d2|a

∑
G∈D(T ),| det(G)|=d

ρT [G−1]

( a

d2

)
. (1)

Note that on the right-hand side of (1) we have (a/d2)|fT [G−1] and that φ(a;T ) ∈ Z for all a.

3. Ikeda’s lifting map

Let f be a normalized Hecke eigenform in S2k(Γ1). For a prime p, let λ(p) and αp be the pth Fourier
coefficient and the Satake p-parameter of f , respectively. Thus

1 − λ(p)X + p2k−1X2 = (1 − pk−1/2αpX)(1 − pk−1/2α−1
p X).

Note that αp is determined only up to inversion.
Let

g =
∑

m�1,(−1)km≡0,1 (mod 4)

c(m)e2πimz (z ∈ H)

be a Hecke eigenform in S+
k+ 1

2

which corresponds to f under the Shimura correspondence [Koh80],

[Shi73].
Let n ∈ N with n ≡ k (mod 2). For T a rational, half-integral, symmetric, positive definite

matrix of size 2n, define

af (T ) := c(|DT,0|)fk−1/2
T

∏
p|fT

F̃p(T ;αp),

where we have used the notation explained in § 2. Note that for n and k of the same parity,
(−1)kDT,0 > 0.

Theorem 1 [Ike01]. The function

F (Z) :=
∑
T>0

af (T )e2πi tr(TZ) (Z ∈ H2n),

where T runs over all rational, half-integral, symmetric, positive definite matrices of size 2n, is a
cuspidal Siegel–Hecke eigenform of weight k + n with respect to Γ2n.

Remarks. (a) Ikeda [Ike01] further proves that the standard zeta function of F is given by

ζ(s)
2n∏

j=1

L(f, s + k + n − j),

where L(f, s) is the Hecke L-function of f . We will not use this fact here.
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(b) We note that it is implicit in Ikeda’s theorem (respectively its proof) that his lift is injective.
Indeed, if f1 and f2 are different normalized eigenforms in S2k(Γ1), then their p-eigenvalues are
different for at least one prime p. Hence their lifts are in different eigenspaces for the local Hecke
algebra at p in genus 2n and therefore are orthogonal with respect to the Petersson scalar product.

Theorem 2 [Koh02]. With the notation of § 2, one has

af (T ) =
∑
a|fT

ak−1φ(a;T )c
( |DT |

a2

)
. (2)

4. A characterization of the image of Ikeda’s lifting map

We denote by S∗
k+n(Γ2n) the image of the linear mapping Ik,n from S+

k+ 1
2

to Sk+n(Γ2n) defined by

(2). (Note that this notation differs from the one used in [Koh02, § 8, iv].)
Our main result is the following.

Theorem 3. Suppose that n ≡ 0, 1 (mod 4) and let k ∈ N with n ≡ k (mod 2). Let F ∈ Sk+n(Γ2n)
with Fourier coefficients A(T ). Then the following assertions are equivalent:

(i) F ∈ S∗
k+n(Γ2n);

(ii) there exist complex numbers c(m) (with m ∈ N, and (−1)km ≡ 0, 1 (mod 4)) such that

A(T ) =
∑
a|fT

ak−1φ(a;T )c
( |DT |

a2

)

for all T .

Remarks. (a) The statement of Theorem 3 was conjectured in [Koh02, § 8, iv)].
(b) According to [Koh02, § 8, iv)] the condition in (ii) is also equivalent to saying that A(T ) =

A(T̃ ) whenever DT = DT̃ and φ(a;T ) = φ(a; T̃ ) for all a|fT .
To state our second result, recall [CS88, ch. 15, § 8.2, table 15.5] that for each g ∈ N there exists

exactly one genus of integral, even, symmetric matrices S of size g with determinant equal to 2.
A matrix in this genus is positive definite if and only if g ≡ ±1 (mod 8), and in this case as a
representative we can take

S0 :=

{
E

⊕(g−1)/8
8 ⊕ 2, if g ≡ 1 (mod 8),

E
⊕(g−7)/8
8 ⊕ E7, if g ≡ −1 (mod 8),

(3)

where (by abuse of language) E8 and E7 denote the Gram matrices of the E8- and E7-root lattices,
respectively.

Explicitly, recall that

E8 =




2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2




and E7 is the upper left (7, 7)-submatrix of E8.

317

https://doi.org/10.1112/S0010437X04001241 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001241


W. Kohnen and H. Kojima

The matrix E8 is unimodular and E7 has determinant equal to 2.
Suppose that n ≡ 0, 1 (mod 4) and define S0 by the right-hand side of (3), with g := 2n − 1.
For m ∈ N with (−1)nm ≡ 0, 1 (mod 4) define a rational, half-integral, symmetric, positive

definite matrix Tm of size 2n by

Tm :=




(
1
2S0 0
0 m/4

)
, if m ≡ 0 (mod 4),

(
1
2S0

1
2e2n−1

1
2e′2n−1 [m + 2 + (−1)n]/4

)
, if m ≡ (−1)n (mod 4),

(4)

where e2n−1 = (0, . . . , 0, 1)′ ∈ Z(2n−1,1) is the usual standard column vector.
Observe that the matrices on the right-hand side of (4) are indeed positive definite. This is obvi-

ous except for the case n ≡ 0 (mod 4), m ≡ 1 (mod 4). In the latter case, the Jacobi decomposition
shows that

det(2Tm) = 2
(

m + 3
2

− E−1
7 [e7]

)
= m

since E−1
7 [e7] = 3

2 . Our claim follows from this.
We note that

det(2Tm) = m (5)

for all m.

Corollary 4 (‘Maass relations’). Under the same assumptions as in Theorem 3 and with the
above notation, the following assertions are equivalent:

(i) F ∈ S∗
k+n(Γ2n);

(ii) for all T , one has

A(T ) =
∑
a|fT

ak−1φ(a;T )A(T|DT |/a2).

Remarks. (a) That (i) implies (ii), in a slightly different formulation and with a different proof, has
already been shown before by one of the authors [Koh04].

(b) If n = 1, using the fact that

φ(a;T ) =

{
a, if a|gcd(α, β, γ),
0, otherwise,

where

T =
(

α β/2
β/2 γ

)
(see [Koh02, Equation (32)]), one recovers the classical ‘Maass relations’ in genus 2.

(c) One can easily give a formulation of the statement of Corollary 4 which is valid for any
matrix S in the genus of S0, by properly modifying the definition of the matrices Tm. This, of
course, is consistent with the fact that the Fourier coefficients A(T ) of an Ikeda-lifted form by
definition depend only on the genus of T . The more general formulation is slightly more involved
and is left to the reader. We have preferred to choose S = S0 here, since in this case the statement
for higher genus formally seems to come closest to the corresponding classical statement in genus 2.
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5. Proof of Theorem 3 and Corollary 4

To prove Theorem 3, in view of Theorem 2 it is sufficient to show that (ii) implies (i).
We will use the notation explained in § 4, after the statement of Theorem 3.
For convenience, let us put

T0 := 1
2S0.

Let F (Z) (Z ∈ H2n) be in Sk+n(Γ2n) and denote by φT0(τ, z) (with τ ∈ H, and z ∈ C(2n−1,1))
the Fourier–Jacobi coefficient of F of index T0, i.e. the coefficient with index T0 in a partial Fourier
expansion of F (Z) with respect to w ∈ H2n−1 where

Z =
(

w z
z′ τ

)
.

Then φT0 is a Jacobi cusp form of weight k + n and index T0 with respect to the Jacobi group
Γ1 
 (Z(2n−1,1) × Z(2n−1,1)) and φT0 has a Fourier expansion

φT0(τ, z) =
∑

T=
( T0 r/2

r′/2 N

)
> 0

A(T ) e2πi(Nτ+r′z)

(see [EZ85], [Ike01, §§ 7 and 8], [Shi78], [Zie89]).
As is well known, φT0 has an expansion in terms of Jacobi theta functions

φT0(τ, z) =
∑
λ∈Λ

hλ(τ)θλ(τ, z),

where Λ := S−1
0 Z(2n−1,1)/Z(2n−1,1) and where for λ ∈ Λ one sets

hλ(τ) :=
∑

N∈Z,N−T0[λ]>0

A

((
T0 T0λ

λ′T0 N

))
e2πi(N−T0[λ])τ (τ ∈ H)

and
θλ(τ, z) :=

∑
r∈Z(2n−1,1)

e2πi(T0[r+λ]τ+2(r+λ)′T0z) (τ ∈ H, z ∈ C(2n−1,1))

(see [EZ85], [Ike01, §§ 7 and 8], [Shi78], [Zie89]).
We note that |Λ| = 2 and that representatives can be chosen as λ0, λ1 where λ0 is the zero

vector and λ1 := S−1
0 e2n−1. Indeed, this is trivial if n ≡ 1 (mod 4) and for n ≡ 0 (mod 4) follows

from the well-known fact that E7 is obtained from E8 as the orthogonal complement of a vector of
length 2 and 2-adically E8 is the sum of four hyperbolic planes.

In the case n ≡ 0 (mod 4), in more elementary terms one can also argue as follows. One has

E−1
7 Z(7,1)/Z(7,1) �

∏
p

E−1
7 Z(7,1)

p /Z(7,1)
p

� E−1
7 Z

(7,1)
2 /Z

(7,1)
2

since det(E7) = 2. Furthermore

E7 =

(
E

(1)
7 ∗
∗ 2,

)
,

where E
(1)
7 is of size 6 and has determinant equal to 3 ∈ Z∗

2; hence we see from the Jacobi decom-
position that E7 over Z2 is equivalent to E

(1)
7 ⊕ 2

3 which implies that

E−1
7 Z

(7,1)
2 /Z

(7,1)
2 � Z/2Z.
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On the other hand, a direct calculation shows that the congruence E7r ≡ e7 (mod 2) with
r ∈ Z(7,1) is not solvable hence E−1

7 e7 is not in Z(7,1).
With the above representatives, we now find that

h0(τ) := hλ0(τ) =
∑
N>0

A

((
T0 0
0 N

))
e2πiNτ (τ ∈ H) (61)

and

h1(τ) := hλ1(τ) =
∑

N>[2+(−1)n]/4

A

((
T0

1
2e2n−1

1
2e′2n−1 N

))
e2πi(N−[2+(−1)n]/4)τ (τ ∈ H). (62)

We claim that the function

h(τ) := h0(4τ) + h1(4τ) (τ ∈ H)

is in S+
k+ 1

2

. Indeed, from [Ike01, § 9], [Shi78], [Zie89, ch. 3, Equations (1) and (2)] (in the case n = 1,

cf. also [EZ85, ch. II, § 5]) one finds that(
h0(τ + 1)
h1(τ + 1)

)
=
(

1 0
0 −εni

)(
h0(τ)
h1(τ)

)

and (noting k + n − (2n − 1)/2 = k + 1
2 ) that(

h0(−1/τ)
h1(−1/τ)

)
=

1 + εni

2
τk+ 1

2

(
1 1
1 −1

)(
h0(τ)
h1(τ)

)
where

εn :=

{
1, if n ≡ 1 (mod 4),
−1, if n ≡ 0 (mod 4),

and complex powers as usual are defined by the principal value of the complex logarithm.
A formal computation similar to the case n = 1 now easily shows that

h(τ + 1) = h(τ), h

(
τ

4τ + 1

)
= (4τ + 1)k+ 1

2 h(τ).

Since (
1 1
0 1

)
and

(
1 0
4 1

)
generate Γ0(4), we conclude that h(τ) behaves like a modular form of weight k + 1

2 and level 4.
From the above transformation formulas one sees that h(τ) is cuspidal and Equations (61) and (62)
then imply that h(τ) in fact is contained in S+

k+ 1
2

(note that n ≡ k (mod 2) by assumption).

The Fourier coefficients c̃(m) (where m ∈ N, and (−1)km ≡ 0, 1 (mod 4)) of h are given by the
Fourier coefficients of the right-hand sides of Equations (61) and (62), with τ replaced by 4τ , and
with obvious identifications of m and N . More precisely, note that for a typical matrix T with A(T )
appearing on the right-hand sides of Equations (61) and (62) we have

det(2T ) = m =

{
4N, if λ = λ0,

4N − (2 + (−1)n), if λ = λ1

(7)

(compare (5)). We claim that each T appearing in this way has the property that sp(T ) = 1 for all
primes p such that p|fT .

Since E8 is unimodular and det(E7) = 2, this readily follows if p > 2. If p = 2 and 2|fT , then by
(7) only the case λ = λ0 matters. As was already noted before, E7 over Z2 is equivalent to a matrix
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E
(1)
7 ⊕ 2

3 with E
(1)
7 ∈ GL6(Z2). Since s2(1⊕N) = 1 as follows from the definitions, we therefore see

that s2(T ) = 1 in the case under consideration. This implies our claim.
We can now finish the proof of Theorem 3. By assumption, there exist complex numbers c(m)

(with m ∈ N, and (−1)km ≡ 0, 1 (mod 4)) such that

A(T ) =
∑
a|fT

ak−1φ(a;T )c
( |DT |

a2

)

for all T . If we choose for T one of the special matrices occurring on the right-hand sides of Equations
of (61) and (62), then for those T we have sp(T ) = 1 for all primes p with p|fT as was just proved.
By a formal calculation, using only the definition of φ(a;T ) in exactly the same way as in the proof
of [Koh02, Proposition 2, p. 801], we therefore deduce that A(T ) = c(|DT |) for those T ; in other
words we find that

c̃(m) = c(m)

for all m ∈ N with (−1)km ≡ 0, 1 (mod 4).
This proves Theorem 3.

Let us now prove Corollary 4. Checking the definitions, we see that the implication (i) ⇒ (ii)
has already been proved above.

Conversely, suppose that (ii) holds. For m ∈ N with (−1)km ≡ 0, 1 (mod 4), define

c(m) := A(Tm).

Then

A(T ) =
∑
a|fT

ak−1φ(a;T )c
( |DT |

a2

)

for all T ; hence by Theorem 3 we infer that F ∈ S∗
k+n(Γ2n).

Remark. Note that, as a side result, we have proved that in the above notation the mapping
Sk+n(Γ2n) → S+

k+ 1
2

, F �→ h is surjective and that its restriction to S∗
k+n(Γ2n) is bijective with

inverse given by Ik,n. Thus also in higher genus one recovers an analogue of the well-known situa-
tion in genus 2.
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