Osculating Varieties of Veronese Varieties and Their Higher Secant Varieties

A. Bernardi, M. V. Catalisano, A. Gimigliano, M. Idà

Abstract. We consider the k-osculating varieties $O_{k,n,d}$ to the (Veronese) d-uple embeddings of \mathbb{P}^n . We study the dimension of their higher secant varieties via inverse systems (apolarity). By associating certain 0-dimensional schemes $Y \subset \mathbb{P}^n$ to $O^s_{k,n,d}$ and by studying their Hilbert functions, we are able, in several cases, to determine whether those secant varieties are defective or not.

1 Introduction

Let us consider the following case of a quite classical problem: given a generic form f of degree d in $R := K[x_0, \ldots, x_n]$, what is the minimum s for which it is possible to write $f = L_1^{d-k}F_1 + \cdots + L_s^{d-k}F_s$, where $L_i \in R_1$ and $F_i \in R_k$? When k = 0 this is known as the "Waring problem for forms" (the original Waring problem is for integers), and it has been solved via results in [AH], (see also [IK, Ge]).

In this generality, the problem is part of what was classically called "finding canonical forms for an (n+1)-ary d-ic" [W]. The following examples illustrate cases where the answer to the problem is not the expected one.

Example 1 One would expect that a generic $f \in (K[x_0, ..., x_4])_3$ could be written as $f = L_1F_1 + L_2F_2$ with $L_i \in R_1$ and $F_i \in R_2$ (by a dimension count), but actually we need three addenda: $f = L_1F_1 + L_2F_2 + L_3F_3$.

Example 2 We cannot write a generic $f \in (K[x_0, ..., x_5])_3$ as $f = L_1F_1 + L_2F_2 + L_3F_3$, but only as $f = L_1F_1 + ... + L_4F_4$.

Example 3 One would expect that a generic $f \in (K[x_0, ..., x_6])_4$ could be written as $f = L_1F_1 + L_2F_2 + L_3F_3$, with $L_i \in R_1$ and $F_i \in R_3$, but not only is it impossible to write f as a sum of three addenda, but is it not even possible to write it as a sum of four. In fact f can only be written as $f = L_1F_1 + \cdots + L_5F_5$.

All the examples above comes from Proposition 3.4.

Our approach to the problem is via the study of the dimension of higher secant varieties $O_{k,n.d}^s$ to $O_{k,n.d}$, the k-th osculating variety to the (Veronese) d-uple embeddings of \mathbb{P}^n , since giving an answer to this geometrical problem implies getting the solution to the problem on forms.

Received by the editors August 6, 2004; revised October 4, 2004.

All authors supported by MIUR. The last two authors supported by the University of Bologna, funds for selected research topics.

AMS subject classification: 14N15, 15A69.

[©] Canadian Mathematical Society 2007.

We would like to point out that those secant varieties can reach a very high defectiveness (see Example 4 after Proposition 4.4), a phenomenon that does not happen for smooth varieties.

We use inverse system (apolarity) to reduce this problem to the study of the postulation of certain 0-dimensional schemes $Y \subset \mathbb{P}^n$; namely we reduce the evaluation of dim $O_{k,n,d}^s$ to the evaluation of dim $|\mathfrak{O}_{\mathbb{P}^n}(d) \otimes \mathfrak{I}_Y|$ where $Y = Z_1 + \cdots + Z_s$ is a 0-dimensional subscheme of \mathbb{P}^n such that, for each $i = 1, \ldots, s$, $(k+1)P_i \subset Z_i \subset (k+2)P_i$ and $l(Z_i) = \binom{k+n}{n} + n$.

We conjecture that the "bad behavior" of Y is always related to the scheme given by the fat points $(k + 1)P_i$ or $Z_i \subset (k + 2)P_i$ not being regular (Conjecture 2). By using this idea, we are able to describe the behavior of the s-th secant variety of $O_{k,n.d}$ for many values of (k, n, d).

In the case of \mathbb{P}^2 , using known results on fat points, we are able to classify all the defective $O_{k,2,d}^s$ for small values of s ($s \le 6$ and s = 9, see Corollary 4.15).

2 Preliminaries

Notation 2.1

- (i) In the following, we set $R := K[x_0, ..., x_n]$, where $K = \bar{K}$ and char K = 0, hence R_d will denote the forms of degree d on \mathbb{P}^n .
- (ii) If $X \subseteq \mathbb{P}^N$ is an irreducible projective variety, an m-fat point on X is the (m-1)-th infinitesimal neighborhood of a smooth point P in X, and it will be denoted by mP (*i.e.*, the scheme mP is defined by the ideal sheaf $\mathfrak{I}^m_{P,X} \subset \mathfrak{O}_X$). Let $\dim X = n$; then mP is a 0-dimensional scheme of length $\binom{m-1+n}{n}$. If Z is the union of the (m-1)-th infinitesimal neighborhoods in X of S generic points of S, we shall say for short that S is union of S generic S-fat points on S.
- (iii) If $X \subseteq \mathbb{P}^N$ is a variety and P is a smooth point on it, the projectivized tangent space to X at P is denoted by $T_{X,P}$.
- (iv) We denote by $\langle U, V \rangle$ both the linear span in a vector space or in a projective space of two linear subspaces U, V.
- (v) If X is a 0-dimensional scheme, we denote by l(X) its length, while its support is denoted by supp X.

Definition 2.2 Let $X \subseteq \mathbb{P}^N$ be a closed irreducible projective variety; the (s-1)-th *higher secant variety* of X is the closure of the union of all linear spaces spanned by s points of X, and it will be denoted by X^s .

Let dim X = n; the expected dimension for X^s is

$$\operatorname{expdim} X^{s} := \min\{N, sn + s - 1\}$$

where the number sn + s - 1 corresponds to ∞^{sn} choices of s points on X, plus ∞^{s-1} choices of a point on the \mathbb{P}^{s-1} spanned by the s points. When this number is too big, we expect that $X^s = \mathbb{P}^N$. Since it is not always the case that X^s has the expected dimension, when dim $X^s < \min\{N, sn + s - 1\}$, X^s is said to be *defective*.

A classical result about secant varieties is Terracini's Lemma (see [Te, A]) which we give here in the following form:

Terracini's Lemma Let X be an irreducible variety in \mathbb{P}^N , and let P_1, \ldots, P_s be s generic points on X. Then, the projectivised tangent space to X^s at a generic point $Q \in \langle P_1, \ldots, P_s \rangle$ is the linear span in \mathbb{P}^N of the tangent spaces T_{X,P_i} to X at P_i , $i = 1, \ldots, s$, hence

$$\dim X^s = \dim \langle T_{X,P_1}, \ldots, T_{X,P_s} \rangle.$$

Corollary 2.3 Let (X, \mathcal{L}) be an integral, polarized scheme. If \mathcal{L} embeds X as a closed scheme in \mathbb{P}^N , then

$$\dim X^s = N - \dim h^0(\mathfrak{I}_{Z|X} \otimes \mathcal{L})$$

where Z is union of s generic 2-fat points in X.

Proof By Terracini's Lemma, $\dim X^s = \dim \langle T_{X,P_1}, \dots, T_{X,P_s} \rangle$, with P_1, \dots, P_s generic points on X. Since X is embedded in $\mathbb{P}^N = \mathbb{P}(H^0(X, \mathcal{L})^*)$, we can view the elements of $H^0(X, \mathcal{L})$ as hyperplanes in \mathbb{P}^N ; the hyperplanes which contain a space T_{X,P_i} correspond to elements in $H^0(\mathfrak{I}_{2P_i,X} \otimes \mathcal{L})$, since they intersect X in a subscheme containing the first infinitesimal neighborhood of P_i . Hence the hyperplanes of \mathbb{P}^N containing the subspace $\langle T_{X,P_1}, \dots, T_{X,P_s} \rangle$ are the sections of $H^0(\mathfrak{I}_{Z,X} \otimes \mathcal{L})$, where Z is the scheme union of the first infinitesimal neighborhoods in X of the points P_i 's.

Definition 2.4 Let $X \subset \mathbb{P}^N$ be a variety, and let $P \in X$ be a smooth point. We define the k-th osculating space to X at P as the linear space generated by (k+1)P, and we denote it by $O_{k,X,P}$; hence $O_{0,X,P} = \{P\}$, and $O_{1,X,P} = T_{X,P}$, the projectivised tangent space to X at P.

Let $X_0 \subset X$ be the dense set of the smooth points where $O_{k,X,P}$ has maximal dimension. The k-th osculating variety to X is defined as

$$O_{k,X} = \overline{\bigcup_{P \in X_0} O_{k,X,P}}.$$

3 Osculating Varieties to Veronese Varieties, and Their Higher Secant Varieties

Notation 3.1

- (i) We will consider here Veronese varieties, *i.e.*, embeddings of \mathbb{P}^n defined by the linear system of all forms of a given degree $d\colon \nu_d\colon \mathbb{P}^n\to \mathbb{P}^N$, where $N=\binom{n+d}{n}-1$. The d-ple Veronese embedding of \mathbb{P}^n , *i.e.*, $\operatorname{Im}\nu_d$, will be denoted by $X_{n,d}$.
- (ii) In the following, we set $O_{k,n,d} := O_{k,X_{n,d}}$, so that the (s-1)-th higher secant variety to the k-th osculating variety to the Veronese variety $X_{n,d}$ will be denoted by $O_{k,n,d}^s$.

Remark 3.2 From now on $\mathbb{P}^N = \mathbb{P}(R_d)$, and a form M will denote, depending on the situation, a vector in R_d or a point in \mathbb{P}^N .

We can view $X_{n,d}$ as given by the map $(\mathbb{P}^n)^* \to \mathbb{P}^N$, where $L \to L^d$, $L \in R_1$. Hence

$$X_{n,d} = \{L^d, L \in R_1\}.$$

Let us assume (and from now on this assumption will be implicit) that $d \ge k$; at the point $P = L^d$ we have (see [Se], [CGG, §1], [BF, §2]:

(*)
$$O_{k,X_{n,d},P} = \{L^{d-k}F, F \in R_k\}.$$

Notice that $O_{k,X_{n,d},P}$ has maximal dimension dim $R_k-1=\binom{k+n}{n}-1$ for all $P\in X_{n,d}$. This can also be seen in the following way: the fat point (k+1)P on $X_{n,d}$ gives independent conditions to the hyperplanes of \mathbb{P}^N , since it gives independent conditions to the forms of degree d in \mathbb{P}^n . Hence, $O_{k,n,d}=\bigcup_{P\in X_{n,d}}O_{k,X_{n,d},P}$.

As we have already noted for k=0, (*) gives $O_{k,X_{n,d},P}=\{P\}=\{L^d\}$, and for k=1, it becomes $O_{k,X_{n,d},P}=T_{X_{n,d},P}=\{L^{d-1}F, F\in R_1\}$. In general, we have:

$$O_{k,n,d} = \{L^{d-k}F, L \in R_1, F \in R_k\}.$$

Hence,

$$O_{k,n,d}^{s} = \{L_1^{d-k}F_1 + \dots + L_s^{d-k}F_s, L_i \in R_1, F_i \in R_k, i = 1,\dots,s\}.$$

In the following we also need to know the tangent space $T_{O_{k,n,d},Q}$ of $O_{k,n,d}$ at the generic point $Q = L^{d-k}F$ (with $L \in R_1, F \in R_k$); one has that the affine cone over $T_{O_{k,n,d},Q}$ is $W = W(L,F) = \langle L^{d-k}R_k, L^{d-k-1}FR_1 \rangle$ (see [CGG, §1], [BF, §2]).

Lemma 3.3 The dimension of $O_{k,n,d}$ is always the expected one, that is,

$$\dim O_{k,n,d} = \min \left\{ N, \ n + \binom{k+n}{n} - 1 \right\}.$$

Proof By Remark 3.2, dim $O_{k,n,d} = \dim W(L,F) - 1$, for a generic choice of L, F, so that we can assume that L does not divide F. When $\mathbb{P}(W) \neq \mathbb{P}^N$, we have

$$\dim W = \dim L^{d-k} R_k + \dim L^{d-k-1} F R_1 - \dim L^{d-k} R_k \cap L^{d-k-1} F R_1$$
$$= \binom{k+n}{n} + (n+1) - 1 = \binom{k+n}{n} + n,$$

since there is only the obvious relation between LR_k and FR_1 , namely LF - FL = 0.

Consider the classic Waring problem for forms, *i.e.*, "if we want to write a generic form of degree d as a sum of powers of linear forms, how many of them are necessary?" The problem is completely solved. In fact, $X_{n,d}^s = \{L_1^d + \dots + L_s^d, L_i \in R_1\}$ (see Remark 3.2), hence the Waring problem is equivalent to the problem of computing $\dim X_{n,d}^s$. By Corollary 2.3 we have that $\dim X_{n,d}^s = N - \dim H^0(\mathfrak{I}_{Z,\mathbb{P}^n} \otimes \mathfrak{O}(d)) = H(Z,d) - 1$, where Z is a scheme of s generic 2-fat points in \mathbb{P}^n , and H(Z,d) is the Hilbert function of Z in degree d. Since H(Z,d) is completely known [AH], we are

More generally, one could ask which is the least s such that a form of degree d can be written as $L_1^{d-k}F_1+\cdots+L_s^{d-k}F_s$, with $L_i\in R_1$ and $F_i\in R_k$ for $i=1,\ldots,s$. Since by Remark 3.2 the variety $O_{k,n,d}^s$ parameterizes exactly the forms in R_d which can be written in this way, this is equivalent to answering the following question for each k, n, d: Find the least s, for each k, n, d, for which $O_{k,n,d}^s=\mathbb{P}^N$.

We are interested in a more complete description of the stratification of the forms of degree d parameterized by those varieties. Namely: Describe all s for which $O_{k,n,d}^s$ is defective, i.e. for which

$$\dim O_{k,n,d}^s < \operatorname{expdim} O_{k,n,d}^s$$
.

Notice that, since $d \ge k$, one has dim $O_{k,n,d} = N$ if and only if $\binom{d+n}{n} \le n + \binom{k+n}{n}$, hence for all such k, n, d and for any s we have dim $O_{k,n,d}^s = \operatorname{expdim} O_{k,n,d}^s = N$.

So we have to study this problem when $\binom{d+n}{n} > n + \binom{k+n}{n}$, $s \ge 2$. It is easy to check that whenever $n \ge 2$ this condition is equivalent to $d \ge k+1$. On the other hand, the case n = 1 (osculating varieties of rational normal curves) can be easily described (all the $O_{k,1,d}^s$'s have the expected dimension, see next section), so the question becomes:

Question Q(k,n,d): For all k, n, d such that $d \ge k+1$, $n \ge 2$, describe all s for which

$$\dim O_{k,n,d}^{s} < \min \left\{ N, s(n + \binom{k+n}{n} - 1) + s - 1 \right\}$$

$$= \min \left\{ \binom{d+n}{n} - 1, s\binom{k+n}{n} + sn - 1 \right\}.$$

Remark 3.4 Terracini's lemma says that dim $O_{k,n,d}^s = N - h^0(\mathfrak{I}_X \otimes \mathfrak{O}_{\mathbb{P}^N}(1))$, where X is a generic union of 2-fat points on $O_{k,n,d}$. We are not able to handle directly the study of $h^0(\mathfrak{I}_X \otimes \mathfrak{O}_{\mathbb{P}^N}(1))$, nevertheless, Terracini's lemma says that the tangent space of $O_{k,n,d}^s$ at a generic point of $\langle P_1, \ldots, P_s \rangle$, $P_i \in O_{k,n,d}$, is the span of the tangent spaces of $O_{k,n,d}$ at P_i . If $T_{O_{k,n,d},P_i} = \mathbb{P}(W_i)$, then

$$\dim O_{k,n,d}^s = \dim \langle T_{O_{k,n,d},P_1}, \dots, T_{O_{k,n,d},P_s} \rangle = \dim \langle W_1, \dots, W_s \rangle - 1.$$

We want to prove, via Macaulay's theory of "inverse systems" [I, IK, Ge, CGG, BF], that for a single W_i , dim $W_i = N + 1 - h^0(\mathbb{P}^n, \mathbb{I}_Z(d))$, where Z = Z(k, n) is a certain 0-dimensional scheme which we will analyze further, and dim $\langle W_1, \ldots, W_s \rangle = N + 1 - h^0(\mathbb{P}^n, \mathbb{I}_Y(d))$, where Y = Y(k, n, s) is a generic union in \mathbb{P}^n of s 0-dimensional schemes isomorphic to Z. Hence,

$$\dim O_{k,n,d}^s = \dim \langle W_1, \dots, W_s \rangle - 1 = N - h^0(\mathbb{P}^n, \mathfrak{I}_Y(d)).$$

So, one strategy in order to answer to the question Q(k, n, d) for a given (k, n, d) is the following:

Step 1: Try to compute directly dim $\langle W_1, \ldots, W_s \rangle$. If this is not possible, then

Step 2: Use the theory of inverse systems (classically apolarity): Compute $W^{\perp} \subset R_d$, with respect to the perfect pairing $\phi : R_d \times R_d \to K$, where:

- W is a vector subspace of R_d ,
- $\phi(f,g) := \sum_{I \in A_{n,d}} f_I g_I$, where $A_{n,d} := \{(i_0,\ldots,i_n) \in \mathbb{N}^{n+1}, \sum_j i_j = d\}$, with any fixed ordering; this gives a monomial basis $\{x_0^{i_0} \cdots x_n^{i_n}\}$ for the vector space R_d ; if $f \in R_d$, $f = \sum_{i_0,\ldots,i_n \in A_{n,d}} f_{i_0,\ldots,i_n} x_0^{i_0} \cdots x_n^{i_n}$, we write for short $f = \sum f_I \mathbf{x}^I$, with $I = (i_0,\ldots,i_n)$.

Then, consider $I_d := W^{\perp} \subset R_d$. It generates an ideal $(I_d) \subset R$. In this way we define the scheme $Z(k, n, d) \subset \mathbb{P}^n$ by setting: $I_{Z(k,n,d)} := (I_d)^{sat}$. We will show that these schemes do not depend on d.

Step 3: Compute the postulation for a generic union of *s* schemes Z(k, n, d) in \mathbb{P}^n .

Recall that
$$[\langle W_1, \dots, W_s \rangle]^{\perp} = W_1^{\perp} \cap \dots \cap W_s^{\perp}$$
.

Lemma 3.5 For all k, n and $d \ge k + 2$, we have:

$$(k+1)O \subset Z(k,n,d) \subset (k+2)O$$
,

where Z(k, n, d) was defined in Remark 3.4, and $O = \operatorname{supp} Z(k, n, d) \in \mathbb{P}^n$.

Proof Let $W = \langle L^{d-k}R_k, L^{d-k-1}FR_1 \rangle \subset R_d$ be the affine cone over $T_{O_{k,n,d},Q}$ at a generic point $Q = L^{d-k}F$, with $L \in R_1$, $F \in R_k$. Without loss of generality we can choose $L = x_0$, so that $W = x_0^{d-k-1}(x_0R_k + FR_1)$, hence $x_0^{d-k}R_k \subset W \subset x_0^{d-k-1}R_{k+1}$. So, for any (k, n, d),

$$(**)$$
 $(x_0^{d-k-1}R_{k+1})^{\perp} \subset W^{\perp} \subset (x_0^{d-k}R_k)^{\perp}.$

Now, denoting by \mathfrak{p} the ideal (x_1, \ldots, x_n) , we have:

$$(x_0^{d-t}R_t)^{\perp} = \langle \{x_0^{i_0} \cdots x_n^{i_n} \mid \Sigma_j i_j = d, i_0 \le d - t - 1\} \rangle$$

= $\langle (\mathfrak{p}^d)_d, x_0(\mathfrak{p}^{d-1})_{d-1}, \dots, x_0^{d-t-1}(\mathfrak{p}^{t+1})_{t+1} \rangle = (\mathfrak{p}^{t+1})_d.$

Now let us view everything in (**) as the degree d part of a homogeneous ideal; we get:

$$(\mathfrak{p}^{k+2})_d \subset (I_{Z(k,n,d)})_d \subset (\mathfrak{p}^{k+1})_d.$$

Let $(x_1, ..., x_n)$ be local coordinates in \mathbb{P}^n around the point O = (1, 0, ..., 0). The above inclusions give, in terms of 0-dimensional schemes in \mathbb{P}^n :

$$(k+1)O \subset Z(k,n,d) \subset (k+2)O.$$

Lemma 3.6 For any k, n, d with $d \ge k + 2$, the length of Z = Z(k, n, d) is:

$$l(Z) = \dim W = \binom{k+n}{n} + n.$$

Proof One (k+2)-fat point always imposes independent conditions to the forms of degree $d \ge k+1$. Since $Z \subset (k+2)O$, then $h^1(\mathcal{I}_Z(d)) = 0$ immediately follows.

Now we have seen that our problem can be translated into a problem of studying certain schemes $Z(k, n, d) \subset \mathbb{P}^n$. We want to check that these schemes are actually the same for all $d \ge k + 2$, say Z(k, n, d) = Z(k, n).

Lemma 3.7 For any k, n and $d \ge k + 2$, we have Z(k, n, d) = Z(k, n, k + 2). Henceforth we will denote Z(k, n) = Z(k, n, d), for all $d \ge k + 2$.

Proof By the previous lemmata we already know that Z(k, n, d) and Z(k, n, k+2) have the same support and the same length, hence it is enough to show that $Z(k, n, d) \subset Z(k, n, k+2)$ (as schemes) in order to conclude. This will be done if we check that $I(Z(k, n, k+2))_d \subset I(Z(k, n, d))_d$. In fact, since both ideals are generated in degrees $\leq d$, this will imply that $I(Z(k, n, k+2))_j \subset I(Z(k, n, d))_j$, $\forall j \geq d$, hence the inclusion will hold also between the two saturations, implying $Z(k, n, d) \subset Z(k, n, k+2)$.

Let $f \in I(Z(k,n,k+2))_d$, then $f = h_1g_1 + \cdots + h_rg_r$, where $h_j \in R_{d-k-2}$ and $g_j \in I(Z(k,n,k+2))_{k+2}$. Since $I(Z(k,n,d))_d$ is the perpendicular to $W = \langle L^{d-k}R_k, L^{d-k-1}FR_1 \rangle$, it is enough to check that $h_jg_j \in W^\perp$, $j=1,\ldots,r$. Without loss of generality we can assume $L=x_0$; hence, since $g_j \in \langle L^2R_k, LFR_1 \rangle^\perp$, $g_j = x_0g' + g''$, with $g', g'' \in K[x_1, \ldots, x_n]$ and $g' \in (FR_1)^\perp$. It will be enough to prove $x_n^{i_0} \cdots x_n^{i_n}g_j = x_0^{i_0+1} \cdots x_n^{i_n}g' + x_0^{i_0} \cdots x_n^{i_n}g'' \in W^\perp$, $\forall i_0, \ldots, i_n$ such that $i_0 + \cdots + i_n = d - k - 2$. It is clear that $x_0^{i_0} \cdots x_n^{i_n}g'' \in W^\perp$, since $i_0 \leq d - k - 2$. On the other hand, $x_0^{i_0+1} \cdots x_n^{i_n}g' \in (x_0^{d-k}R_k)^\perp$ again by looking at the degree of x_0 , while $x_0^{i_0+1} \cdots x_n^{i_n}g' \in (x_0^{d-k-1}FR_1)^\perp$ since $g' \in (FR_1)^\perp$.

Remark 3.8 From the lemmata above it follows that in order to study the dimension of $O_{k,n,d}^s$ for $d \ge k+2$, we only need to study the postulation of unions of schemes Z(k,n). For d=k+1, we will work directly on W, see Proposition 4.4.

What we have is a sort of "generalized Terracini's lemma" for osculating varieties to Veronese varieties, since the formula dim $O_{k,n,d}^s = N - h^0(\mathfrak{I}_Y(d))$ reduces to the one in Corollary 2.3 for k = 0. Instead of studying 2-fat points on $O_{k,n,d}$ (see Remark 3.4), we can study the schemes $Y \subset \mathbb{P}^n$.

Notation 3.9 Let $Y \subset \mathbb{P}^n$ be a 0-dimensional scheme; we say that Y is *regular* in degree d, $d \geq 0$, if the restriction map $\rho \colon H^0(\mathfrak{O}_{\mathbb{P}^n}(d)) \to H^0(\mathfrak{O}_Y(d))$ has maximal rank, *i.e.*, if $h^0(\mathfrak{I}_Y(d)) \cdot h^1(\mathfrak{I}_Y(d)) = 0$. We set $\exp h^0(\mathfrak{I}_Y(d)) := \max\{0, \binom{d+n}{n} - l(Y)\}$; hence to say that Y is regular in degree d amounts to saying that $h^0(\mathfrak{I}_Y(d)) = \exp h^0(\mathfrak{I}_Y(d))$.

Since we always have $h^0(\mathfrak{I}_Y(d)) \ge \exp h^0(\mathfrak{I}_Y(d))$, we write

$$h^0(\mathfrak{I}_Y(d)) = \exp h^0(\mathfrak{I}_Y(d)) + \delta,$$

where $\delta = \delta(Y,d)$. Hence, whenever $\binom{d+n}{n} - l(Y) \geq 0$, we have $\delta = h^1(\mathfrak{I}_Y(d))$. While if $\binom{d+n}{n} - l(Y) \leq 0$, $\delta = \binom{d+n}{n} - l(Y) + h^1(\mathfrak{I}_Y(d))$. In any case, by setting $\exp h^1(\mathfrak{I}_Y(d)) := \max\{0, l(Y) - \binom{d+n}{n}\}$, we get $h^1(\mathfrak{I}_Y(d)) = \exp h^1(\mathfrak{I}_Y(d)) + \delta$.

Remark 3.10 For any k, n, d such that $d \ge k + 1$, let $Y = Y(k, n, s) \subset \mathbb{P}^n$ be the 0-dimensional scheme defined in Remark 3.4 for Z = Z(k, n), and $\delta = \delta(Y, d)$. Then

$$\dim O_{k,n,d}^s = \operatorname{expdim} O_{k,n,d}^s - \delta.$$

In particular, dim $O_{k,n,d}^s = \operatorname{expdim} O_{k,n,d}^s$ if and only if

$$h^{0}(\mathfrak{I}_{Y}(d)) = \begin{cases} 0 & \text{when } \binom{d+n}{n} \leq s \binom{k+n}{n} + sn, \\ N+1-l(Y) = \binom{d+n}{n} - s \binom{k+n}{n} - sn^{\dagger} & \text{when } \binom{d+n}{n} \geq s \binom{k+n}{n} + sn. \end{cases}$$

$†$
(i.e., $h^{1}(\mathfrak{I}_{Y}(d)) = 0$)

4 A Few Results and a Conjecture

First let us consider the cases where the question Q(k, n, d) has already been answered.

Case Q(k, 1, d)

In this case every $O_{k,1,d}^s$, with $d \ge k+2$, has the expected dimension; in fact here Z(k,1)=(k+2)O, and the scheme $Y=\{s\ (k+2)\text{-fat points}\}\subset \mathbb{P}^1$ is regular in any degree d. Notice that for d=k+1 we trivially have $O_{k,1,k+1}=\mathbb{P}^N$.

Case Q(1, n, d)

Here the variety $O_{1,n,d}$ is the tangential variety to the Veronese $X_{n,d}$. It is shown in [CGG] that Z(1, n) is a (2, 3)-scheme, *i.e.*, the intersection in \mathbb{P}^n of a 3-fat point with a double line. This is easy to see, *e.g.*, by choosing coordinates so that $L = x_0, F = x_1$.

The postulation of generic unions of such schemes in \mathbb{P}^n , and hence the defectiveness of $O_{1,n,d}^s$, has been studied. Moreover, a conjecture regarding all defective cases is stated there:

Conjecture 1 ([CGG]) $O_{1,n,d}^s$ is not defective, except in the following cases:

- (1) d = 2 and $n \ge 2s, s \ge 2$;
- (2) d = 3 and n = s = 2, 3, 4.

In [CGG] the conjecture is proved for $s \le 5$ (any d, n), for $s \ge \frac{1}{3} \binom{n+2}{2} + 1$ (any (d, n); for d = 2 (any s, n), for $d \ge 3$ and $n \ge s + 1$, for $d \ge 4$ and s = n. In [B], the conjecture is proved for n = 2, 3 (any s, d).

 $\mathbf{Q}(\mathbf{2},\mathbf{2},\mathbf{d})$. In [BF] it is proved that for any $(s,d) \neq (2,4)$, $O_{2,2,d}^s$ has the expected dimension.

Now we are going to prove some other cases. The following (quite immediate) lemma describes what can be deduced about the postulation of the scheme Y from information on fat points:

Lemma 4.1 Let P_1, \ldots, P_s be generic points in \mathbb{P}^n , and set $X := (k+1)P_1 \cup \cdots \cup P_s$ $(k+1)P_s$, $T := (k+2)P_1 \cup \cdots \cup (k+2)P_s$. Now let Z_i be a 0-dimensional scheme supported on P_i , $(k+1)P_i \subset Z_i \subset (k+2)P_i$, with $l(Z_i) = l((k+1)P_i) + n$ for each $i = 1, \ldots, s$, and set $Y := Z_1 \cup \cdots \cup Z_s$. Then

- Y is regular in degree d if one of the following holds:

 - (a) $h^{1}(\mathfrak{I}_{T}(d)) = 0$ (hence $\binom{d+n}{n} \geq s\binom{k+n+1}{n}$). (b) $h^{0}(\mathfrak{I}_{X}(d)) = 0$ (hence $\binom{d+n}{n} \leq s\binom{k+n}{n}$).
- (ii) Y is not regular in degree d, with defect δ , if one of the following holds:
 - (c) $h^1(\mathfrak{I}_X(d)) > \exp h^1(\mathfrak{I}_Y(d)) = \max\{0, l(Y) \binom{d+n}{n}\}; \text{ in this case }$ $\delta \geq h^1(\mathfrak{I}_X(d)) - \exp h^1(\mathfrak{I}_Y(d)).$
 - (d) $h^0(\mathfrak{I}_T(d)) > \exp h^0(\mathfrak{I}_Y(d)) = \max\{0, {d+n \choose n} l(Y)\};$ in this case $\delta \geq h^0(\mathfrak{I}_T(d)) \exp h^0(\mathfrak{I}_Y(d)).$

Proof The statement follows by considering the cohomology of the exact sequences:

$$egin{aligned} 0 & o \mathbb{J}_T(d) o \mathbb{J}_Y(d) o \mathbb{J}_{Y,T}(d) o 0, \ 0 & o \mathbb{J}_Y(d) o \mathbb{J}_X(d) o \mathbb{J}_{X,Y}(d) o 0, \end{aligned}$$

where we have $h^1(\mathfrak{I}_{Y,T}(d)) = h^1(\mathfrak{I}_{X,Y}(d)) = 0$, since those two sheaves are supported on a 0-dimensional scheme.

Lemma 4.2 Let $s \ge n+2$ and $d < k+1+2\frac{k+1}{n}$. Then $O_{k,n,d}^s$ is not defective and $O_{k,n,d}^s = \mathbb{P}^N$.

Proof Let $Y \subset \mathbb{P}^n$ be as in Remark 3.4. We have to prove that $h^0(\mathfrak{I}_Y(d)) = 0$ in our hypotheses.

Let P_1, \ldots, P_s be the support of Y. We can always choose a rational normal curve $C \subset \mathbb{P}^n$ containing n+2 of the P_i 's. For any hypersurface F given by a section of $J_Y(d)$, since nd < (k+1)(n+2), by Bezout's theorem we get $C \subset F$. But we can always find a rational normal curve containing n + 3 points in \mathbb{P}^n , so this would imply that any $P \in \mathbb{P}^n$ is on F, *i.e.*, $\mathfrak{I}_Y(d) = 0$.

Lemma 4.3 Assume s = n + 1. If $d \le k + 1 + \frac{k+2}{n}$, then $O_{k,n,d}^s = \mathbb{P}^N$.

Proof Since $d \ge k+1$, we can set d = k+j with j > 0. Let $W_i = \langle L_i^j R_k, L_i^{j-1} F_i R_1 \rangle$ with $F_i \in R_k$ for i = 1, ..., s. Since s = n + 1, without loss of generality we can assume that $L_1 = x_0, ..., L_{n+1} = x_n$.

Hence $W_1 + \cdots + W_s$ contains $U := x_0^j R_k + \cdots + x_n^j R_k$. Now in U the missing monomials are $x_0^{i_0} \cdots x_n^{i_n}$ with $i_l \leq j-1$ for each $l=0,\ldots,n$, and $d=\deg(x_0^{i_0} \cdots x_n^{i_n}) \leq$ (n+1)(j-1). Hence if $d \ge (n+1)(j-1)$, i.e., $d < k+1+\frac{k+1}{n}$, we get $U = R_d$.

If d = (n+1)(j-1), the only missing monomial in U is $x_0^{j-1} \cdots x_n^{j-1}$, hence it is enough to choose one of the F_i 's in a proper way to get $W_1 + \cdots + W_s = R_d$. If d = (n+1)(j-1) - 1, i.e., $d = k+1 + \frac{k+2}{n}$, the n+1 missing monomials in U are $x_0^{j-1} \cdots x_i^{j-2} \cdots x_n^{j-1}$ with $i = 0, \dots, n$ and again it is possible to choose the F_i 's so that $W_1 + \cdots + W_s = R_d$.

Q(k, n, k + 1). The description for k = 1 given in [CGG], together with following proposition, describe this case completely.

Proposition 4.4 If $s \ge 2$, $k \ge 2$ and d = k + 1, consider the secant variety $O_{k,n,d}^s \subset$ \mathbb{P}^N :

- (i) If $s \le n-1$ and its expected dimension is $s\binom{k+n}{n} + sn-1$, then $O^s_{k,n,k+1}$ is defective with defect $\delta = s^2 - s + s \binom{k+n}{n} + \binom{n-s+d}{d} - N$.
- (ii) If $s \le n-1$ and the expected dimension is $N = \binom{d+n}{n} 1$, then
 - (a) $O_{d-1,n,d}^s$ is defective with defect $\delta=\binom{n-s+d}{d}-s(n-s+1)$ if $s<\frac{1}{d}\binom{n-s+d}{d-1}$;
 - (b) $O_{d-1,n,d}^s = \mathbb{P}^N \text{ if } s \ge \frac{1}{d} \binom{n-s+d}{d-1}$.
- (iii) If $s \ge n$ then $O_{d-1}^s {}_{n,d} = \mathbb{P}^N$.

Proof (i) We have that $W = W_1 + \cdots + W_s = \langle x_0 R_k, \dots, x_{s-1} R_k; F_1 R_1, \dots, F_s R_1 \rangle$ in R_d . We can suppose that the F_i 's, $i=1,\ldots,s$ are generic in $K[x_s,\ldots,x_n]_d:=S_d$, and we have that $\frac{R_d}{W}\cong \frac{S_d}{(F_1,\ldots,F_s)_d}$. Then, since $(F_1,\ldots,F_s)_d=\langle F_1S_1,\ldots,F_sS_1\rangle$ and the F_i 's are generic, $\dim(F_1, \ldots, F_s)_d = \min\left\{\binom{n-s+d}{d}, s(n-s+1)\right\}$.

From this, and from our hypothesis about the expected dimension, we immediately get that dim $W = N - {n-s+d \choose d} + s(n-s+1)$, and hence that the defect is

- $\delta = s^2 s + s \binom{k+n}{n} + \binom{n-s+d}{d} N.$ (ii) If $s \binom{n+d-1}{n} + ns \ge \binom{n+d}{n}$, we expect that $O_{d-1,n,d}^s = \mathbb{P}^N$. Proceeding as in the previous case, in order to compute $\dim W$ we can actually consider just the vector space $\langle F_1S_1, \ldots, F_sS_1 \rangle$ whose dimension is min $\left\{ \binom{n-s+d}{d}, s(n-s+1) \right\}$; so we get that (a) If $s(n-s+1) < {n-s+d \choose d}$, then $O_{d-1,n,d}^s$ is defective. This happens if and only if $s < \frac{1}{d} \binom{n-s+d}{d-1}$, in this case the defect is $\delta = \binom{n-s+d}{d} - s(n-s+1)$. (b) If $s(n-s+1) \geq {n-s+d \choose d}$, then $O_{d-1,n,d}^s = \mathbb{P}^N$ (for example this is always true for $d \ge n$);
- (iii) It suffices to prove that $O_{d-1,n,d}^s = \mathbb{P}^N$ for s = n. If s = n and d = k+1, the subspace $W_1 + \cdots + W_s$ can be written as $\langle x_0 R_k, F_1 R_1, \ldots, x_{n-1} R_k, F_n R_1 \rangle$, which turns out to be equal to $\langle x_0 R_k, \dots, x_{n-1} R_k, x_n^{k+1} \rangle = R_{k+1}$ so $O_{d-1,n,d}^n = \mathbb{P}^N$.

Example 4 (The osculating fourth variety of $X_{6,5} \subset \mathbb{P}^{461}$) Let us consider the secant varieties of the fourth osculating variety $O_{4,6,5}$. We begin with $O_{4,6,5}^2$ (Proposition 4.4(i)) and we expect that dim $O_{4,6,5}^2 = 431$, but we get that the defect is $\delta = 86$ so that dim $O_{4,6,5}^2 = 345$.

When s=3,4 (Proposition 4.4(ii)), $\delta=44$ for $O_{4,6,5}^3$, while $\delta=9$ for $O_{4,6,5}^4$. Eventually, $O_{4,6,5}^5=\mathbb{P}^{461}$ So, even if we expect that $O_{4,6,5}^3$ should fill up \mathbb{P}^N , even the 4-secant variety does not.

In terms of forms we get that we can write a generic $f \in (K[x_0, ..., x_6])_5$ neither as $f = L_1F_1 + L_2F_2 + L_3F_3$ with $L_i \in R_1$ and $F_i \in R_4$ (as we expect), nor as $f = L_1F_1 + \cdots + L_4F_4$, but we need five addenda.

Case Q(k, 2, k+2)

Corollary 4.5 Assume d = k + 2 and n = 2. Then $O_{k,2,k+2}^s$ is not defective for $s \ge 3$ and $k \ge 1$, and $O_{k,2,k+2}^s$ is defective for s = 2 and $k \ge 1$.

Proof By Lemma 4.2 and Lemma 4.3, $O_{k,2,k+2}^s$ is not defective for $s \ge 3$ and $d \ge 3$, *i.e.*, $k \ge 2$. The case k = 1 is already known by [B]. For s = 2 and $k \ge 1$, let $Y = Y(k,2) \subset \mathbb{P}^2$ be the 0-dimensional scheme defined in Remark 3.4. It is easy to check that $\exp h^0(\mathfrak{I}_Y(d)) = \exp h^0(\mathfrak{I}_T(d)) = 0$, T denoting the generic union of two (k+2)-fat points in \mathbb{P}^2 . Since T is not regular in degree d = k+2 for any $k \ge 1$, we conclude by Lemma 4.1(ii)(d) that $O_{k,n,k+2}^s$ is defective with defect $\ge h^0(\mathfrak{I}_T(d)) = 1$ (the only section is given by the (k+2)-ple line through the two points).

Case Q(k, 3, k + 2)

Corollary 4.6 Assume d = k + 2 and n = 3. Then $O_{k,3,k+2}^s = \mathbb{P}^N$ for $s \ge n + 1 = 4$ and $k \ge 1$, while $O_{k,3,k+2}^s$ is defective for $s \le 3$.

Proof The case $s \le 3$ will be treated in Proposition 4.10.

If s=4 and k=1, $O_{1,3,3}^4=\mathbb{P}^N$ [CGG, (4.6)]. If s=4 and k=2, we have $O_{2,3,4}^4=\mathbb{P}^N$ by Lemma 4.3. If $s\geq 5$ and $k\geq 1$, or s=4 and $k\geq 3$, the thesis follows by Lemmata 4.2 and 4.3, respectively.

Case Q(k, 4, k + 2)

Corollary 4.7 Assume d = k + 2 and n = 4. Then $O_{k,4,k+2}^s = \mathbb{P}^N$ for $s \ge 5$ and $k \ge 1$, while $O_{k,4,k+2}^s$ is defective for $s \le 4$.

Proof The case $s \le 4$ will be given by Proposition 4.10.

If $s \ge 5$ and k = 1, $O_{1,4,3}^s = \mathbb{P}^N$ [CGG, (4.6),(4.5)]. If s = 5 and k = 2, 3, we have $O_{k,4,k+2}^5 = \mathbb{P}^N$ by Lemma 4.3. If $s \ge n + 2 = 6$ and $k \ge 2$, or s = 5 and $k \ge 4$, the thesis follows by Lemmata 4.2 and 4.3, respectively.

Case Q(k, 2, k + 3)

Corollary 4.8 Assume d = k + 3 and n = 2. Then

- (i) for s = 2 and k = 1, 2, dim $O_{k,2,k+3}^2 = s\binom{k+2}{2} + 2s 1$ (the expected one);
- (ii) for s = 2 and $k \ge 3$, $O_{k,2,k+3}^2$ is defective;
- (iii) for $s \ge 3$ and $k \ge 1$, $O_{k,2,k+3}^s = \mathbb{P}^N$.

Proof If $s \ge n+2 = 4$ and $k \ge 2$, or s = 3 and $k \ge 4$, the thesis follows by Lemmata 4.2 and 4.3, respectively. If $s \ge 3$ and k = 1, $O_{1,2,k+3}^s = \mathbb{P}^N$ [CGG, (4.5)]. If s = 3and k=2,3, we have $O_{k,2,k+3}^2=\mathbb{P}^N$ by Lemma 4.3. If s=2 and k=1, or s=2and k=2, $O_{k,2,k+3}^2 \neq \mathbb{P}^N$ is not defective, by [CGG, (4.6)] and [BF, Theorem 1], respectively. If s = 2 and $k \ge 3$, then, in the notations of Lemma 4.1, we have for $k = 3, 4 \exp h^1(\mathfrak{I}_X(d)) = \exp h^1(\mathfrak{I}_Y(d)) = 0$, and the union X of 2 (k+1)-fat points is not regular in degree d = k + 3. For $k \ge 5$ exp $h^0(\mathfrak{I}_Y(d)) = \exp h^0(\mathfrak{I}_T(d)) = 0$, and the union T of 2 (k + 2)-fat points is not regular in degree d = k + 3. so we conclude by Lemma 4.1(c) and (d).

For $s \le n + 1$, we have several partial results:

Proposition 4.9 If $s \le n+1$, $d \ge 2k+1$ and $k \ge 2$, then $O_{k,n,d}^s$ is regular.

Proof We have to study the dimension of the vector space $W_1 + \cdots + W_s =$ $\langle L_1^{d-k}R_k, L_1^{d-k-1}F_1R_1, \dots, L_s^{d-k}R_k, L_s^{d-k-1}F_sR_1 \rangle$, where L_1, \dots, L_s are generic in R_1 and F_1, \ldots, F_s are generic in R_k . Since $s \leq n+1$, without loss of generality we may suppose $L_i = x_{i-1}$ for i = 1, ..., s. Since $d \ge 2k + 1$, for $\beta = d - k \ge 3$, the vector space $W_1 + \cdots + W_s$ can be written as $\langle x_0^{\beta} R_k, x_0^{\beta-1} F_1 R_1, \dots, x_{s-1}^{\beta} R_k, x_{s-1}^{\beta-1} F_s R_1 \rangle$. If we show that for a particular choice of $F_1, \ldots, F_s \in R_k$ the dimension of W_1 + $\cdots + W_s = \operatorname{expdim}(O_{k,n,d}^s) + 1$ we can conclude by semi-continuity that $O_{k,n,d}^s$ has the expected dimension. Let us consider the case $F_i = x_i x_{i+1} \tilde{F}_i$ for $i = 1, \dots, s-2$, $F_{s-1} = x_{s-1}x_0\widetilde{F}_{s-1}$ and $F_s = x_0x_1\widetilde{F}_s$, where the \widetilde{F}_i 's are generic forms in R_{k-2} , $j=1,\ldots,n+1$. Let $\langle x_i^{\beta}R_k\rangle=:A_i$ and $\langle x_i^{\beta-1}F_{i+1}R_1\rangle=:A_i',\ i=0,\ldots,s-1;$ then we get $A'_i = \langle x_i^{\beta-1} x_{i+1} x_{i+2} \widetilde{F}_{i+1} R_1 \rangle$, i = 0, ..., s - 3; $A'_{s-2} = \langle x_{s-2}^{\beta-1} x_{s-1} x_0 \widetilde{F}_{s-1} R_1 \rangle$ and $A'_{s-1} = \langle x_{s-1}^{\beta-1} x_0 x_1 \widetilde{F}_s R_1 \rangle$. Now $W_1 + \cdots + W_s = \sum_{j=0}^{s-1} A_j + \sum_{j=0}^{s-1} A'_j$. We can easily notice that $A'_i \cap (\sum_{j=0}^{s-1} A_j + \sum_{j=0, j \neq i}^{s-1} A_j) = A_i \cap (\sum_{j=0, j \neq i}^{s-1} A_j + \sum_{j=0}^{s-1} A'_j) = A_i \cap A'_i = \sum_{j=0}^{s-1} A_j + \sum_{j=0}^{s-1} A_j + \sum_{j=0}^{s-1} A'_j + \sum_{j=0}^{s-1} A'_j = \sum_{j=0, j \neq i}^{s-1} A_j + \sum_{j=0}^{s-1} A'_j = \sum_{j=0, j \neq i}^{s-1} A_j + \sum_{j=0}^{s-1} A'_j = \sum_{j=0, j \neq i}^{s-1} A_j + \sum_{j=0}^{s-1} A'_j = \sum_{j=0, j \neq i}^{s-1} A_j + \sum_{j=0, j \neq i}^{s-1} A'_j = \sum_{j=0, j \neq i}^{s-1} A_j + \sum_{j=0}^{s-1} A'_j = \sum_{j=0}^{s-1} A_j + \sum_{j=0}^{s-1} A'_j = \sum_{j=0, j \neq i}^{s-1} A_j + \sum_{j=0, j \neq i}^{s-1} A'_j = \sum_{j=0, j \neq i}^{s-1} A_j + \sum_{j=0, j \neq i}^{s-1} A'_j = \sum_{j=0, j \neq i}^{s-1} A_j + \sum_{j=0, j \neq i}^{s-1} A'_j = \sum_{j=0}^{s-1} A_j + \sum_{j=0, j \neq i}^{s-1} A'_j = \sum_{j=0, j \neq i}^{s-1} A'_j = \sum_{j=0, j \neq i}^{s-1} A_j + \sum_{j=0, j \neq i}^{s-1} A'_j = \sum_{j=0, j \neq$ $\langle x_i^{\beta} R_k \rangle \cap \langle x_i^{\beta-1} x_{i+1} x_{i+2} \widetilde{F}_{i+1} R_1 \rangle = \langle x_i^{\beta} x_{i+1} x_{i+2} \widetilde{F}_{i+1} \rangle$ for any fixed $i = 0, \dots, s-3$ (analogously if i = s - 2, s - 1). So we have found exactly s relations and we can conclude that $\dim(W_1 + \dots + W_s) = \dim(\sum_{j=0}^{s-1} A_j) + \dim(\sum_{j=0}^{s-1} A_j') - s = s\binom{k+n}{n} + s(n+1) - s$, which is exactly the expected dimension.

Proposition 4.10 If $s \le n$ and $k + 2 \le d \le 2k$, then $O_{k,n,d}^s$ is defective with defect δ such that

- (i) $\delta \geq \binom{n-s+d}{d}$ if the expected dimension is $\binom{d+n}{n} 1$; (ii) $\delta \geq \binom{s}{2} \binom{2k-d+n}{n}$ if the expected dimension is $s\binom{k+n}{n} + sn 1$.

Proof Let $\beta:=d-k\geq 2$. We can rewrite the vector space $W_1+\cdots+W_s$ as follows: $\langle x_0^\beta R_k, x_0^{\beta-1} F_1 R_1, \ldots, x_{s-1}^{\beta} R_k, x_{s-1}^{\beta-1} F_s R_1 \rangle$.

- (i) We can observe that $K[x_s, \dots, x_n]_d \cap (W_1 + \dots + W_s) = \{0\}$, so if we expect that $O_{k,n,d}^s = \mathbb{P}^N$ we get a defect $\delta \geq \binom{n-s+d}{d}$.
- (ii) Suppose now that $s \left[\binom{k+n}{n} + n \right] < \binom{d+n}{n}$. If $O_{k,n,d}^s$ were to have the expected dimension we would not be able to find more relations among the W_i 's other than $x_i^\beta F_{i+1} \in \langle x_i^\beta R_k \rangle \cap \langle x_i^{\beta-1} F_{i+1} R_1 \rangle$, for $i=0,\ldots,s-1$ (as it happens in Proposition 4.9). But it is easy to see that $x_i^\beta x_j^\beta F \in \langle x_i^\beta R_k \rangle \cap \langle x_j^\beta R_k \rangle$ with $i \neq j$ and $F \in R_{k-\beta}$. We have exactly $\binom{s}{2}$ such terms for any choice of $F \in R_{k-\beta}$. We can also suppose that the $F_i \in R_k$ which appear in $W_1 + \cdots + W_s$ are different from $x_j^\beta F$ for any $F \in R_{k-\beta}$ and $j=0,\ldots,s-1$, because F_1,\ldots,F_s are generic forms of R_k . Then we can be sure that the form $x_i^\beta x_j^\beta F$ belonging to $\langle x_i^\beta R_k \rangle \cap \langle x_j^\beta R_k \rangle$ is not one of the $x_i^\beta F_{i+1}$ which belong to $\langle x_i^\beta R_k \rangle \cap \langle x_i^{\beta-1} F_{i+1} R_1 \rangle$. Now $\dim(R_{k-\beta}) = \binom{k-\beta+n}{n}$ so we can find $\binom{s}{2} \binom{k-\beta+n}{n}$ independent forms that give defectiveness. Hence in case $s \left[\binom{k+n}{n} + n \right] < \binom{d+n}{n}$ we have $\dim(O_{k,n,d}^s) \leq \exp\dim \binom{s}{2} \binom{k-\beta+n}{n} = \exp\dim \binom{s}{2} \binom{2k-d+n}{n}$.

Proposition 4.11 If s = n + 1, $k + 2 \le d \le 2k$ and

$$\operatorname{expdim}(O_{k,n,d}^{n+1}) = (n+1)(\binom{k+n}{n} + n) - 1,$$

then $O_{k,n,d}^{n+1}$ is defective with defect $\delta \geq \binom{n+1}{2} \binom{2k-d+n}{n}$.

Proof The proof of this fact is the same as Proposition 4.10(ii).

Proposition 4.12 If s = n+1, $n \ge \frac{k+2}{d-k-2}$, $k+2 < d \le 2k$ and $\text{expdim}(O_{k,n,d}^{n+1}) = N$, then $O_{k,n,d}^{n+1}$ is defective with defect $\delta \ge \binom{(n+1)(d-k-1)-(d+1)}{n}$.

Proof If $k+2 < d \le 2k$, then $2 < \beta := d-k \le k$ and we have to study the dimension of $W_1 + \cdots + W_{n+1} = \langle x_0^\beta R_k, x_0^{\beta-1} F_1 R_1, \ldots, x_n^\beta R_k, x_n^{\beta-1} F_{n+1} R_1 \rangle$. It is easy to see that a monomial of the form $f = x_0^{\beta_0} \cdots x_n^{\beta_n}$ with $\sum_{i=0}^n \beta_i = d$ and $0 \le \beta_i \le \beta - 2$ for all $i \in \{0, \ldots, n\}$ is a form of degree d which does not belong to $W_1 + \cdots + W_{n+1}$. In fact f can be written as $x_0^{d-(\gamma_0+k+2)} \cdots x_n^{d-(\gamma_n+k+2)}$ with $\sum_{i=0}^n \gamma_i = nd - (n+1)(k+2)$ and $\gamma_i \ge 0$ for all $i = 0, \ldots, n$ and these forms are exactly $\binom{n+(n+1)(d-k-2)-d}{n} = \binom{(n+1)(d-k-1)-(d+1)}{n}$. In order for these forms to exist, one needs that $(n+1)(d-k-2)-d \ge 0$, *i.e.*, that $n \ge \frac{k+2}{d-k-2}$. This is sufficient to show that if we expect that $O_{k,n,d}^{n+1} = \mathbb{P}^N$, and if $n \ge \frac{k+2}{d-k-2}$ and $k+2 < d \le 2k$, then $O_{k,n,d}^{n+1}$ is defective.

Let us note that what we just saw is not sufficient to say that the defect δ is exactly equal to $\binom{(n+1)(d-k-1)-(d+1)}{n}$, because in $R_d \setminus \langle W_1 + \cdots W_{n+1} \rangle$ we can find also monomials like $x_0^{\beta_0} \cdots x_n^{\beta_n}$ with $\sum_{i=0}^n \beta_i = d$, at least one $\beta_i = \beta - 1$ and each of the others $\beta_j \leq \beta - 2$. Hence $\delta \geq \binom{(n+1)(d-k-1)-(d+1)}{n}$.

All the results on defectiveness lead us to formulate the following:

Conjecture 2 $O_{k,n,d}^s$ is defective only if Y is as in Lemma 4.1(c) or (d).

The conjecture amounts to saying that the defect of *Y* can only occur if defect of the fat points schemes *X* or *T* imposes it.

Remark 4.13 In many examples the defect of Y is exactly the one imposed by X or by T, *i.e.*, the inequalities on δ in Lemma 4.1 are equalities. But this is not always the case. For example if we consider the variety $O_{4,5,6}^2$ (see Example 4) here, we get that the corresponding scheme Y has defect 86 in degree 5. Here we have that X is given by two 5-fat points in \mathbb{P}^6 , and it is easy to check that $h^0(\mathfrak{I}_X(5)) = 126$ (all quintics through X can be viewed as cones over a quintic of a \mathbb{P}^4), so that its defect is 84. Hence, even if Y is "forced" to be defective by X, its defect is bigger, *i.e.*, Y should impose on quintics 12 conditions more than X does, but it imposes only ten conditions more.

It is easy to find similar behavior if d = k + 1, for instance for n = 8, s = 3, d = k + 1 = 2 or n = 10, s = 3, d = k + 1 = 2.

In the case of \mathbb{P}^2 , we are able to prove our conjecture for small values of *s*:

Theorem 4.14 Let X, Y be as above, n = 2 and s = 3, 4, 5, 6 or 9. then

$$H(Y,d) = \min\left\{H(X,d) + 2s, \binom{d+2}{2}\right\}.$$

The proof uses mainly the method of Horace on the scheme *Y* [Hi]. For a detailed proof, see [Be, BC].

Notice that this result implies that *Y* can be defective only when *X* is.

In general, it is quite a hard problem to determine, and even to formulate a conjecture upon, the postulation for a union of s m-fat points in \mathbb{P}^n .

For what concerns \mathbb{P}^2 , there is a conjecture for the postulation of a generic union of fat points, [Ha]. For a generic union $A \subset \mathbb{P}^2$ of s m-fat points with $s \ge 10$, the conjecture says that A is regular in any degree d. This has been proved for $m \le 20$ [CCMO]. For $s \le 9$ all the defective cases are known (see [Ha] or [CCMO] for a complete list).

This allows us to list all the defective cases for some values of *s* (for related results see also [BF2]):

Corollary 4.15 Let n = 2, $s \le 6$ or s = 9. Then $O_{k,2,d}^s$ is defective if and only if

- (i) s = 2, k = 1 and d = 3, or k > 2 and k + 2 < d < 2k,
- (ii) $s = 3, \frac{3k+5}{2} \le d \le 2k,$
- (iii) $s = 5, 2k + 4 \le d \le \frac{5k+3}{2},$
- (iv) s = 6, $k \equiv 2 \pmod{5}$ and $\frac{12(k+1)}{5} \le d \le \frac{5k+3}{2}$, or $k \not\equiv 2 \pmod{5}$ and $\frac{12(k+1)}{5} + 1 \le d \le \frac{5k+3}{2}$.

The case s = 2 is given by Corollary 4.8 and Propositions 4.4, 4.9 and 4.10, while the other cases follow from Theorem 4.14 and the classification in [CCMO]. Notice that there are no defective cases for s = 4 or s = 9. In case s = 2 defectiveness is forced exactly by defectiveness of X or T.

References

[A]	B. Ådlandsvik, Varieties with an extremal number of degenerate higher secant varieties. J. Reine
	Angew. Math. 392 (1988), 16–26.

[AH] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables. J. Algebraic Geom. 4(1995), no. 2, 201-222.

[B] E. Ballico, On the secant varieties to the tangent developable of a Veronese variety. J. Algebra 288(2005), no. 2, 279-286.

E. Ballico and C. Fontanari, On the secant varieties to the osculating variety of a Veronese [BF] surface. Cent. Eur. J. Math. 1(2003), no. 3, 315-326.

[BF2] A Terracini lemma for osculating spaces with applications to Veronese surfaces. J. Pure Appl. Algebra 195(2005), no. 1, 1-6.

A. Bernardi, Varieties Parameterizing Forms and Their Secant Varieties. Tesi di Dottorato, [Be] Universitá di Milano.

[BC] A. Bernardi and M. V. Catalisano, Some defective secant varieties to osculating varieties of Veronese surfaces. Collect. Math. 57(2006), no. 1, 43-68.

[CGG] M. V. Catalisano, A. V. Geramita, and A. Gimigliano. On the secant varieties to the tangential varieties of a Veronesean, Proc. Amer. Math. Soc. 130(2002), 975-985.

[CCMO] C. Ciliberto, F. Cioffi, R. Miranda, and F. Orecchia, Bivariate Hermite interpolation and linear systems of plane curves with base fat points. In: Computer Mathematics, Lecture Notes Series on Computing 10, World Scientific Publ., River Edge, NJ, 2003, pp. 87-102.

[Ge] A. V. Geramita, Inverse Systems of Fat Points. Queen's Papers in Pure Appl. Math. 102(1998),

B. Harbourne, *Problems and progress: A survey on fat points in* \mathbb{P}^2 . Queen's Papers in Pure [Ha] Appl. Math. 123(2002), 87-132.

A. Hirschowitz, La méthode de Horace pour l'interpolation à plusieurs variables. Manuscripta [Hi] Math. 50(1985), 337-388.

[I] A. Iarrobino, Inverse systems of a symbolic power. III. Thin algebras and fat points. Compositio Math. 108(1997), no. 3, 319-356.

[IK] A. Iarrobino and V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci. Lecture Notes in Mathematics 1721, Springer-Verlag, Berlin, 1999.

[Se] B. Segre, Un'estensione delle varietà di Veronese ed un principio di dualità per le forme algebriche. I and II. ti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat.(8) 1(1946), 313-318; 559-563.

[Te] A. Terracini, Sulle V_k per cui la varietà degli S_h (h + 1)-seganti ha dimensione minore dell'ordinario. Rend. Circ. Mat. Palermo 31(1911), 392-396.

[W]K. Wakeford, On canonical forms. Proc. London Math. Soc. (2) 18(1919/20), 403-410.

Dipartimento di Matematica di Bologna DIPTEM,

Porta San Donato 5 Università di Genova

40126, Bologna Genova Italia Italia

e-mail: abernardi@dm.unibo.it e-mail: catalisano@dimet.unige.it

Dipartimento di Matematica

Dipartimento di Matematica and C.I.R.A.M.

Università di Bologna

Università di Bologna Bologna Bologna Italia Italia

e-mail: gimiglia@dm.unibo.it e-mail: ida@dm.unibo.it