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Abstract. The latest generation of low frequency radio interferometers, e.g. LOFAR, MWA,
PAPER, has been pushing down the detection limits on the hydrogen signal from the Epoch of
Reionisation. However, due to the challenges posed by foregrounds and instrumental systematics
the signal has eluded detection thus far. To overcome these challenges we require a detailed
understanding of the calibration of these relatively new telescopes. This led to a renewed interest
in redundant calibration. Classical calibration schemes depend on sky models based on limited
knowledge of the low frequency sky. Redundant calibration, however, allows us to escape our
ignorance as it is sky model independent. We will review the field of redundant calibration, and
present work we have undertaken to understand the limitations of this calibration method.
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1. Introduction
The detection of the 21 cm signal from the Epoch of Reionisation (EoR) is a challenging

experiment; we have to deal with large radiometric noise, bright foregrounds, and complex
signal chains. The noise and the foregrounds hide the signal, and the signal chain leaves
an instrumental imprint on the radio signals we are trying to measure. Only when we
fully understand the impact of the instrument, we can mitigate it. We can then proceed
to average over larger sets of data, building up to the required 1000 hours of observations,
to achieve the desired signal to noise ratio. Accurate calibration of each observation is
therefore a key element in the EoR experiment, but also in general to achieve the full
potential of these new telescopes. Calibration solves for the unknown complex antenna
gains gi describing the antenna imprints on the signal. Currently, we use the measured
signal correlations cij between antennas i and j forming a baseline pair, and models of
the true correlations or visibilities vij to solve for the antenna gains. These are related
to each other through

cij = g∗i gj vij + nij , (1.1)
where the asterisk denotes complex conjugation and nij is complex Gaussian noise.
These model based calibration methods rely on the completeness of our sky knowledge,
which is lacking in this low frequency regime. Missing sources in source model catalogues
impact our calibration solutions (Wijnholds et al. 2016), and these effects are enhanced
in redundant arrays (e.g. PAPER, MWA, HERA), which contain many of the same base-
lines (Grobler et al. 2014). However, these redundant arrays do have extra sensitivity on
scales probed by the redundant baselines. This makes them excellent for power spectrum
measurements. This need for redundancy in the detection of the 21 cm power spectrum
led to a resurgence of redundant calibration. As part of the MWA EoR experiment we are
currently also undertaking research to study the applicability of redundant calibration.
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2. Redundant Calibration Framework
Redundant calibration relies on the presence of redundant baselines, i.e. pairs of an-

tennas that measure the same visibility. Because a group of redundant baselines sample
the same visibility v, the number of unknowns, e.g. gains g and visibilities v, are lower
in redundant arrays compared to non-redundant arrays. In theory, a sufficient amount
of redundant baselines allows for a model-independent calibration of the antennas in the
array. The concept is described in detail in Wieringa (1991) and has been further de-
veloped in Liu et al. (2010), Noorishad et al. (2012), Marthi & Chengalur (2013), Zheng
et al. (2014).
Currently, two linear implementations of redundant calibration, logcal and lincal, have
gathered most of the attention within the community due their simplicity. They form the
backbone of Omnical, which was developed as part of the MIT Epoch of Reionization ex-
periment (MITEoR) (Zheng et al. 2014). It has been used to calibrate PAPER (Parsons
et al. 2010) leading to their limits on the 21 cm signal (Ali et al. 2015). We are currently
investigating the applicability of redundant calibration in the MWA (Tingay et al. 2013)
and similar work is done for HERA (Dillon et al. 2016). Non-linear calibration has also
been explored in (Marthi et al. 2013). Using steepest descent they find that non-linear
least squares (NLS) can be faster than the linear methods, and that NLS produces noise
unbiased results, similar to lincal. We will discuss noise bias in Section 3.2.
In logcal (Wieringa 1992) we take the logarithm of the complex quantities in Equation
1.1. This creates a system of equations in which the logarithm of the amplitudes and
phases of each quantity, e.g. ln|gi | and arg|gj | respectively, are separated. Equation 2.1
shows the resulting two equations for the amplitudes and phases, when we ignore the
noise term nij .

ln|cij | = ln|gi | + ln|gj | + ln|vij |

arg|cij | = arg|gj | − arg|gi | + arg|vij |
(2.1)

Both systems of equations can be written in matrix form. We then solve the system
using the general least square solution for a matrix equation of the form Ax = b. The
solution is given by x̂ = [AT A]−1AT b.

In lincal (Liu et al. 2010) we Taylor expand Equation 1.1 around an initial guess for
the gains g0

i and v0
ij , leading to

cij = g0
i g0∗

j v0
ij + g0∗

j v0
ijΔgi + g0

i v0
ijΔgj + g0

i g0∗
j Δvij , (2.2)

where Δgi and Δvij are the required corrections to our guesses. Analogous to the system
of equations for logcal, we can write a similar matrix for the linearized framework, this
time containing the real and imaginary components of our initial guesses g0

i and v0
ij . But

now we solve for Δgi and Δvij to correct our guesses. This matrix has to be updated
and inverted for each iteration, making this method quite computationally expensive.

3. Implementation issues
Omnical and software under development for HERA combine both linear implemen-

tations. They use logcal to get an initial guess and using lincal to further improve
the solutions (Zheng et al. 2014). However, this has not completely resolved the issues
associated with redundant calibration. In this section we will highlight some of these
issues, and show examples which we encountered while investigating the applicability to
the MWA.
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Figure 1. The logcal solutions for a simplistic 5 element interferometer with Gaussian-beams
calibrated on a sky containing a 200 Jy source and randomized background sky drawn from a
source count distribution. From left to right : the amplitude gain |g|, the phase gain φg of a single
antenna, the visibility amplitude |v| and the visibility phase φv for a redundant visibility as a
function of source position l. We show the solution mean (dark blue), and the 1-sigma solution
variance(shaded blue). The mean of the amplitude solutions equals the input gain |g| = 1, the
amplitude solution variance inversely follows the shape of the beam, i.e. the variance increases
when the beam response decreases. The mean of the phase solutions fluctuates around φ = 0 and
jumps along with the variance at so-called phase wrapping points, which are further explained
in the text. The visibility amplitude mean follows the shape of the Gaussian beam, caused by
the source population variance and outliers caused by the noise variance. Similarly we see the
visibility phase becoming more defined as the strong source moves into the beam, and we see
its phase wrapping.

3.1. Absolute Calibration
Redundant calibration only yields relative solutions for the antenna gains. We can multi-
ply the antenna gain amplitudes with some arbitrary factor α and simultaneously divide
the visibility amplitude by α while keeping the system internally consistent. Similarly
we can add an overall phase to each antenna gains, which will cancel out due to com-
plex conjugation. Additionally we can also add an overall phase gradient to our antenna
gains, as long as we subtract this from our visibilities. This final degeneracy corresponds
to a rotation of the sky, i.e. redundant calibration can not determine the pointing of our
telescope. (Wieringa 1992, Liu et al. 2010). To break these degeneracies we need some
form of external calibration.

3.2. Noise Bias
Because logcal relies on the logarithm of Equation 1.1 it is noise biased. The real and
imaginary components of the complex noise term are Gaussian-distributed, however, this
is not true for the amplitude and the phase. This will lead to a systematic bias in the
logcal solutions, and is also the reason why lincal was developed. We can work around
the noise by averaging data over time scales on which the gain does not change much,
but sufficient enough to lower the noise. (Liu et al. 2010)

3.3. Phase Wrapping
Phase wrapping adds an additional degeneracy to our complex solutions. We can add
and subtract multiples of 2π to our gains gi and visibilities vij without changing the
measured correlation cij , see Equation 1.1. This manifests itself in different ways for
each linear implementation. In logcal phase wrapping shows itself by causing a large
solution variance when certain redundant baseline groups measure a visibility phase of
π. In lincal this will manifest itself by converging to a false minimum. In Figure 1 we
show the solution variance of logcal in simulations. We attempt to calibrate a 5 element
linear array on a randomised point source sky drawn from a source count distribution
and a strong point source of 200 Jy. We show the solution variance as a function of the
location of that strong source on the sky and we see that the variance for the phase
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increases when the measured phase wraps around. The amplitude variance depends on
the S/N of the amplitude, which is higher when the source is at phase centre. We need
to unwrap the phases to some degree, before we apply logcal. Omnical uses the median
phase within a redundant group. (Zheng et al. 2014) the HERA software currently uses
products of visibilities.

3.4. Convergence
We have already mentioned that lincal can converge to the wrong minimum due to
phase wrapping. But another reason why lincal might converge to a wrong solution are
bad fiducial guesses. Combining both the logarithmic and linearised implementation was
proposed to circumvent this. However, the aforementioned problem of phase wrapping
makes logcal unstable on certain sky configurations, which gives lincal bad initial
guesses. On top of that logcal is noise biased, causing additional issues.

3.5. Non-Redundancy
Finally, all radio telescopes are inherently non-redundant to some degree. There will be
positions errors, and the antenna response patterns vary from antenna to antenna. The
impact of these non-redundancy is currently being researched by the HERA and MWA
collaborations.

4. Solutions and Outlook
The EoR community has been undertaking work to understand redundant calibration

and its limiting factors. Here we have summarised literature to date and shown some
initial results of the impact of the structure of the sky signal. The next step will be the
inclusion of position offsets, and understanding the effects of beam variations.
But the need for some external calibration has motivated us to look at ways to combine
sky models and redundancy. Some initial work into such a hybrid method has been
mentioned in Sievers (2017), and we see this as the way forward in the era of the Square
Kilometre Array.
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