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Osculating Varieties of Veronese Varieties
and Their Higher Secant Varieties

A. Bernardi, M. V. Catalisano, A. Gimigliano, M. Idà

Abstract. We consider the k-osculating varieties Ok,n.d to the (Veronese) d-uple embeddings of P
n.

We study the dimension of their higher secant varieties via inverse systems (apolarity). By associating

certain 0-dimensional schemes Y ⊂ P
n to Os

k,n,d
and by studying their Hilbert functions, we are able,

in several cases, to determine whether those secant varieties are defective or not.

1 Introduction

Let us consider the following case of a quite classical problem: given a generic form

f of degree d in R := K[x0, . . . , xn], what is the minimum s for which it is possible
to write f = Ld−k

1 F1 + · · · + Ld−k
s Fs, where Li ∈ R1 and Fi ∈ Rk? When k = 0

this is known as the “Waring problem for forms” (the original Waring problem is for

integers), and it has been solved via results in [AH], (see also [IK, Ge]).

In this generality, the problem is part of what was classically called “finding canon-
ical forms for an (n + 1)-ary d-ic” [W]. The following examples illustrate cases where
the answer to the problem is not the expected one.

Example 1 One would expect that a generic f ∈ (K[x0, . . . , x4])3 could be written
as f = L1F1 + L2F2 with Li ∈ R1 and Fi ∈ R2 (by a dimension count), but actually
we need three addenda: f = L1F1 + L2F2 + L3F3.

Example 2 We cannot write a generic f ∈ (K[x0, . . . , x5])3 as f = L1F1 + L2F2 +
L3F3, but only as f = L1F1 + · · · + L4F4.

Example 3 One would expect that a generic f ∈ (K[x0, . . . , x6])4 could be written
as f = L1F1 + L2F2 + L3F3, with Li ∈ R1 and Fi ∈ R3, but not only is it impossible to
write f as a sum of three addenda, but is it not even possible to write it as a sum of
four. In fact f can only be written as f = L1F1 + · · · + L5F5.

All the examples above comes from Proposition 3.4.

Our approach to the problem is via the study of the dimension of higher secant
varieties Os

k,n.d to Ok,n.d, the k-th osculating variety to the (Veronese) d-uple embed-

dings of P
n, since giving an answer to this geometrical problem implies getting the

solution to the problem on forms.
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We would like to point out that those secant varieties can reach a very high defec-
tiveness (see Example 4 after Proposition 4.4), a phenomenon that does not happen

for smooth varieties.

We use inverse system (apolarity) to reduce this problem to the study of the pos-
tulation of certain 0-dimensional schemes Y ⊂ P

n; namely we reduce the evaluation
of dim Os

k,n,d to the evaluation of dim |OPn (d) ⊗ IY | where Y = Z1 + · · · + Zs is a
0-dimensional subscheme of P

n such that, for each i = 1, . . . , s, (k + 1)Pi ⊂ Zi ⊂
(k + 2)Pi and l(Zi) =

(
k+n

n

)
+ n.

We conjecture that the “bad behavior” of Y is always related to the scheme given
by the fat points (k + 1)Pi or Zi ⊂ (k + 2)Pi not being regular (Conjecture 2). By
using this idea, we are able to describe the behavior of the s-th secant variety of Ok,n.d

for many values of (k, n, d).

In the case of P
2, using known results on fat points, we are able to classify all the

defective Os
k,2.d for small values of s (s ≤ 6 and s = 9, see Corollary 4.15).

2 Preliminaries

Notation 2.1

(i) In the following, we set R := K[x0, . . . , xn], where K = K̄ and char K = 0, hence
Rd will denote the forms of degree d on P

n.

(ii) If X ⊆ P
N is an irreducible projective variety, an m-fat point on X is the

(m − 1)-th infinitesimal neighborhood of a smooth point P in X, and it will
be denoted by mP (i.e., the scheme mP is defined by the ideal sheaf I

m
P,X ⊂ OX).

Let dim X = n; then mP is a 0-dimensional scheme of length
(

m−1+n
n

)
.

If Z is the union of the (m − 1)-th infinitesimal neighborhoods in X of s generic

points of X, we shall say for short that Z is union of s generic m-fat points on X.
(iii) If X ⊆ P

N is a variety and P is a smooth point on it, the projectivized tangent
space to X at P is denoted by TX,P .

(iv) We denote by 〈U ,V 〉 both the linear span in a vector space or in a projective

space of two linear subspaces U ,V .
(v) If X is a 0-dimensional scheme, we denote by l(X) its length, while its support is

denoted by supp X.

Definition 2.2 Let X ⊆ P
N be a closed irreducible projective variety; the (s− 1)-th

higher secant variety of X is the closure of the union of all linear spaces spanned by s

points of X, and it will be denoted by Xs.

Let dim X = n; the expected dimension for Xs is

expdim Xs := min{N, sn + s − 1}

where the number sn + s − 1 corresponds to ∞sn choices of s points on X, plus ∞s−1

choices of a point on the P
s−1 spanned by the s points. When this number is too

big, we expect that Xs
= P

N . Since it is not always the case that Xs has the expected
dimension, when dim Xs < min{N, sn + s − 1}, Xs is said to be defective.
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A classical result about secant varieties is Terracini’s Lemma (see [Te, A]) which
we give here in the following form:

Terracini’s Lemma Let X be an irreducible variety in P
N , and let P1, . . . , Ps be s

generic points on X. Then, the projectivised tangent space to Xs at a generic point

Q ∈ 〈P1, . . . , Ps〉 is the linear span in P
N of the tangent spaces TX,Pi

to X at Pi ,

i = 1, . . . , s, hence

dim Xs
= dim〈TX,P1

, . . . , TX,Ps
〉.

Corollary 2.3 Let (X, L) be an integral, polarized scheme. If L embeds X as a closed

scheme in P
N , then

dim Xs
= N − dim h0(IZ,X ⊗ L)

where Z is union of s generic 2-fat points in X.

Proof By Terracini’s Lemma, dim Xs
= dim〈TX,P1

, . . . , TX,Ps
〉, with P1, . . . , Ps

generic points on X. Since X is embedded in P
N

= P(H0(X, L)∗), we can view the
elements of H0(X, L) as hyperplanes in P

N ; the hyperplanes which contain a space
TX,Pi

correspond to elements in H0(I2Pi ,X ⊗L), since they intersect X in a subscheme

containing the first infinitesimal neighborhood of Pi . Hence the hyperplanes of P
N

containing the subspace 〈TX,P1
, . . . , TX,Ps

〉 are the sections of H0(IZ,X ⊗ L), where Z

is the scheme union of the first infinitesimal neighborhoods in X of the points Pi ’s.

Definition 2.4 Let X ⊂ P
N be a variety, and let P ∈ X be a smooth point. We

define the k-th osculating space to X at P as the linear space generated by (k + 1)P,

and we denote it by Ok,X,P ; hence O0,X,P = {P}, and O1,X,P = TX,P, the projectivised
tangent space to X at P.

Let X0 ⊂ X be the dense set of the smooth points where Ok,X,P has maximal
dimension. The k-th osculating variety to X is defined as

Ok,X =

⋃

P∈X0

Ok,X,P.

3 Osculating Varieties to Veronese Varieties, and Their Higher Secant
Varieties

Notation 3.1

(i) We will consider here Veronese varieties, i.e., embeddings of P
n defined by the

linear system of all forms of a given degree d: νd : P
n → P

N , where N =
(

n+d
n

)
− 1.

The d-ple Veronese embedding of P
n, i.e., Im νd, will be denoted by Xn,d.

(ii) In the following, we set Ok,n,d := Ok,Xn,d
, so that the (s − 1)-th higher secant

variety to the k-th osculating variety to the Veronese variety Xn,d will be denoted

by Os
k,n,d.
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Remark 3.2 From now on P
N

= P(Rd), and a form M will denote, depending on
the situation, a vector in Rd or a point in P

N .

We can view Xn,d as given by the map (P
n)∗ → P

N , where L → Ld, L ∈ R1. Hence

Xn,d = {Ld, L ∈ R1}.

Let us assume (and from now on this assumption will be implicit) that d ≥ k; at the
point P = Ld we have (see [Se], [CGG, §1], [BF, §2]:

(∗) Ok,Xn,d ,P = {Ld−kF, F ∈ Rk}.

Notice that Ok,Xn,d ,P has maximal dimension dim Rk − 1 =
(

k+n
n

)
− 1 for all P ∈

Xn,d. This can also be seen in the following way: the fat point (k + 1)P on Xn,d

gives independent conditions to the hyperplanes of P
N , since it gives independent

conditions to the forms of degree d in P
n. Hence, Ok,n,d =

⋃
P∈Xn,d

Ok,Xn,d ,P.

As we have already noted for k = 0, (∗) gives Ok,Xn,d ,P = {P} = {Ld}, and for

k = 1, it becomes Ok,Xn,d ,P = TXn,d ,P = {Ld−1F, F ∈ R1}. In general, we have:

Ok,n,d = {Ld−kF, L ∈ R1, F ∈ Rk}.

Hence,

Os
k,n,d = {Ld−k

1 F1 + · · · + Ld−k
s Fs, Li ∈ R1, Fi ∈ Rk, i = 1, . . . , s}.

In the following we also need to know the tangent space TOk,n,d ,Q of Ok,n,d at the

generic point Q = Ld−kF (with L ∈ R1, F ∈ Rk); one has that the affine cone over
TOk,n,d ,Q is W = W (L, F) = 〈Ld−kRk, Ld−k−1FR1〉 (see [CGG, §1], [BF, §2]).

Lemma 3.3 The dimension of Ok,n,d is always the expected one, that is,

dim Ok,n,d = min
{

N, n +

(
k + n

n

)
− 1

}
.

Proof By Remark 3.2, dim Ok,n,d = dim W (L, F)−1, for a generic choice of L, F, so
that we can assume that L does not divide F. When P(W ) 6= P

N , we have

dim W = dim Ld−kRk + dim Ld−k−1FR1 − dim Ld−kRk ∩ Ld−k−1FR1

=

(
k + n

n

)
+ (n + 1) − 1 =

(
k + n

n

)
+ n,

since there is only the obvious relation between LRk and FR1, namely LF − FL = 0.
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Consider the classic Waring problem for forms, i.e., “if we want to write a generic
form of degree d as a sum of powers of linear forms, how many of them are neces-

sary?” The problem is completely solved. In fact, Xs
n,d = {Ld

1 + · · ·+ Ld
s , Li ∈ R1} (see

Remark 3.2), hence the Waring problem is equivalent to the problem of computing
dim Xs

n,d. By Corollary 2.3 we have that dim Xs
n,d = N − dim H0(IZ,Pn ⊗ O(d)) =

H(Z, d) − 1, where Z is a scheme of s generic 2-fat points in P
n, and H(Z, d) is the

Hilbert function of Z in degree d. Since H(Z, d) is completely known [AH], we are
done.

More generally, one could ask which is the least s such that a form of degree d can
be written as Ld−k

1 F1 + · · · + Ld−k
s Fs, with Li ∈ R1 and Fi ∈ Rk for i = 1, . . . , s. Since

by Remark 3.2 the variety Os
k,n,d parameterizes exactly the forms in Rd which can be

written in this way, this is equivalent to answering the following question for each
k, n, d: Find the least s, for each k, n, d, for which Os

k,n,d = P
N .

We are interested in a more complete description of the stratification of the forms

of degree d parameterized by those varieties. Namely: Describe all s for which Os
k,n,d is

defective, i.e. for which

dim Os
k,n,d < expdim Os

k,n,d.

Notice that, since d ≥ k, one has dim Ok,n,d = N if and only if
(

d+n
n

)
≤ n +

(
k+n

n

)
,

hence for all such k, n, d and for any s we have dim Os
k,n,d = expdim Os

k,n,d = N .

So we have to study this problem when
(

d+n
n

)
> n +

(
k+n

n

)
, s ≥ 2. It is easy to check

that whenever n ≥ 2 this condition is equivalent to d ≥ k + 1. On the other hand, the
case n = 1 (osculating varieties of rational normal curves) can be easily described (all

the Os
k,1,d’s have the expected dimension, see next section), so the question becomes:

Question Q(k,n,d): For all k, n, d such that d ≥ k + 1, n ≥ 2, describe all s for which

dim Os
k,n,d < min

{
N, s(n +

(
k + n

n

)
− 1) + s − 1

}

= min
{(

d + n

n

)
− 1, s

(
k + n

n

)
+ sn − 1

}
.

Remark 3.4 Terracini’s lemma says that dim Os
k,n,d = N − h0(IX ⊗OPN (1)), where

X is a generic union of 2-fat points on Ok,n,d. We are not able to handle directly the
study of h0(IX ⊗OPN (1)), nevertheless, Terracini’s lemma says that the tangent space

of Os
k,n,d at a generic point of 〈P1, . . . , Ps〉, Pi ∈ Ok,n,d, is the span of the tangent

spaces of Ok,n,d at Pi . If TOk,n,d ,Pi
= P(Wi), then

dim Os
k,n,d = dim〈TOk,n,d ,P1

, . . . , TOk,n,d ,Ps
〉 = dim〈W1, . . . ,Ws〉 − 1.

We want to prove, via Macaulay’s theory of “inverse systems” [I, IK, Ge, CGG, BF],
that for a single Wi , dim Wi = N + 1 − h0(P

n, IZ(d)), where Z = Z(k, n) is a certain
0-dimensional scheme which we will analyze further, and dim〈W1, . . . ,Ws〉 = N +

1 − h0(P
n, IY (d)), where Y = Y (k, n, s) is a generic union in P

n of s 0-dimensional
schemes isomorphic to Z. Hence,

dim Os
k,n,d = dim〈W1, . . . ,Ws〉 − 1 = N − h0(P

n, IY (d)).
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So, one strategy in order to answer to the question Q(k, n, d) for a given (k, n, d)
is the following:

Step 1: Try to compute directly dim〈W1, . . . ,Ws〉. If this is not possible, then

Step 2: Use the theory of inverse systems (classically apolarity): Compute W⊥ ⊂ Rd,
with respect to the perfect pairing φ : Rd × Rd → K, where:

• W is a vector subspace of Rd,
• φ( f , g) := ΣI∈An,d

fIgI , where An,d := {(i0, . . . , in) ∈ N
n+1, Σ j i j = d}, with any

fixed ordering; this gives a monomial basis {xi0

0 · · · xin

n } for the vector space Rd;
if f ∈ Rd, f = Σ

i0 ,...,in∈A
n,d

fi0,...,in
xi0

0 · · · xin

n , we write for short f = Σ fIxI , with

I = (i0, . . . , in).

Then, consider Id := W⊥ ⊂ Rd. It generates an ideal (Id) ⊂ R. In this way we

define the scheme Z(k, n, d) ⊂ P
n by setting: IZ(k,n,d) := (Id)sat . We will show that

these schemes do not depend on d.

Step 3: Compute the postulation for a generic union of s schemes Z(k, n, d) in P
n.

Recall that [〈W1, . . . ,Ws〉]
⊥

= W⊥
1 ∩ · · · ∩W⊥

s .

Lemma 3.5 For all k, n and d ≥ k + 2, we have:

(k + 1)O ⊂ Z(k, n, d) ⊂ (k + 2)O,

where Z(k, n, d) was defined in Remark 3.4, and O = supp Z(k, n, d) ∈ P
n.

Proof Let W = 〈Ld−kRk, Ld−k−1FR1〉 ⊂ Rd be the affine cone over TOk,n,d ,Q at a

generic point Q = Ld−kF, with L ∈ R1, F ∈ Rk . Without loss of generality we can
choose L = x0, so that W = xd−k−1

0 (x0Rk + FR1), hence xd−k
0 Rk ⊂ W ⊂ xd−k−1

0 Rk+1.
So, for any (k, n, d),

(∗∗) (xd−k−1
0 Rk+1)⊥ ⊂ W⊥ ⊂ (xd−k

0 Rk)⊥.

Now, denoting by p the ideal (x1, . . . , xn), we have:

(xd−t
0 Rt )

⊥
= 〈{xi0

0 · · · xin

n | Σ j i j = d, i0 ≤ d − t − 1}〉

= 〈(p
d)d, x0(p

d−1)d−1, . . . , xd−t−1
0 (p

t+1)t+1〉 = (p
t+1)d.

Now let us view everything in (∗∗) as the degree d part of a homogeneous ideal;
we get:

(p
k+2)d ⊂ (IZ(k,n,d))d

⊂ (p
k+1)d.

Let (x1, . . . , xn) be local coordinates in P
n around the point O = (1, 0, . . . , 0). The

above inclusions give, in terms of 0-dimensional schemes in P
n:

(k + 1)O ⊂ Z(k, n, d) ⊂ (k + 2)O.
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Lemma 3.6 For any k, n, d with d ≥ k + 2, the length of Z = Z(k, n, d) is:

l(Z) = dim W =

(
k + n

n

)
+ n.

Proof One (k + 2)-fat point always imposes independent conditions to the forms of
degree d ≥ k + 1. Since Z ⊂ (k + 2)O, then h1(IZ(d)) = 0 immediately follows.

Now we have seen that our problem can be translated into a problem of studying
certain schemes Z(k, n, d) ⊂ P

n. We want to check that these schemes are actually
the same for all d ≥ k + 2, say Z(k, n, d) = Z(k, n).

Lemma 3.7 For any k, n and d ≥ k + 2, we have Z(k, n, d) = Z(k, n, k + 2). Hence-

forth we will denote Z(k, n) = Z(k, n, d), for all d ≥ k + 2.

Proof By the previous lemmata we already know that Z(k, n, d) and Z(k, n, k + 2)

have the same support and the same length, hence it is enough to show that
Z(k, n, d) ⊂ Z(k, n, k + 2) (as schemes) in order to conclude. This will be done
if we check that I(Z(k, n, k + 2))d ⊂ I(Z(k, n, d))d. In fact, since both ideals are
generated in degrees ≤ d, this will imply that I(Z(k, n, k + 2)) j ⊂ I(Z(k, n, d)) j ,

∀ j ≥ d, hence the inclusion will hold also between the two saturations, implying
Z(k, n, d) ⊂ Z(k, n, k + 2).

Let f ∈ I(Z(k, n, k + 2))d, then f = h1g1 + · · · + hrgr, where h j ∈ Rd−k−2

and g j ∈ I(Z(k, n, k + 2))k+2. Since I(Z(k, n, d))d is the perpendicular to W =

〈Ld−kRk, Ld−k−1FR1〉, it is enough to check that h jg j ∈ W⊥, j = 1, . . . , r. With-

out loss of generality we can assume L = x0; hence, since g j ∈ 〈L2Rk, LFR1〉
⊥,

g j = x0g ′ + g ′ ′, with g ′, g ′′ ∈ K[x1, . . . , xn] and g ′ ∈ (FR1)⊥. It will be enough

to prove xi0

0 · · · xin

n g j = xi0+1
0 · · · xin

n g ′ + xi0

0 · · · xin

n g ′′ ∈ W⊥, ∀i0, . . . , in such that

i0 + · · · + in = d − k − 2. It is clear that xi0

0 · · · xin

n g ′′ ∈ W⊥, since i0 ≤ d − k − 2.
On the other hand, xi0+1

0 · · · xin

n g ′ ∈ (xd−k
0 Rk)⊥ again by looking at the degree of x0,

while xi0+1
0 · · · xin

n g ′ ∈ (xd−k−1
0 FR1)⊥ since g ′ ∈ (FR1)⊥.

Remark 3.8 From the lemmata above it follows that in order to study the dimen-
sion of Os

k,n,d for d ≥ k+2, we only need to study the postulation of unions of schemes

Z(k, n). For d = k + 1, we will work directly on W , see Proposition 4.4.

What we have is a sort of “generalized Terracini’s lemma” for osculating varieties
to Veronese varieties, since the formula dim Os

k,n,d = N − h0(IY (d)) reduces to the
one in Corollary 2.3 for k = 0. Instead of studying 2-fat points on Ok,n,d (see Remark
3.4), we can study the schemes Y ⊂ P

n.

Notation 3.9 Let Y ⊂ P
n be a 0-dimensional scheme; we say that Y is regular in

degree d, d ≥ 0, if the restriction map ρ : H0(OPn (d)) → H0(OY (d)) has maximal
rank, i.e., if h0(IY (d)) · h1(IY (d)) = 0. We set exp h0(IY (d)) := max{0,

(
d+n

n

)
−

l(Y )}; hence to say that Y is regular in degree d amounts to saying that h0(IY (d)) =

exp h0(IY (d)).
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Since we always have h0(IY (d)) ≥ exp h0(IY (d)), we write

h0(IY (d)) = exp h0(IY (d)) + δ,

where δ = δ(Y, d). Hence, whenever
(

d+n
n

)
− l(Y ) ≥ 0, we have δ = h1(IY (d)).

While if
(

d+n
n

)
− l(Y ) ≤ 0, δ =

(
d+n

n

)
− l(Y ) + h1(IY (d)). In any case, by setting

exp h1(IY (d)) := max{0, l(Y ) −
(

d+n
n

)
}, we get h1(IY (d)) = exp h1(IY (d)) + δ.

Remark 3.10 For any k, n, d such that d ≥ k + 1, let Y = Y (k, n, s) ⊂ P
n be the

0-dimensional scheme defined in Remark 3.4 for Z = Z(k, n), and δ = δ(Y, d). Then

dim Os
k,n,d = expdim Os

k,n,d − δ.

In particular, dim Os
k,n,d = expdim Os

k,n,d if and only if

h0(IY (d)) =

{
0 when

(
d+n

n

)
≤ s

(
k+n

n

)
+ sn,

N + 1 − l(Y ) =
(

d+n
n

)
− s

(
k+n

n

)
− sn† when

(
d+n

n

)
≥ s

(
k+n

n

)
+ sn.

†(i.e., h1(IY (d)) = 0)

4 A Few Results and a Conjecture

First let us consider the cases where the question Q(k, n, d) has already been an-
swered.

Case Q(k, 1, d)

In this case every Os
k,1,d, with d ≥ k + 2, has the expected dimension; in fact here

Z(k, 1) = (k + 2)O, and the scheme Y = {s (k + 2)-fat points} ⊂ P
1 is regular in any

degree d. Notice that for d = k + 1 we trivially have Ok,1,k+1 = P
N .

Case Q(1, n, d)

Here the variety O1,n,d is the tangential variety to the Veronese Xn,d. It is shown in

[CGG] that Z(1, n) is a (2, 3)-scheme, i.e., the intersection in P
n of a 3-fat point with

a double line. This is easy to see, e.g., by choosing coordinates so that L = x0, F = x1.

The postulation of generic unions of such schemes in P
n, and hence the defective-

ness of Os
1,n,d, has been studied. Moreover, a conjecture regarding all defective cases

is stated there:

Conjecture 1 ([CGG]) Os
1,n,d is not defective, except in the following cases:

(1) d = 2 and n ≥ 2s, s ≥ 2;
(2) d = 3 and n = s = 2, 3, 4.
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In [CGG] the conjecture is proved for s ≤ 5 (any d, n), for s ≥ 1
3

(
n+2

2

)
+ 1 (any

d, n); for d = 2 (any s, n), for d ≥ 3 and n ≥ s + 1, for d ≥ 4 and s = n. In [B], the

conjecture is proved for n = 2, 3 (any s, d).

Q(2, 2, d). In [BF] it is proved that for any (s, d) 6= (2, 4), Os
2,2,d has the expected

dimension.

Now we are going to prove some other cases. The following (quite immediate)

lemma describes what can be deduced about the postulation of the scheme Y from
information on fat points:

Lemma 4.1 Let P1, . . . , Ps be generic points in P
n, and set X := (k + 1)P1 ∪ · · · ∪

(k + 1)Ps, T := (k + 2)P1 ∪ · · · ∪ (k + 2)Ps. Now let Zi be a 0-dimensional scheme

supported on Pi , (k + 1)Pi ⊂ Zi ⊂ (k + 2)Pi , with l(Zi) = l((k + 1)Pi) + n for each

i = 1, . . . , s, and set Y := Z1 ∪ · · · ∪ Zs. Then

(i) Y is regular in degree d if one of the following holds:

(a) h1(IT(d)) = 0 (hence
(

d+n
n

)
≥ s

(
k+n+1

n

)
).

(b) h0(IX(d)) = 0 (hence
(

d+n
n

)
≤ s

(
k+n

n

)
).

(ii) Y is not regular in degree d, with defect δ, if one of the following holds:

(c) h1(IX(d)) > exp h1(IY (d)) = max{0, l(Y ) −
(

d+n
n

)
}; in this case

δ ≥ h1(IX(d))) − exp h1(IY (d).

(d) h0(IT(d)) > exp h0(IY (d)) = max{0,
(

d+n
n

)
− l(Y )}; in this case

δ ≥ h0(IT(d)) − exp h0(IY (d)).

Proof The statement follows by considering the cohomology of the exact sequences:

0 → IT(d) → IY (d) → IY,T(d) → 0,

0 → IY (d) → IX(d) → IX,Y (d) → 0,

where we have h1(IY,T(d)) = h1(IX,Y (d)) = 0, since those two sheaves are supported
on a 0-dimensional scheme.

Lemma 4.2 Let s ≥ n + 2 and d < k + 1 + 2 k+1
n

. Then Os
k,n,d is not defective and

Os
k,n,d = P

N .

Proof Let Y ⊂ P
n be as in Remark 3.4. We have to prove that h0(IY (d)) = 0 in our

hypotheses.

Let P1, . . . , Ps be the support of Y . We can always choose a rational normal curve

C ⊂ P
n containing n + 2 of the Pi ’s . For any hypersurface F given by a section of

IY (d), since nd < (k+1)(n+2), by Bezout’s theorem we get C ⊂ F. But we can always
find a rational normal curve containing n + 3 points in P

n, so this would imply that
any P ∈ P

n is on F, i.e., IY (d) = 0.

Lemma 4.3 Assume s = n + 1. If d ≤ k + 1 + k+2
n

, then Os
k,n,d = P

N .
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Proof Since d ≥ k + 1, we can set d = k + j with j > 0. Let Wi = 〈L
j
i Rk, L

j−1

i FiR1〉
with Fi ∈ Rk for i = 1, . . . , s. Since s = n + 1, without loss of generality we can

assume that L1 = x0, . . . , Ln+1 = xn.

Hence W1 +· · ·+Ws contains U := x
j
0Rk +· · ·+x

j
nRk. Now in U the missing mono-

mials are xi0

0 · · · xin

n with il ≤ j − 1 for each l = 0, . . . , n, and d = deg (xi0

0 · · · xin

n ) ≤
(n + 1)( j − 1). Hence if d ≥ (n + 1)( j − 1), i.e., d < k + 1 + k+1

n
, we get U = Rd.

If d = (n + 1)( j − 1), the only missing monomial in U is x
j−1

0 · · · x
j−1
n , hence it

is enough to choose one of the Fi ’s in a proper way to get W1 + · · · + Ws = Rd. If
d = (n + 1)( j − 1) − 1, i.e., d = k + 1 + k+2

n
, the n + 1 missing monomials in U are

x
j−1

0 · · · x
j−2

i · · · x
j−1
n with i = 0, . . . , n and again it is possible to choose the Fi ’s so

that W1 + · · · + Ws = Rd.

Q(k, n, k + 1). The description for k = 1 given in [CGG], together with following

proposition, describe this case completely.

Proposition 4.4 If s ≥ 2, k ≥ 2 and d = k + 1, consider the secant variety Os
k,n,d ⊂

P
N :

(i) If s ≤ n− 1 and its expected dimension is s
(

k+n
n

)
+ sn− 1, then Os

k,n,k+1 is defective

with defect δ = s2 − s + s
(

k+n
n

)
+

(
n−s+d

d

)
− N.

(ii) If s ≤ n − 1 and the expected dimension is N =
(

d+n
n

)
− 1, then

(a) Os
d−1,n,d is defective with defect δ =

(
n−s+d

d

)
− s(n − s + 1) if s < 1

d

(
n−s+d

d−1

)
;

(b) Os
d−1,n,d = P

N if s ≥ 1
d

(
n−s+d

d−1

)
.

(iii) If s ≥ n then Os
d−1,n,d = P

N .

Proof (i) We have that W = W1 + · · · + Ws = 〈x0Rk, . . . , xs−1Rk; F1R1, . . . , FsR1〉
in Rd. We can suppose that the Fi ’s, i = 1, . . . , s are generic in K[xs, . . . , xn]d := Sd,

and we have that Rd

W
∼= Sd

(F1,...,Fs)d

. Then, since (F1, . . . , Fs)d = 〈F1S1, . . . , FsS1〉 and

the Fi ’s are generic, dim(F1, . . . , Fs)d = min
{(

n−s+d
d

)
, s(n − s + 1)

}
.

From this, and from our hypothesis about the expected dimension, we immedi-
ately get that dim W = N −

(
n−s+d

d

)
+ s(n − s + 1), and hence that the defect is

δ = s2 − s + s
(

k+n
n

)
+

(
n−s+d

d

)
− N .

(ii) If s
(

n+d−1

n

)
+ ns ≥

(
n+d

n

)
, we expect that Os

d−1,n,d = P
N . Proceeding as in the

previous case, in order to compute dim W we can actually consider just the vector
space 〈F1S1, . . . , FsS1〉 whose dimension is min

{(
n−s+d

d

)
, s(n − s + 1)

}
; so we get

that (a) If s(n − s + 1) <
(

n−s+d
d

)
, then Os

d−1,n,d is defective. This happens if and

only if s < 1
d

(
n−s+d

d−1

)
, in this case the defect is δ =

(
n−s+d

d

)
− s(n − s + 1). (b) If

s(n − s + 1) ≥
(

n−s+d
d

)
, then Os

d−1,n,d = P
N (for example this is always true for

d ≥ n);

(iii) It suffices to prove that Os
d−1,n,d = P

N for s = n. If s = n and d = k + 1,
the subspace W1 + · · · + Ws can be written as 〈x0Rk, F1R1, . . . , xn−1Rk, FnR1〉, which

turns out to be equal to 〈x0Rk, . . . , xn−1Rk, xk+1
n 〉 = Rk+1 so On

d−1,n,d = P
N .
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Example 4 (The osculating fourth variety of X6,5 ⊂ P
461) Let us consider the se-

cant varieties of the fourth osculating variety O4,6,5. We begin with O2
4,6,5 (Proposi-

tion 4.4(i)) and we expect that dim O2
4,6,5 = 431, but we get that the defect is δ = 86

so that dim O2
4,6,5 = 345.

When s = 3, 4 (Proposition 4.4(ii)), δ = 44 for O3
4,6,5, while δ = 9 for O4

4,6,5.

Eventually, O5
4,6,5 = P

461 So, even if we expect that O3
4,6,5 should fill up P

N , even the
4-secant variety does not.

In terms of forms we get that we can write a generic f ∈ (K[x0, . . . , x6])5 neither

as f = L1F1 + L2F2 + L3F3 with Li ∈ R1 and Fi ∈ R4 (as we expect), nor as f =

L1F1 + · · · + L4F4, but we need five addenda.

Case Q(k, 2, k + 2)

Corollary 4.5 Assume d = k + 2 and n = 2. Then Os
k,2,k+2 is not defective for s ≥ 3

and k ≥ 1, and Os
k,2,k+2 is defective for s = 2 and k ≥ 1.

Proof By Lemma 4.2 and Lemma 4.3, Os
k,2,k+2 is not defective for s ≥ 3 and d ≥ 3,

i.e., k ≥ 2. The case k = 1 is already known by [B]. For s = 2 and k ≥ 1, let
Y = Y (k, 2) ⊂ P

2 be the 0-dimensional scheme defined in Remark 3.4. It is easy to
check that exp h0(IY (d)) = exp h0(IT(d)) = 0, T denoting the generic union of two

(k + 2)-fat points in P
2. Since T is not regular in degree d = k + 2 for any k ≥ 1, we

conclude by Lemma 4.1(ii)(d) that Os
k,n,k+2 is defective with defect ≥ h0(IT(d)) = 1

(the only section is given by the (k + 2)-ple line through the two points).

Case Q(k, 3, k + 2)

Corollary 4.6 Assume d = k + 2 and n = 3. Then Os
k,3,k+2 = P

N for s ≥ n + 1 = 4
and k ≥ 1, while Os

k,3,k+2 is defective for s ≤ 3.

Proof The case s ≤ 3 will be treated in Proposition 4.10.

If s = 4 and k = 1, O4
1,3,3 = P

N [CGG, (4.6)]. If s = 4 and k = 2, we have
O4

2,3,4 = P
N by Lemma 4.3. If s ≥ 5 and k ≥ 1, or s = 4 and k ≥ 3, the thesis follows

by Lemmata 4.2 and 4.3, respectively.

Case Q(k, 4, k + 2)

Corollary 4.7 Assume d = k + 2 and n = 4. Then Os
k,4,k+2 = P

N for s ≥ 5 and

k ≥ 1, while Os
k,4,k+2 is defective for s ≤ 4.

Proof The case s ≤ 4 will be given by Proposition 4.10.

If s ≥ 5 and k = 1, Os
1,4,3 = P

N [CGG, (4.6),(4.5)]. If s = 5 and k = 2, 3, we have
O5

k,4,k+2 = P
N by Lemma 4.3. If s ≥ n + 2 = 6 and k ≥ 2, or s = 5 and k ≥ 4, the

thesis follows by Lemmata 4.2 and 4.3, respectively.
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Case Q(k, 2, k + 3)

Corollary 4.8 Assume d = k + 3 and n = 2. Then

(i) for s = 2 and k = 1, 2, dim O2
k,2,k+3 = s

(
k+2

2

)
+ 2s − 1 (the expected one);

(ii) for s = 2 and k ≥ 3, O2
k,2,k+3 is defective;

(iii) for s ≥ 3 and k ≥ 1, Os
k,2,k+3 = P

N .

Proof If s ≥ n+2 = 4 and k ≥ 2, or s = 3 and k ≥ 4, the thesis follows by Lemmata
4.2 and 4.3, respectively. If s ≥ 3 and k = 1, Os

1,2,k+3 = P
N [CGG, (4.5)]. If s = 3

and k = 2, 3, we have O2
k,2,k+3 = P

N by Lemma 4.3. If s = 2 and k = 1, or s = 2

and k = 2, O2
k,2,k+3 6= P

N is not defective, by [CGG, (4.6)] and [BF, Theorem 1],
respectively. If s = 2 and k ≥ 3, then, in the notations of Lemma 4.1, we have for
k = 3, 4 exp h1(IX(d)) = exp h1(IY (d)) = 0, and the union X of 2 (k + 1)-fat points

is not regular in degree d = k + 3. For k ≥ 5 exp h0(IY (d)) = exp h0(IT(d)) = 0, and
the union T of 2 (k + 2)-fat points is not regular in degree d = k + 3. so we conclude
by Lemma 4.1(c) and (d).

For s ≤ n + 1, we have several partial results:

Proposition 4.9 If s ≤ n + 1, d ≥ 2k + 1 and k ≥ 2, then Os
k,n,d is regular.

Proof We have to study the dimension of the vector space W1 + · · · + Ws =

〈Ld−k
1 Rk, Ld−k−1

1 F1R1, . . . , Ld−k
s Rk, Ld−k−1

s FsR1〉, where L1, . . . , Ls are generic in R1

and F1, . . . , Fs are generic in Rk. Since s ≤ n + 1, without loss of generality we may
suppose Li = xi−1 for i = 1, . . . , s. Since d ≥ 2k + 1, for β = d − k ≥ 3, the vec-

tor space W1 + · · · + Ws can be written as 〈xβ
0 Rk, x

β−1
0 F1R1, . . . , x

β
s−1Rk, x

β−1
s−1 FsR1〉.

If we show that for a particular choice of F1, . . . , Fs ∈ Rk the dimension of W1 +
· · ·+Ws = expdim(Os

k,n,d) + 1 we can conclude by semi-continuity that Os
k,n,d has the

expected dimension. Let us consider the case Fi = xixi+1F̃i for i = 1, . . . , s − 2,

Fs−1 = xs−1x0F̃s−1 and Fs = x0x1F̃s, where the F̃ j ’s are generic forms in Rk−2,

j = 1, . . . , n + 1. Let 〈xβ
i Rk〉 =: Ai and 〈xβ−1

i Fi+1R1〉 =: A ′
i , i = 0, . . . , s − 1;

then we get A ′
i = 〈xβ−1

i xi+1xi+2F̃i+1R1〉, i = 0, . . . , s−3; A ′
s−2 = 〈xβ−1

s−2 xs−1x0F̃s−1R1〉

and A ′
s−1 = 〈xβ−1

s−1 x0x1F̃sR1〉. Now W1 +· · ·+Ws =
∑s−1

j=0 A j +
∑s−1

j=0 A ′
j . We can easily

notice that A ′
i ∩(

∑s−1

j=0 A j +
∑s−1

j=0, j 6=i A ′
j) = Ai∩(

∑s−1

j=0, j 6=i A j +
∑s−1

j=0 A ′
j) = Ai∩A ′

i =

〈xβ
i Rk〉∩〈xβ−1

i xi+1xi+2F̃i+1R1〉 = 〈xβ
i xi+1xi+2F̃i+1〉 for any fixed i = 0, . . . , s−3 (anal-

ogously if i = s− 2, s− 1). So we have found exactly s relations and we can conclude
that dim(W1 + · · ·+Ws) = dim(

∑s−1

j=0 A j)+dim(
∑s−1

j=0 A ′
j)− s = s

(
k+n

n

)
+ s(n+1)− s,

which is exactly the expected dimension.

Proposition 4.10 If s ≤ n and k + 2 ≤ d ≤ 2k, then Os
k,n,d is defective with defect δ

such that

(i) δ ≥
(

n−s+d
d

)
if the expected dimension is

(
d+n

n

)
− 1;

(ii) δ ≥
(

s
2

)(
2k−d+n

n

)
if the expected dimension is s

(
k+n

n

)
+ sn − 1.
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Proof Let β := d− k ≥ 2. We can rewrite the vector space W1 + · · ·+Ws as follows:
〈xβ

0 Rk, xβ−1
0 F1R1, . . . , xβ

s−1Rk, xβ−1
s−1 FsR1〉.

(i) We can observe that K[xs, . . . , xn]d ∩ (W1 + · · · + Ws) = {0}, so if we expect

that Os
k,n,d = P

N we get a defect δ ≥
(

n−s+d
d

)
.

(ii) Suppose now that s
[(

k+n
n

)
+ n

]
<

(
d+n

n

)
. If Os

k,n,d were to have the expected
dimension we would not be able to find more relations among the Wi ’s other than

x
β
i Fi+1 ∈ 〈xβ

i Rk〉∩〈x
β−1
i Fi+1R1〉, for i = 0, . . . , s−1 (as it happens in Proposition 4.9).

But it is easy to see that x
β
i x

β
j F ∈ 〈xβ

i Rk〉 ∩ 〈xβ
j Rk〉 with i 6= j and F ∈ Rk−β . We have

exactly
(

s
2

)
such terms for any choice of F ∈ Rk−β . We can also suppose that the

Fi ∈ Rk which appear in W1 + · · · + Ws are different from x
β
j F for any F ∈ Rk−β and

j = 0, . . . , s−1, because F1, . . . , Fs are generic forms of Rk. Then we can be sure that

the form x
β
i x

β
j F belonging to 〈xβ

i Rk〉 ∩ 〈xβ
j Rk〉 is not one of the x

β
i Fi+1 which belong

to 〈xβ
i Rk〉 ∩ 〈xβ−1

i Fi+1R1〉. Now dim(Rk−β) =
(

k−β+n
n

)
so we can find

(
s
2

)(
k−β+n

n

)

independent forms that give defectiveness. Hence in case s
[(

k+n
n

)
+ n

]
<

(
d+n

n

)
we

have dim(Os
k,n,d) ≤ expdim−

(
s
2

)(
k−β+n

n

)
= expdim−

(
s
2

)(
2k−d+n

n

)
.

Proposition 4.11 If s = n + 1, k + 2 ≤ d ≤ 2k and

expdim(On+1
k,n,d) = (n + 1)

((
k+n

n

)
+ n

)
− 1,

then On+1
k,n,d is defective with defect δ ≥

(
n+1

2

)(
2k−d+n

n

)
.

Proof The proof of this fact is the same as Proposition 4.10(ii).

Proposition 4.12 If s = n +1, n ≥ k+2
d−k−2

, k +2 < d ≤ 2k and expdim(On+1
k,n,d) = N,

then On+1
k,n,d is defective with defect δ ≥

(
(n+1)(d−k−1)−(d+1)

n

)
.

Proof If k + 2 < d ≤ 2k, then 2 < β := d − k ≤ k and we have to study the

dimension of W1 + · · · + Wn+1 = 〈xβ
0 Rk, xβ−1

0 F1R1, . . . , xβ
n Rk, xβ−1

n Fn+1R1〉. It is easy

to see that a monomial of the form f = x
β0

0 · · · xβn

n with
∑n

i=0 βi = d and 0 ≤
βi ≤ β − 2 for all i ∈ {0, . . . , n} is a form of degree d which does not belong to

W1 + · · ·+Wn+1. In fact f can be written as x
d−(γ0+k+2)
0 · · · xd−(γn+k+2)

n with
∑n

i=0 γi =

nd − (n + 1)(k + 2) and γi ≥ 0 for all i = 0, . . . , n and these forms are exactly(
n+(n+1)(d−k−2)−d

n

)
=

(
(n+1)(d−k−1)−(d+1)

n

)
. In order for these forms to exist, one needs

that (n + 1)(d − k − 2) − d ≥ 0, i.e., that n ≥ k+2
d−k−2

. This is sufficient to show that

if we expect that On+1
k,n,d = P

N , and if n ≥ k+2
d−k−2

and k + 2 < d ≤ 2k, then On+1
k,n,d is

defective.

Let us note that what we just saw is not sufficient to say that the defect δ is exactly
equal to

(
(n+1)(d−k−1)−(d+1)

n

)
, because in Rd\〈W1 + · · ·Wn+1〉 we can find also mono-

mials like x
β0

0 · · · xβn

n with
∑n

i=0 βi = d, at least one βi = β − 1 and each of the others

β j ≤ β − 2. Hence δ ≥
(

(n+1)(d−k−1)−(d+1)

n

)
.

All the results on defectiveness lead us to formulate the following:
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Conjecture 2 Os
k,n,d is defective only if Y is as in Lemma 4.1(c) or (d).

The conjecture amounts to saying that the defect of Y can only occur if defect of

the fat points schemes X or T imposes it.

Remark 4.13 In many examples the defect of Y is exactly the one imposed by X

or by T, i.e., the inequalities on δ in Lemma 4.1 are equalities. But this is not always
the case. For example if we consider the variety O2

4,5,6 (see Example 4) here, we get

that the corresponding scheme Y has defect 86 in degree 5. Here we have that X

is given by two 5-fat points in P
6, and it is easy to check that h0(IX(5)) = 126 (all

quintics through X can be viewed as cones over a quintic of a P
4), so that its defect

is 84. Hence, even if Y is “forced” to be defective by X, its defect is bigger, i.e., Y

should impose on quintics 12 conditions more than X does, but it imposes only ten
conditions more.

It is easy to find similar behavior if d = k + 1, for instance for n = 8, s = 3,
d = k + 1 = 2 or n = 10, s = 3, d = k + 1 = 2.

In the case of P
2, we are able to prove our conjecture for small values of s:

Theorem 4.14 Let X, Y be as above, n = 2 and s = 3, 4, 5, 6 or 9. then

H(Y, d) = min
{

H(X, d) + 2s,

(
d + 2

2

)}
.

The proof uses mainly the method of Horace on the scheme Y [Hi]. For a detailed

proof, see [Be, BC].
Notice that this result implies that Y can be defective only when X is.
In general, it is quite a hard problem to determine, and even to formulate a con-

jecture upon, the postulation for a union of s m-fat points in P
n.

For what concerns P
2, there is a conjecture for the postulation of a generic union

of fat points, [Ha]. For a generic union A ⊂ P
2 of s m-fat points with s ≥ 10, the

conjecture says that A is regular in any degree d. This has been proved for m ≤ 20

[CCMO]. For s ≤ 9 all the defective cases are known (see [Ha] or [CCMO] for a
complete list).

This allows us to list all the defective cases for some values of s (for related results
see also [BF2]):

Corollary 4.15 Let n = 2, s ≤ 6 or s = 9. Then Os
k,2,d is defective if and only if

(i) s = 2, k = 1 and d = 3, or k ≥ 2 and k + 2 ≤ d ≤ 2k,

(ii) s = 3, 3k+5
2

≤ d ≤ 2k,

(iii) s = 5, 2k + 4 ≤ d ≤ 5k+3
2

,

(iv) s = 6, k ≡ 2 (mod 5) and 12(k+1)

5
≤ d ≤ 5k+3

2
, or k 6≡ 2 (mod 5) and 12(k+1)

5
+

1 ≤ d ≤ 5k+3
2

.

The case s = 2 is given by Corollary 4.8 and Propositions 4.4, 4.9 and 4.10, while the
other cases follow from Theorem 4.14 and the classification in [CCMO]. Notice that
there are no defective cases for s = 4 or s = 9. In case s = 2 defectiveness is forced
exactly by defectiveness of X or T.
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