Osculating Varieties of Veronese Varieties and Their Higher Secant Varieties

A. Bernardi, M. V. Catalisano, A. Gimigliano, M. Idà

Abstract. We consider the k-osculating varieties $O_{k, n . d}$ to the (Veronese) d-uple embeddings of \mathbb{P}^{n}. We study the dimension of their higher secant varieties via inverse systems (apolarity). By associating certain 0-dimensional schemes $Y \subset \mathbb{P}^{n}$ to $O_{k, n, d}^{s}$ and by studying their Hilbert functions, we are able, in several cases, to determine whether those secant varieties are defective or not.

1 Introduction

Let us consider the following case of a quite classical problem: given a generic form f of degree d in $R:=K\left[x_{0}, \ldots, x_{n}\right]$, what is the minimum s for which it is possible to write $f=L_{1}^{d-k} F_{1}+\cdots+L_{s}^{d-k} F_{s}$, where $L_{i} \in R_{1}$ and $F_{i} \in R_{k}$? When $k=0$ this is known as the "Waring problem for forms" (the original Waring problem is for integers), and it has been solved via results in [AH], (see also [IK, Ge]).

In this generality, the problem is part of what was classically called "finding canonical forms for an $(n+1)$-ary d-ic" [W]. The following examples illustrate cases where the answer to the problem is not the expected one.

Example 1 One would expect that a generic $f \in\left(K\left[x_{0}, \ldots, x_{4}\right]\right)_{3}$ could be written as $f=L_{1} F_{1}+L_{2} F_{2}$ with $L_{i} \in R_{1}$ and $F_{i} \in R_{2}$ (by a dimension count), but actually we need three addenda: $f=L_{1} F_{1}+L_{2} F_{2}+L_{3} F_{3}$.

Example 2 We cannot write a generic $f \in\left(K\left[x_{0}, \ldots, x_{5}\right]\right)_{3}$ as $f=L_{1} F_{1}+L_{2} F_{2}+$ $L_{3} F_{3}$, but only as $f=L_{1} F_{1}+\cdots+L_{4} F_{4}$.

Example 3 One would expect that a generic $f \in\left(K\left[x_{0}, \ldots, x_{6}\right]\right)_{4}$ could be written as $f=L_{1} F_{1}+L_{2} F_{2}+L_{3} F_{3}$, with $L_{i} \in R_{1}$ and $F_{i} \in R_{3}$, but not only is it impossible to write f as a sum of three addenda, but is it not even possible to write it as a sum of four. In fact f can only be written as $f=L_{1} F_{1}+\cdots+L_{5} F_{5}$.

All the examples above comes from Proposition 3.4.
Our approach to the problem is via the study of the dimension of higher secant varieties $O_{k, n . d}^{s}$ to $O_{k, n . d}$, the k-th osculating variety to the (Veronese) d-uple embeddings of \mathbb{P}^{n}, since giving an answer to this geometrical problem implies getting the solution to the problem on forms.

[^0]We would like to point out that those secant varieties can reach a very high defectiveness (see Example 4 after Proposition 4.4), a phenomenon that does not happen for smooth varieties.

We use inverse system (apolarity) to reduce this problem to the study of the postulation of certain 0-dimensional schemes $Y \subset \mathbb{P}^{n}$; namely we reduce the evaluation of $\operatorname{dim} O_{k, n, d}^{s}$ to the evaluation of $\operatorname{dim}\left|\mathcal{O}_{\mathbb{P}^{p}}(d) \otimes \mathcal{J}_{Y}\right|$ where $Y=Z_{1}+\cdots+Z_{s}$ is a 0 -dimensional subscheme of \mathbb{P}^{n} such that, for each $i=1, \ldots, s,(k+1) P_{i} \subset Z_{i} \subset$ $(k+2) P_{i}$ and $l\left(Z_{i}\right)=\binom{k+n}{n}+n$.

We conjecture that the "bad behavior" of Y is always related to the scheme given by the fat points $(k+1) P_{i}$ or $Z_{i} \subset(k+2) P_{i}$ not being regular (Conjecture 2). By using this idea, we are able to describe the behavior of the s-th secant variety of $O_{k, n . d}$ for many values of (k, n, d).

In the case of \mathbb{P}^{2}, using known results on fat points, we are able to classify all the defective $O_{k, 2 . d}^{s}$ for small values of $s(s \leq 6$ and $s=9$, see Corollary 4.15).

2 Preliminaries

Notation 2.1

(i) In the following, we set $R:=K\left[x_{0}, \ldots, x_{n}\right]$, where $K=\bar{K}$ and char $K=0$, hence R_{d} will denote the forms of degree d on \mathbb{P}^{n}.
(ii) If $X \subseteq \mathbb{P}^{N}$ is an irreducible projective variety, an m-fat point on X is the ($m-1$)-th infinitesimal neighborhood of a smooth point P in X, and it will be denoted by $m P$ (i.e., the scheme $m P$ is defined by the ideal sheaf $\mathcal{J}_{P, X}^{m} \subset \mathcal{O}_{X}$). Let $\operatorname{dim} X=n$; then $m P$ is a 0 -dimensional scheme of length $\binom{m-1+n}{n}$.
If Z is the union of the $(m-1)$-th infinitesimal neighborhoods in X of s generic points of X, we shall say for short that Z is union of s generic m-fat points on X.
(iii) If $X \subseteq \mathbb{P}^{N}$ is a variety and P is a smooth point on it, the projectivized tangent space to X at P is denoted by $T_{X, P}$.
(iv) We denote by $\langle U, V\rangle$ both the linear span in a vector space or in a projective space of two linear subspaces U, V.
(v) If X is a 0 -dimensional scheme, we denote by $l(X)$ its length, while its support is denoted by $\operatorname{supp} X$.

Definition 2.2 Let $X \subseteq \mathbb{P}^{N}$ be a closed irreducible projective variety; the ($s-1$)-th higher secant variety of X is the closure of the union of all linear spaces spanned by s points of X, and it will be denoted by X^{s}.

Let $\operatorname{dim} X=n$; the expected dimension for X^{s} is

$$
\operatorname{expdim} X^{s}:=\min \{N, s n+s-1\}
$$

where the number $s n+s-1$ corresponds to $\infty^{s n}$ choices of s points on X, plus ∞^{s-1} choices of a point on the \mathbb{P}^{s-1} spanned by the s points. When this number is too big, we expect that $X^{s}=\mathbb{P}^{N}$. Since it is not always the case that X^{s} has the expected dimension, when $\operatorname{dim} X^{s}<\min \{N, s n+s-1\}, X^{s}$ is said to be defective.

A classical result about secant varieties is Terracini's Lemma (see [Te, A]) which we give here in the following form:

Terracini's Lemma Let X be an irreducible variety in \mathbb{P}^{N}, and let P_{1}, \ldots, P_{s} be s generic points on X. Then, the projectivised tangent space to X^{s} at a generic point $Q \in\left\langle P_{1}, \ldots, P_{s}\right\rangle$ is the linear span in \mathbb{P}^{N} of the tangent spaces $T_{X, P_{i}}$ to X at P_{i}, $i=1, \ldots, s$, hence

$$
\operatorname{dim} X^{s}=\operatorname{dim}\left\langle T_{X, P_{1}}, \ldots, T_{X, P_{s}}\right\rangle
$$

Corollary 2.3 Let (X, \mathcal{L}) be an integral, polarized scheme. If \mathcal{L} embeds X as a closed scheme in P^{N}, then

$$
\operatorname{dim} X^{s}=N-\operatorname{dim} h^{0}\left(\mathcal{J}_{Z, X} \otimes \mathcal{L}\right)
$$

where Z is union of s generic 2-fat points in X.

Proof By Terracini's Lemma, $\operatorname{dim} X^{s}=\operatorname{dim}\left\langle T_{X, P_{1}}, \ldots, T_{X, P_{s}}\right\rangle$, with P_{1}, \ldots, P_{s} generic points on X. Since X is embedded in $\mathbb{P}^{N}=\mathbb{P}\left(H^{0}(X, \mathcal{L})^{*}\right)$, we can view the elements of $H^{0}(X, \mathcal{L})$ as hyperplanes in \mathbb{P}^{N}; the hyperplanes which contain a space $T_{X, P_{i}}$ correspond to elements in $H^{0}\left(\mathcal{J}_{2 P_{i}, X} \otimes \mathcal{L}\right)$, since they intersect X in a subscheme containing the first infinitesimal neighborhood of P_{i}. Hence the hyperplanes of \mathbb{P}^{N} containing the subspace $\left\langle T_{X, P_{1}}, \ldots, T_{X, P_{s}}\right\rangle$ are the sections of $H^{0}\left(\mathcal{J}_{Z, X} \otimes \mathcal{L}\right)$, where Z is the scheme union of the first infinitesimal neighborhoods in X of the points P_{i} 's.

Definition 2.4 Let $X \subset \mathbb{P}^{N}$ be a variety, and let $P \in X$ be a smooth point. We define the k-th osculating space to X at P as the linear space generated by $(k+1) P$, and we denote it by $O_{k, X, P}$; hence $O_{0, X, P}=\{P\}$, and $O_{1, X, P}=T_{X, P}$, the projectivised tangent space to X at P.

Let $X_{0} \subset X$ be the dense set of the smooth points where $O_{k, X, P}$ has maximal dimension. The k-th osculating variety to X is defined as

$$
O_{k, X}=\overline{\bigcup_{P \in X_{0}} O_{k, X, P}}
$$

3 Osculating Varieties to Veronese Varieties, and Their Higher Secant Varieties

Notation 3.1

(i) We will consider here Veronese varieties, i.e., embeddings of \mathbb{P}^{n} defined by the linear system of all forms of a given degree $d: \nu_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$, where $N=\binom{n+d}{n}-1$. The d-ple Veronese embedding of \mathbb{P}^{n}, i.e., $\operatorname{Im} \nu_{d}$, will be denoted by $X_{n, d}$.
(ii) In the following, we set $O_{k, n, d}:=O_{k, X_{n, d}}$, so that the $(s-1)$-th higher secant variety to the k-th osculating variety to the Veronese variety $X_{n, d}$ will be denoted by $O_{k, n, d}^{s}$.

Remark 3.2 From now on $\mathbb{P}^{N}=\mathbb{P}\left(R_{d}\right)$, and a form M will denote, depending on the situation, a vector in R_{d} or a point in \mathbb{P}^{N}.

We can view $X_{n, d}$ as given by the map $\left(\mathbb{P}^{n}\right)^{*} \rightarrow \mathbb{P}^{N}$, where $L \rightarrow L^{d}, L \in R_{1}$. Hence

$$
X_{n, d}=\left\{L^{d}, L \in R_{1}\right\}
$$

Let us assume (and from now on this assumption will be implicit) that $d \geq k$; at the point $P=L^{d}$ we have (see [Se], [CGG, §1], [BF, §2]:

$$
\begin{equation*}
O_{k, X_{n, d}, P}=\left\{L^{d-k} F, F \in R_{k}\right\} . \tag{*}
\end{equation*}
$$

Notice that $O_{k, X_{n, d}, P}$ has maximal dimension $\operatorname{dim} R_{k}-1=\binom{k+n}{n}-1$ for all $P \in$ $X_{n, d}$. This can also be seen in the following way: the fat point $(k+1) P$ on $X_{n, d}$ gives independent conditions to the hyperplanes of \mathbb{P}^{N}, since it gives independent conditions to the forms of degree d in \mathbb{P}^{n}. Hence, $O_{k, n, d}=\bigcup_{P \in X_{n, d}} O_{k, X_{n, d}, P}$.

As we have already noted for $k=0,(*)$ gives $O_{k, X_{n, d}, P}=\{P\}=\left\{L^{d}\right\}$, and for $k=1$, it becomes $O_{k, X_{n, d}, P}=T_{X_{n, d}, P}=\left\{L^{d-1} F, \quad F \in R_{1}\right\}$. In general, we have:

$$
O_{k, n, d}=\left\{L^{d-k} F, L \in R_{1}, F \in R_{k}\right\}
$$

Hence,

$$
O_{k, n, d}^{s}=\left\{L_{1}^{d-k} F_{1}+\cdots+L_{s}^{d-k} F_{s}, L_{i} \in R_{1}, F_{i} \in R_{k}, i=1, \ldots, s\right\} .
$$

In the following we also need to know the tangent space $T_{O_{k, n, d}, Q}$ of $O_{k, n, d}$ at the generic point $Q=L^{d-k} F$ (with $L \in R_{1}, F \in R_{k}$); one has that the affine cone over $T_{O_{k, n, d}, \mathrm{Q}}$ is $W=W(L, F)=\left\langle L^{d-k} R_{k}, L^{d-k-1} F R_{1}\right\rangle($ see [CGG, $\left.\S 1],[\mathrm{BF}, \S 2]\right)$.

Lemma 3.3 The dimension of $O_{k, n, d}$ is always the expected one, that is,

$$
\operatorname{dim} O_{k, n, d}=\min \left\{N, n+\binom{k+n}{n}-1\right\}
$$

Proof By Remark 3.2, $\operatorname{dim} O_{k, n, d}=\operatorname{dim} W(L, F)-1$, for a generic choice of L, F, so that we can assume that L does not divide F. When $\mathbb{P}(W) \neq \mathbb{P}^{N}$, we have

$$
\begin{aligned}
\operatorname{dim} W & =\operatorname{dim} L^{d-k} R_{k}+\operatorname{dim} L^{d-k-1} F R_{1}-\operatorname{dim} L^{d-k} R_{k} \cap L^{d-k-1} F R_{1} \\
& =\binom{k+n}{n}+(n+1)-1=\binom{k+n}{n}+n,
\end{aligned}
$$

since there is only the obvious relation between $L R_{k}$ and $F R_{1}$, namely $L F-F L=0$.

Consider the classic Waring problem for forms, i.e., "if we want to write a generic form of degree d as a sum of powers of linear forms, how many of them are necessary?" The problem is completely solved. In fact, $X_{n, d}^{s}=\left\{L_{1}^{d}+\cdots+L_{s}^{d}, L_{i} \in R_{1}\right\}$ (see Remark 3.2), hence the Waring problem is equivalent to the problem of computing $\operatorname{dim} X_{n, d}^{s}$. By Corollary 2.3 we have that $\operatorname{dim} X_{n, d}^{s}=N-\operatorname{dim} H^{0}\left(\mathcal{J}_{Z, \mathbb{p}^{n}} \otimes \mathcal{O}(d)\right)=$ $H(Z, d)-1$, where Z is a scheme of s generic 2-fat points in \mathbb{P}^{n}, and $H(Z, d)$ is the Hilbert function of Z in degree d. Since $H(Z, d)$ is completely known [AH], we are done.

More generally, one could ask which is the least s such that a form of degree d can be written as $L_{1}^{d-k} F_{1}+\cdots+L_{s}^{d-k} F_{s}$, with $L_{i} \in R_{1}$ and $F_{i} \in R_{k}$ for $i=1, \ldots$, s. Since by Remark 3.2 the variety $O_{k, n, d}^{s}$ parameterizes exactly the forms in R_{d} which can be written in this way, this is equivalent to answering the following question for each k, n, d : Find the least s, for each k, n, d, for which $O_{k, n, d}^{s}=\mathbb{P}^{N}$.

We are interested in a more complete description of the stratification of the forms of degree d parameterized by those varieties. Namely: Describe all sfor which $O_{k, n, d}^{s}$ is defective, i.e. for which

$$
\operatorname{dim} O_{k, n, d}^{s}<\operatorname{expdim} O_{k, n, d}^{s}
$$

Notice that, since $d \geq k$, one has $\operatorname{dim} O_{k, n, d}=N$ if and only if $\binom{d+n}{n} \leq n+\binom{k+n}{n}$, hence for all such k, n, d and for any s we have $\operatorname{dim} O_{k, n, d}^{s}=\operatorname{expdim} O_{k, n, d}^{s}=N$.

So we have to study this problem when $\binom{d+n}{n}>n+\binom{k+n}{n}, s \geq 2$. It is easy to check that whenever $n \geq 2$ this condition is equivalent to $d \geq k+1$. On the other hand, the case $n=1$ (osculating varieties of rational normal curves) can be easily described (all the $O_{k, 1, d}^{s}$'s have the expected dimension, see next section), so the question becomes:

Question $\mathbf{Q}(k, n, d):$ For all k, n, d such that $d \geq k+1, n \geq 2$, describe all s for which

$$
\begin{aligned}
\operatorname{dim} O_{k, n, d}^{s} & <\min \left\{N, s\left(n+\binom{k+n}{n}-1\right)+s-1\right\} \\
& =\min \left\{\binom{d+n}{n}-1, s\binom{k+n}{n}+s n-1\right\} .
\end{aligned}
$$

Remark 3.4 Terracini's lemma says that $\operatorname{dim} O_{k, n, d}^{s}=N-h^{0}\left(\mathcal{J}_{X} \otimes \mathcal{O}_{\mathbb{P}^{N}}(1)\right)$, where X is a generic union of 2-fat points on $O_{k, n, d}$. We are not able to handle directly the study of $h^{0}\left(\mathcal{J}_{X} \otimes \mathcal{O}_{\mathbb{P}^{N}}(1)\right)$, nevertheless, Terracini's lemma says that the tangent space of $O_{k, n, d}^{s}$ at a generic point of $\left\langle P_{1}, \ldots, P_{s}\right\rangle, P_{i} \in O_{k, n, d}$, is the span of the tangent spaces of $O_{k, n, d}$ at P_{i}. If $T_{O_{k, n, d}, P_{i}}=\mathbb{P}\left(W_{i}\right)$, then

$$
\operatorname{dim} O_{k, n, d}^{s}=\operatorname{dim}\left\langle T_{O_{k, n, d}, P_{1}}, \ldots, T_{O_{k, n, d}, P_{s}}\right\rangle=\operatorname{dim}\left\langle W_{1}, \ldots, W_{s}\right\rangle-1
$$

We want to prove, via Macaulay's theory of "inverse systems" [I, IK, Ge, CGG, BF], that for a single $W_{i}, \operatorname{dim} W_{i}=N+1-h^{0}\left(\mathbb{P}^{n}, \mathcal{J}_{Z}(d)\right)$, where $Z=Z(k, n)$ is a certain 0 -dimensional scheme which we will analyze further, and $\operatorname{dim}\left\langle W_{1}, \ldots, W_{s}\right\rangle=N+$ $1-h^{0}\left(\mathbb{P}^{n}, \mathcal{J}_{Y}(d)\right)$, where $Y=Y(k, n, s)$ is a generic union in \mathbb{P}^{n} of $s 0$-dimensional schemes isomorphic to Z. Hence,

$$
\operatorname{dim} O_{k, n, d}^{s}=\operatorname{dim}\left\langle W_{1}, \ldots, W_{s}\right\rangle-1=N-h^{0}\left(\mathbb{P}^{n}, J_{Y}(d)\right)
$$

So, one strategy in order to answer to the question $Q(k, n, d)$ for a given (k, n, d) is the following:

Step 1: Try to compute directly $\operatorname{dim}\left\langle W_{1}, \ldots, W_{s}\right\rangle$. If this is not possible, then
Step 2: Use the theory of inverse systems (classically apolarity): Compute $W^{\perp} \subset R_{d}$, with respect to the perfect pairing $\phi: R_{d} \times R_{d} \rightarrow K$, where:

- W is a vector subspace of R_{d},
- $\phi(f, g):=\Sigma_{I \in A_{n, d}} f_{I} g_{I}$, where $A_{n, d}:=\left\{\left(i_{0}, \ldots, i_{n}\right) \in \mathbb{N}^{n+1}, \Sigma_{j} i_{j}=d\right\}$, with any fixed ordering; this gives a monomial basis $\left\{x_{0}^{i_{0}} \cdots x_{n}^{i_{n}}\right\}$ for the vector space R_{d}; if $f \in R_{d}, f=\Sigma_{i_{0}, \ldots, i_{n} \in A_{n, d}} f_{i_{0}, \ldots, i_{n}} x_{0}^{i_{0}} \cdots x_{n}^{i_{n}}$, we write for short $f=\Sigma f_{I} \mathbf{x}^{I}$, with $I=\left(i_{0}, \ldots, i_{n}\right)$.
Then, consider $I_{d}:=W^{\perp} \subset R_{d}$. It generates an ideal $\left(I_{d}\right) \subset R$. In this way we define the scheme $Z(k, n, d) \subset \mathbb{P}^{n}$ by setting: $I_{Z(k, n, d)}:=\left(I_{d}\right)^{\text {sat }}$. We will show that these schemes do not depend on d.
Step 3: Compute the postulation for a generic union of s schemes $Z(k, n, d)$ in \mathbb{P}^{n}.
Recall that $\left[\left\langle W_{1}, \ldots, W_{s}\right\rangle\right]^{\perp}=W_{1}^{\perp} \cap \cdots \cap W_{s}^{\perp}$.
Lemma 3.5 For all k, n and $d \geq k+2$, we have:

$$
(k+1) O \subset Z(k, n, d) \subset(k+2) O
$$

where $Z(k, n, d)$ was defined in Remark 3.4, and $O=\operatorname{supp} Z(k, n, d) \in \mathbb{P}^{n}$.
Proof Let $W=\left\langle L^{d-k} R_{k}, L^{d-k-1} F R_{1}\right\rangle \subset R_{d}$ be the affine cone over $T_{O_{k, n, d}, Q}$ at a generic point $Q=L^{d-k} F$, with $L \in R_{1}, F \in R_{k}$. Without loss of generality we can choose $L=x_{0}$, so that $W=x_{0}^{d-k-1}\left(x_{0} R_{k}+F R_{1}\right)$, hence $x_{0}^{d-k} R_{k} \subset W \subset x_{0}^{d-k-1} R_{k+1}$. So, for any (k, n, d),

$$
\begin{equation*}
\left(x_{0}^{d-k-1} R_{k+1}\right)^{\perp} \subset W^{\perp} \subset\left(x_{0}^{d-k} R_{k}\right)^{\perp} \tag{**}
\end{equation*}
$$

Now, denoting by \mathfrak{p} the ideal $\left(x_{1}, \ldots, x_{n}\right)$, we have:

$$
\begin{aligned}
\left(x_{0}^{d-t} R_{t}\right)^{\perp} & =\left\langle\left\{x_{0}^{i_{0}} \cdots x_{n}^{i_{n}} \mid \Sigma_{j} i_{j}=d, i_{0} \leq d-t-1\right\}\right\rangle \\
& =\left\langle\left(\mathfrak{p}^{d}\right)_{d}, x_{0}\left(\mathfrak{p}^{d-1}\right)_{d-1}, \ldots, x_{0}^{d-t-1}\left(p^{t+1}\right)_{t+1}\right\rangle=\left(p^{t+1}\right)_{d}
\end{aligned}
$$

Now let us view everything in $(* *)$ as the degree d part of a homogeneous ideal; we get:

$$
\left(\mathfrak{p}^{k+2}\right)_{d} \subset\left(I_{Z(k, n, d)}\right)_{d} \subset\left(\mathfrak{p}^{k+1}\right)_{d} .
$$

Let $\left(x_{1}, \ldots, x_{n}\right)$ be local coordinates in \mathbb{P}^{n} around the point $O=(1,0, \ldots, 0)$. The above inclusions give, in terms of 0-dimensional schemes in \mathbb{P}^{p} :

$$
(k+1) O \subset Z(k, n, d) \subset(k+2) O
$$

Lemma 3.6 For any k, n, d with $d \geq k+2$, the length of $Z=Z(k, n, d)$ is:

$$
l(Z)=\operatorname{dim} W=\binom{k+n}{n}+n .
$$

Proof One $(k+2)$-fat point always imposes independent conditions to the forms of degree $d \geq k+1$. Since $Z \subset(k+2) O$, then $h^{1}\left(\mathcal{J}_{Z}(d)\right)=0$ immediately follows.

Now we have seen that our problem can be translated into a problem of studying certain schemes $Z(k, n, d) \subset \mathbb{P}^{n}$. We want to check that these schemes are actually the same for all $d \geq k+2$, say $Z(k, n, d)=Z(k, n)$.

Lemma 3.7 For any k, n and $d \geq k+2$, we have $Z(k, n, d)=Z(k, n, k+2)$. Henceforth we will denote $Z(k, n)=Z(k, n, d)$, for all $d \geq k+2$.

Proof By the previous lemmata we already know that $Z(k, n, d)$ and $Z(k, n, k+2)$ have the same support and the same length, hence it is enough to show that $Z(k, n, d) \subset Z(k, n, k+2)$ (as schemes) in order to conclude. This will be done if we check that $I(Z(k, n, k+2))_{d} \subset I(Z(k, n, d))_{d}$. In fact, since both ideals are generated in degrees $\leq d$, this will imply that $I(Z(k, n, k+2))_{j} \subset I(Z(k, n, d))_{j}$, $\forall j \geq d$, hence the inclusion will hold also between the two saturations, implying $Z(k, n, d) \subset Z(k, n, k+2)$.

Let $f \in I(Z(k, n, k+2))_{d}$, then $f=h_{1} g_{1}+\cdots+h_{r} g_{r}$, where $h_{j} \in R_{d-k-2}$ and $g_{j} \in I(Z(k, n, k+2))_{k+2}$. Since $I(Z(k, n, d))_{d}$ is the perpendicular to $W=$ $\left\langle L^{d-k} R_{k}, L^{d-k-1} F R_{1}\right\rangle$, it is enough to check that $h_{j} g_{j} \in W^{\perp}, j=1, \ldots, r$. Without loss of generality we can assume $L=x_{0}$; hence, since $g_{j} \in\left\langle L^{2} R_{k}, L F R_{1}\right\rangle^{\perp}$, $g_{j}=x_{0} g^{\prime}+g^{\prime \prime}$, with $g^{\prime}, g^{\prime \prime} \in K\left[x_{1}, \ldots, x_{n}\right]$ and $g^{\prime} \in\left(F R_{1}\right)^{\perp}$. It will be enough to prove $x_{0}^{i_{0}} \cdots x_{n}^{i_{n}} g_{j}=x_{0}^{i_{0}+1} \cdots x_{n}^{i_{n}} g^{\prime}+x_{0}^{i_{0}} \cdots x_{n}^{i_{n}} g^{\prime \prime} \in W^{\perp}, \forall i_{0}, \ldots, i_{n}$ such that $i_{0}+\cdots+i_{n}=d-k-2$. It is clear that $x_{0}^{i_{0}} \cdots x_{n}^{i_{n}} g^{\prime \prime} \in W^{\perp}$, since $i_{0} \leq d-k-2$. On the other hand, $x_{0}^{i_{0}+1} \cdots x_{n}^{i_{n}} g^{\prime} \in\left(x_{0}^{d-k} R_{k}\right)^{\perp}$ again by looking at the degree of x_{0}, while $x_{0}^{i_{0}+1} \cdots x_{n}^{i_{n}} g^{\prime} \in\left(x_{0}^{d-k-1} F R_{1}\right)^{\perp}$ since $g^{\prime} \in\left(F R_{1}\right)^{\perp}$.

Remark 3.8 From the lemmata above it follows that in order to study the dimension of $O_{k, n, d}^{s}$ for $d \geq k+2$, we only need to study the postulation of unions of schemes $Z(k, n)$. For $d=k+1$, we will work directly on W, see Proposition 4.4.

What we have is a sort of "generalized Terracini's lemma" for osculating varieties to Veronese varieties, since the formula $\operatorname{dim} O_{k, n, d}^{s}=N-h^{0}\left(\mathcal{J}_{Y}(d)\right)$ reduces to the one in Corollary 2.3 for $k=0$. Instead of studying 2-fat points on $O_{k, n, d}$ (see Remark 3.4), we can study the schemes $Y \subset \mathbb{P}^{n}$.

Notation 3.9 Let $Y \subset \mathbb{P}^{n}$ be a 0-dimensional scheme; we say that Y is regular in degree $d, d \geq 0$, if the restriction map $\rho: H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right) \rightarrow H^{0}\left(\mathcal{O}_{Y}(d)\right)$ has maximal rank, i.e., if $h^{0}\left(\mathcal{J}_{Y}(d)\right) \cdot h^{1}\left(\mathcal{J}_{Y}(d)\right)=0$. We set $\exp h^{0}\left(\mathcal{J}_{Y}(d)\right):=\max \left\{0,\binom{d+n}{n}-\right.$ $l(Y)\}$; hence to say that Y is regular in degree d amounts to saying that $h^{0}\left(\mathcal{J}_{Y}(d)\right)=$ $\exp h^{0}\left(\mathcal{J}_{Y}(d)\right)$.

Since we always have $h^{0}\left(\mathcal{J}_{Y}(d)\right) \geq \exp h^{0}\left(\mathcal{J}_{Y}(d)\right)$, we write

$$
h^{0}\left(\mathcal{J}_{Y}(d)\right)=\exp h^{0}\left(\mathcal{J}_{Y}(d)\right)+\delta
$$

where $\delta=\delta(Y, d)$. Hence, whenever $\binom{d+n}{n}-l(Y) \geq 0$, we have $\delta=h^{1}\left(\mathcal{J}_{Y}(d)\right)$. While if $\binom{d+n}{n}-l(Y) \leq 0, \delta=\binom{d+n}{n}-l(Y)+h^{1}\left(\mathcal{J}_{Y}(d)\right)$. In any case, by setting $\exp h^{1}\left(\mathcal{J}_{Y}(d)\right):=\max \left\{0, l(Y)-\binom{d+n}{n}\right\}$, we get $h^{1}\left(\mathcal{J}_{Y}(d)\right)=\exp h^{1}\left(\mathcal{J}_{Y}(d)\right)+\delta$.

Remark 3.10 For any k, n, d such that $d \geq k+1$, let $Y=Y(k, n, s) \subset \mathbb{P}^{n}$ be the 0 -dimensional scheme defined in Remark 3.4 for $Z=Z(k, n)$, and $\delta=\delta(Y, d)$. Then

$$
\operatorname{dim} O_{k, n, d}^{s}=\operatorname{expdim} O_{k, n, d}^{s}-\delta
$$

In particular, $\operatorname{dim} O_{k, n, d}^{s}=\operatorname{expdim} O_{k, n, d}^{s}$ if and only if

$$
h^{0}\left(\mathcal{J}_{Y}(d)\right)= \begin{cases}0 & \text { when }\binom{d+n}{n} \leq s\binom{k+n}{n}+s n \\ N+1-l(Y)=\binom{d+n}{n}-s\binom{k+n}{n}-s n^{\dagger} & \text { when }\binom{d+n}{n} \geq s\binom{k+n}{n}+s n\end{cases}
$$

${ }^{\dagger}\left(\right.$ i.e., $\left.h^{1}\left(\mathcal{J}_{Y}(d)\right)=0\right)$

4 A Few Results and a Conjecture

First let us consider the cases where the question $Q(k, n, d)$ has already been answered.

Case $\mathbf{Q}(\mathbf{k}, \mathbf{1}, \mathbf{d})$

In this case every $O_{k, 1, d}^{s}$, with $d \geq k+2$, has the expected dimension; in fact here $Z(k, 1)=(k+2) O$, and the scheme $Y=\{s(k+2)$-fat points $\} \subset \mathbb{P}^{1}$ is regular in any degree d. Notice that for $d=k+1$ we trivially have $O_{k, 1, k+1}=\mathbb{P}^{N}$.

Case $\mathrm{Q}(1, \mathrm{n}, \mathrm{d})$

Here the variety $O_{1, n, d}$ is the tangential variety to the Veronese $X_{n, d}$. It is shown in [CGG] that $Z(1, n)$ is a $(2,3)$-scheme, i.e., the intersection in \mathbb{P}^{n} of a 3-fat point with a double line. This is easy to see, e.g., by choosing coordinates so that $L=x_{0}, F=x_{1}$.

The postulation of generic unions of such schemes in \mathbb{P}^{n}, and hence the defectiveness of $O_{1, n, d}^{s}$, has been studied. Moreover, a conjecture regarding all defective cases is stated there:

Conjecture 1 ([CGG]) $O_{1, n, d}^{s}$ is not defective, except in the following cases:
(1) $d=2$ and $n \geq 2 s, s \geq 2$;
(2) $d=3$ and $n=s=2,3,4$.

In [CGG] the conjecture is proved for $s \leq 5$ (any d, n), for $s \geq \frac{1}{3}\binom{n+2}{2}+1$ (any $d, n)$; for $d=2$ (any s, n), for $d \geq 3$ and $n \geq s+1$, for $d \geq 4$ and $s=n$. In [B], the conjecture is proved for $n=2,3$ (any s, d).
$\mathbf{Q}(\mathbf{2}, \mathbf{2}, \mathbf{d})$. In $[\mathrm{BF}]$ it is proved that for any $(s, d) \neq(2,4), O_{2,2, d}^{s}$ has the expected dimension.

Now we are going to prove some other cases. The following (quite immediate) lemma describes what can be deduced about the postulation of the scheme Y from information on fat points:

Lemma 4.1 Let P_{1}, \ldots, P_{s} be generic points in \mathbb{P}^{n}, and set $X:=(k+1) P_{1} \cup \cdots \cup$ $(k+1) P_{s}, T:=(k+2) P_{1} \cup \cdots \cup(k+2) P_{s}$. Now let Z_{i} be a 0 -dimensional scheme supported on $P_{i},(k+1) P_{i} \subset Z_{i} \subset(k+2) P_{i}$, with $l\left(Z_{i}\right)=l\left((k+1) P_{i}\right)+n$ for each $i=1, \ldots, s$, and set $Y:=Z_{1} \cup \cdots \cup Z_{s}$. Then
(i) Y is regular in degree d if one of the following holds:
(a) $h^{1}\left(\mathcal{J}_{T}(d)\right)=0\left(\right.$ hence $\left.\binom{d+n}{n} \geq s\binom{k+n+1}{n}\right)$.
(b) $h^{0}\left(\mathcal{J}_{X}(d)\right)=0\left(\right.$ hence $\left.\binom{d+n}{n} \leq s\binom{k+n}{n}\right)$.
(ii) Y is not regular in degree d, with defect δ, if one of the following holds:
(c) $h^{1}\left(\mathcal{J}_{X}(d)\right)>\exp h^{1}\left(\mathcal{J}_{Y}(d)\right)=\max \left\{0, l(Y)-\binom{d+n}{n}\right\}$; in this case $\left.\delta \geq h^{1}\left(\mathcal{J}_{X}(d)\right)\right)-\exp h^{1}\left(\mathcal{J}_{Y}(d)\right.$.
(d) $h^{0}\left(\mathcal{J}_{T}(d)\right)>\exp h^{0}\left(\mathcal{J}_{Y}(d)\right)=\max \left\{0,\binom{d+n}{n}-l(Y)\right\}$; in this case $\delta \geq h^{0}\left(\mathcal{J}_{T}(d)\right)-\exp h^{0}\left(\mathcal{J}_{Y}(d)\right)$.

Proof The statement follows by considering the cohomology of the exact sequences:

$$
\begin{aligned}
& 0 \rightarrow \mathcal{J}_{T}(d) \rightarrow \mathcal{J}_{Y}(d) \rightarrow \mathcal{J}_{Y, T}(d) \rightarrow 0 \\
& 0 \rightarrow \mathcal{J}_{Y}(d) \rightarrow \mathcal{J}_{X}(d) \rightarrow \mathcal{J}_{X, Y}(d) \rightarrow 0
\end{aligned}
$$

where we have $h^{1}\left(\mathcal{J}_{Y, T}(d)\right)=h^{1}\left(\mathcal{J}_{X, Y}(d)\right)=0$, since those two sheaves are supported on a 0-dimensional scheme.

Lemma 4.2 Let $s \geq n+2$ and $d<k+1+2 \frac{k+1}{n}$. Then $O_{k, n, d}^{s}$ is not defective and $O_{k, n, d}^{s}=\mathbb{P}^{N}$.

Proof Let $Y \subset \mathbb{P}^{n}$ be as in Remark 3.4. We have to prove that $h^{0}\left(\mathcal{J}_{Y}(d)\right)=0$ in our hypotheses.

Let P_{1}, \ldots, P_{s} be the support of Y. We can always choose a rational normal curve $C \subset \mathbb{P}^{n}$ containing $n+2$ of the P_{i} 's. For any hypersurface F given by a section of $\mathcal{J}_{Y}(d)$, since $n d<(k+1)(n+2)$, by Bezout's theorem we get $C \subset F$. But we can always find a rational normal curve containing $n+3$ points in \mathbb{P}^{n}, so this would imply that any $P \in \mathbb{P}^{n}$ is on F, i.e., $\mathcal{J}_{Y}(d)=0$.

Lemma 4.3 Assume $s=n+1$. If $d \leq k+1+\frac{k+2}{n}$, then $O_{k, n, d}^{s}=\mathbb{P}^{N}$.

Proof Since $d \geq k+1$, we can set $d=k+j$ with $j>0$. Let $W_{i}=\left\langle L_{i}^{j} R_{k}, L_{i}^{j-1} F_{i} R_{1}\right\rangle$ with $F_{i} \in R_{k}$ for $i=1, \ldots, s$. Since $s=n+1$, without loss of generality we can assume that $L_{1}=x_{0}, \ldots, L_{n+1}=x_{n}$.

Hence $W_{1}+\cdots+W_{s}$ contains $U:=x_{0}^{j} R_{k}+\cdots+x_{n}^{j} R_{k}$. Now in U the missing monomials are $x_{0}^{i_{0}} \cdots x_{n}^{i_{n}}$ with $i_{l} \leq j-1$ for each $l=0, \ldots, n$, and $d=\operatorname{deg}\left(x_{0}^{i_{0}} \cdots x_{n}^{i_{n}}\right) \leq$ $(n+1)(j-1)$. Hence if $d \geq(n+1)(j-1)$, i.e., $d<k+1+\frac{k+1}{n}$, we get $U=R_{d}$.

If $d=(n+1)(j-1)$, the only missing monomial in U is $x_{0}^{j-1} \cdots x_{n}^{j-1}$, hence it is enough to choose one of the F_{i} 's in a proper way to get $W_{1}+\cdots+W_{s}=R_{d}$. If $d=(n+1)(j-1)-1$, i.e., $d=k+1+\frac{k+2}{n}$, the $n+1$ missing monomials in U are $x_{0}^{j-1} \cdots x_{i}^{j-2} \cdots x_{n}^{j-1}$ with $i=0, \ldots, n$ and again it is possible to choose the F_{i} 's so that $W_{1}+\cdots+W_{s}=R_{d}$.
$\mathbf{Q}(\mathbf{k}, \mathbf{n}, \mathbf{k}+\mathbf{1})$. The description for $k=1$ given in [CGG], together with following proposition, describe this case completely.

Proposition 4.4 If $s \geq 2, k \geq 2$ and $d=k+1$, consider the secant variety $O_{k, n, d}^{s} \subset$ \mathbb{P}^{N} :
(i) If $s \leq n-1$ and it expected dimension is $s\binom{k+n}{n}+s n-1$, then $O_{k, n, k+1}^{s}$ is defective with defect $\delta=s^{2}-s+s\binom{k+n}{n}+\binom{n-s+d}{d}-N$.
(ii) If $s \leq n-1$ and the expected dimension is $N=\binom{d+n}{n}-1$, then
(a) $O_{d-1, n, d}^{s}$ is defective with defect $\delta=\binom{n-s+d}{d}-s(n-s+1)$ if $s<\frac{1}{d}\binom{n-s+d}{d-1}$;
(b) $O_{d-1, n, d}^{s}=\mathbb{P}^{N}$ if $s \geq \frac{1}{d}\binom{n-s+d}{d-1}$.
(iii) If $s \geq n$ then $O_{d-1, n, d}^{s}=\mathbb{P}^{N}$.

Proof (i) We have that $W=W_{1}+\cdots+W_{s}=\left\langle x_{0} R_{k}, \ldots, x_{s-1} R_{k} ; F_{1} R_{1}, \ldots, F_{s} R_{1}\right\rangle$ in R_{d}. We can suppose that the F_{i} 's, $i=1, \ldots, s$ are generic in $K\left[x_{s}, \ldots, x_{n}\right]_{d}:=S_{d}$, and we have that $\frac{R_{d}}{W} \cong \frac{S_{d}}{\left(F_{1}, \ldots, F_{s}\right)_{d}}$. Then, since $\left(F_{1}, \ldots, F_{s}\right)_{d}=\left\langle F_{1} S_{1}, \ldots, F_{s} S_{1}\right\rangle$ and the F_{i} 's are generic, $\operatorname{dim}\left(F_{1}, \ldots, F_{s}\right)_{d}=\min \left\{\binom{n-s+d}{d}, s(n-s+1)\right\}$.

From this, and from our hypothesis about the expected dimension, we immediately get that $\operatorname{dim} W=N-\binom{n-s+d}{d}+s(n-s+1)$, and hence that the defect is $\delta=s^{2}-s+s\binom{k+n}{n}+\binom{n-s+d}{d}-N$.
(ii) If $s\binom{n+d-1}{n}+n s \geq\binom{ n+d}{n}$, we expect that $O_{d-1, n, d}^{s}=\mathbb{P}^{N}$. Proceeding as in the previous case, in order to compute $\operatorname{dim} W$ we can actually consider just the vector space $\left\langle F_{1} S_{1}, \ldots, F_{s} S_{1}\right\rangle$ whose dimension is $\min \left\{\binom{n-s+d}{d}, s(n-s+1)\right\}$; so we get that (a) If $s(n-s+1)<\binom{n-s+d}{d}$, then $O_{d-1, n, d}^{s}$ is defective. This happens if and only if $s<\frac{1}{d}\binom{n-s+d}{d-1}$, in this case the defect is $\delta=\binom{n-s+d}{d}-s(n-s+1)$. (b) If $s(n-s+1) \geq\binom{ n-s+d}{d}$, then $O_{d-1, n, d}^{s}=\mathbb{P}^{N}$ (for example this is always true for $d \geq n)$;
(iii) It suffices to prove that $O_{d-1, n, d}^{s}=\mathbb{P}^{N}$ for $s=n$. If $s=n$ and $d=k+1$, the subspace $W_{1}+\cdots+W_{s}$ can be written as $\left\langle x_{0} R_{k}, F_{1} R_{1}, \ldots, x_{n-1} R_{k}, F_{n} R_{1}\right\rangle$, which turns out to be equal to $\left\langle x_{0} R_{k}, \ldots, x_{n-1} R_{k}, x_{n}^{k+1}\right\rangle=R_{k+1}$ so $O_{d-1, n, d}^{n}=\mathbb{P}^{N}$.

Example 4 (The osculating fourth variety of $X_{6,5} \subset \mathbb{P}^{461}$) Let us consider the secant varieties of the fourth osculating variety $O_{4,6,5}$. We begin with $O_{4,6,5}^{2}$ (Proposition $4.4(\mathrm{i})$) and we expect that $\operatorname{dim} O_{4,6,5}^{2}=431$, but we get that the defect is $\delta=86$ so that $\operatorname{dim} O_{4,6,5}^{2}=345$.

When $s=3,4$ (Proposition 4.4(ii)), $\delta=44$ for $O_{4,6,5}^{3}$, while $\delta=9$ for $O_{4,6,5}^{4}$. Eventually, $O_{4,6,5}^{5}=\mathbb{P}^{461}$ So, even if we expect that $O_{4,6,5}^{3}$ should fill up \mathbb{P}^{N}, even the 4 -secant variety does not.

In terms of forms we get that we can write a generic $f \in\left(K\left[x_{0}, \ldots, x_{6}\right]\right)_{5}$ neither as $f=L_{1} F_{1}+L_{2} F_{2}+L_{3} F_{3}$ with $L_{i} \in R_{1}$ and $F_{i} \in R_{4}$ (as we expect), nor as $f=$ $L_{1} F_{1}+\cdots+L_{4} F_{4}$, but we need five addenda.

Case $\mathbf{Q}(k, 2, k+2)$

Corollary 4.5 Assume $d=k+2$ and $n=2$. Then $O_{k, 2, k+2}^{s}$ is not defective for $s \geq 3$ and $k \geq 1$, and $O_{k, 2, k+2}^{s}$ is defective for $s=2$ and $k \geq 1$.

Proof By Lemma 4.2 and Lemma 4.3, $O_{k, 2, k+2}^{s}$ is not defective for $s \geq 3$ and $d \geq 3$, i.e., $k \geq 2$. The case $k=1$ is already known by [B]. For $s=2$ and $k \geq 1$, let $Y=Y(k, 2) \subset \mathbb{P}^{2}$ be the 0 -dimensional scheme defined in Remark 3.4. It is easy to check that $\exp h^{0}\left(\mathcal{J}_{Y}(d)\right)=\exp h^{0}\left(\mathcal{J}_{T}(d)\right)=0, T$ denoting the generic union of two $(k+2)$-fat points in \mathbb{P}^{2}. Since T is not regular in degree $d=k+2$ for any $k \geq 1$, we conclude by Lemma 4.1(ii)(d) that $O_{k, n, k+2}^{s}$ is defective with defect $\geq h^{0}\left(\mathcal{J}_{T}(d)\right)=1$ (the only section is given by the $(k+2)$-ple line through the two points).

Case $\mathbf{Q}(k, 3, k+2)$
Corollary 4.6 Assume $d=k+2$ and $n=3$. Then $O_{k, 3, k+2}^{s}=\mathbb{P}^{N}$ for $s \geq n+1=4$ and $k \geq 1$, while $O_{k, 3, k+2}^{s}$ is defective for $s \leq 3$.

Proof The case $s \leq 3$ will be treated in Proposition 4.10.
If $s=4$ and $k=1, O_{1,3,3}^{4}=\mathbb{P}^{N}$ [CGG, (4.6)]. If $s=4$ and $k=2$, we have $O_{2,3,4}^{4}=\mathbb{P}^{N}$ by Lemma 4.3. If $s \geq 5$ and $k \geq 1$, or $s=4$ and $k \geq 3$, the thesis follows by Lemmata 4.2 and 4.3, respectively.

Case $\mathbf{Q}(k, 4, k+2)$

Corollary 4.7 Assume $d=k+2$ and $n=4$. Then $O_{k, 4, k+2}^{s}=\mathbb{P}^{N}$ for $s \geq 5$ and $k \geq 1$, while $O_{k, 4, k+2}^{s}$ is defective for $s \leq 4$.

Proof The case $s \leq 4$ will be given by Proposition 4.10.
If $s \geq 5$ and $k=1, O_{1,4,3}^{s}=\mathbb{P}^{N}$ [CGG, (4.6),(4.5)]. If $s=5$ and $k=2,3$, we have $O_{k, 4, k+2}^{5}=\mathbb{P}^{N}$ by Lemma 4.3. If $s \geq n+2=6$ and $k \geq 2$, or $s=5$ and $k \geq 4$, the thesis follows by Lemmata 4.2 and 4.3, respectively.

Case $\mathbf{Q}(\mathbf{k}, 2, k+3)$
Corollary 4.8 Assume $d=k+3$ and $n=2$. Then
(i) for $s=2$ and $k=1,2, \operatorname{dim} O_{k, 2, k+3}^{2}=s\binom{k+2}{2}+2 s-1$ (the expected one);
(ii) for $s=2$ and $k \geq 3, O_{k, 2, k+3}^{2}$ is defective;
(iii) for $s \geq 3$ and $k \geq 1, O_{k, 2, k+3}^{s}=\mathbb{P}^{N}$.

Proof If $s \geq n+2=4$ and $k \geq 2$, or $s=3$ and $k \geq 4$, the thesis follows by Lemmata 4.2 and 4.3 , respectively. If $s \geq 3$ and $k=1, O_{1,2, k+3}^{s}=\mathbb{P}^{N}$ [CGG, (4.5)]. If $s=3$ and $k=2,3$, we have $O_{k, 2, k+3}^{2}=\mathbb{P}^{N}$ by Lemma 4.3. If $s=2$ and $k=1$, or $s=2$ and $k=2, O_{k, 2, k+3}^{2} \neq \mathbb{P}^{N}$ is not defective, by [CGG, (4.6)] and [BF, Theorem 1], respectively. If $s=2$ and $k \geq 3$, then, in the notations of Lemma 4.1, we have for $k=3,4 \exp h^{1}\left(\mathcal{J}_{X}(d)\right)=\exp h^{1}\left(\mathcal{J}_{Y}(d)\right)=0$, and the union X of $2(k+1)$-fat points is not regular in degree $d=k+3$. For $k \geq 5 \exp h^{0}\left(\mathcal{J}_{Y}(d)\right)=\exp h^{0}\left(\mathcal{J}_{T}(d)\right)=0$, and the union T of $2(k+2)$-fat points is not regular in degree $d=k+3$. so we conclude by Lemma 4.1(c) and (d).

For $s \leq n+1$, we have several partial results:
Proposition 4.9 If $s \leq n+1, d \geq 2 k+1$ and $k \geq 2$, then $O_{k, n, d}^{s}$ is regular.
Proof We have to study the dimension of the vector space $W_{1}+\cdots+W_{s}=$ $\left\langle L_{1}^{d-k} R_{k}, L_{1}^{d-k-1} F_{1} R_{1}, \ldots, L_{s}^{d-k} R_{k}, L_{s}^{d-k-1} F_{s} R_{1}\right\rangle$, where L_{1}, \ldots, L_{s} are generic in R_{1} and F_{1}, \ldots, F_{s} are generic in R_{k}. Since $s \leq n+1$, without loss of generality we may suppose $L_{i}=x_{i-1}$ for $i=1, \ldots$, s. Since $d \geq 2 k+1$, for $\beta=d-k \geq 3$, the vector space $W_{1}+\cdots+W_{s}$ can be written as $\left\langle x_{0}^{\bar{\beta}} R_{k}, x_{0}^{\beta-1} F_{1} R_{1}, \ldots, x_{s-1}^{\beta} R_{k}, x_{s-1}^{\beta-1} F_{s} R_{1}\right\rangle$. If we show that for a particular choice of $F_{1}, \ldots, F_{s} \in R_{k}$ the dimension of $W_{1}+$ $\cdots+W_{s}=\operatorname{expdim}\left(O_{k, n, d}^{s}\right)+1$ we can conclude by semi-continuity that $O_{k, n, d}^{s}$ has the expected dimension. Let us consider the case $F_{i}=x_{i} x_{i+1} \widetilde{F}_{i}$ for $i=1, \ldots, s-2$, $F_{s-1}=x_{s-1} x_{0} \widetilde{F}_{s-1}$ and $F_{s}=x_{0} x_{1} \widetilde{F}_{s}$, where the \widetilde{F}_{j} 's are generic forms in R_{k-2}, $j=1, \ldots, n+1$. Let $\left\langle x_{i}^{\beta} R_{k}\right\rangle=: A_{i}$ and $\left\langle x_{i}^{\beta-1} F_{i+1} R_{1}\right\rangle=: A_{i}^{\prime}, i=0, \ldots, s-1$; then we get $A_{i}^{\prime}=\left\langle x_{i}^{\beta-1} x_{i+1} x_{i+2} \widetilde{F}_{i+1} R_{1}\right\rangle, i=0, \ldots, s-3 ; A_{s-2}^{\prime}=\left\langle x_{s-2}^{\beta-1} x_{s-1} x_{0} \widetilde{F}_{s-1} R_{1}\right\rangle$ and $A_{s-1}^{\prime}=\left\langle x_{s-1}^{\beta-1} x_{0} x_{1} \widetilde{F}_{s} R_{1}\right\rangle$. Now $W_{1}+\cdots+W_{s}=\sum_{j=0}^{s-1} A_{j}+\sum_{j=0}^{s-1} A_{j}^{\prime}$. We can easily notice that $A_{i}^{\prime} \cap\left(\sum_{j=0}^{s-1} A_{j}+\sum_{j=0, j \neq i}^{s-1} A_{j}^{\prime}\right)=A_{i} \cap\left(\sum_{j=0, j \neq i}^{s-1} A_{j}+\sum_{j=0}^{s-1} A_{j}^{\prime}\right)=A_{i} \cap A_{i}^{\prime}=$ $\left\langle x_{i}^{\beta} R_{k}\right\rangle \cap\left\langle x_{i}^{\beta-1} x_{i+1} x_{i+2} \widetilde{F}_{i+1} R_{1}\right\rangle=\left\langle x_{i}^{\beta} x_{i+1} x_{i+2} \widetilde{F}_{i+1}\right\rangle$ for any fixed $i=0, \ldots, s-3$ (analogously if $i=s-2, s-1$). So we have found exactly s relations and we can conclude that $\operatorname{dim}\left(W_{1}+\cdots+W_{s}\right)=\operatorname{dim}\left(\sum_{j=0}^{s-1} A_{j}\right)+\operatorname{dim}\left(\sum_{j=0}^{s-1} A_{j}^{\prime}\right)-s=s\binom{k+n}{n}+s(n+1)-s$, which is exactly the expected dimension.

Proposition 4.10 If $s \leq n$ and $k+2 \leq d \leq 2 k$, then $O_{k, n, d}^{s}$ is defective with defect δ such that
(i) $\delta \geq\binom{ n-s+d}{d}$ if the expected dimension is $\binom{d+n}{n}-1$;
(ii) $\delta \geq\binom{ s}{2}\binom{2 k-d+n}{n}$ if the expected dimension is $s\binom{k+n}{n}+s n-1$.

Proof Let $\beta:=d-k \geq 2$. We can rewrite the vector space $W_{1}+\cdots+W_{s}$ as follows: $\left\langle x_{0}^{\beta} R_{k}, x_{0}^{\beta-1} F_{1} R_{1}, \ldots, x_{s-1}^{\beta} R_{k}, x_{s-1}^{\beta-1} F_{s} R_{1}\right\rangle$.
(i) We can observe that $K\left[x_{s}, \ldots, x_{n}\right]_{d} \cap\left(W_{1}+\cdots+W_{s}\right)=\{0\}$, so if we expect that $O_{k, n, d}^{s}=\mathbb{P}^{N}$ we get a defect $\delta \geq\binom{ n-s+d}{d}$.
(ii) Suppose now that $\left.s\left[\begin{array}{c}k+n \\ n\end{array}\right)+n\right]<\binom{d+n}{n}$. If $O_{k, n, d}^{s}$ were to have the expected dimension we would not be able to find more relations among the W_{i} 's other than $x_{i}^{\beta} F_{i+1} \in\left\langle x_{i}^{\beta} R_{k}\right\rangle \cap\left\langle x_{i}^{\beta-1} F_{i+1} R_{1}\right\rangle$, for $i=0, \ldots, s-1$ (as it happens in Proposition 4.9). But it is easy to see that $x_{i}^{\beta} x_{j}^{\beta} F \in\left\langle x_{i}^{\beta} R_{k}\right\rangle \cap\left\langle x_{j}^{\beta} R_{k}\right\rangle$ with $i \neq j$ and $F \in R_{k-\beta}$. We have exactly $\binom{s}{2}$ such terms for any choice of $F \in R_{k-\beta}$. We can also suppose that the $F_{i} \in R_{k}$ which appear in $W_{1}+\cdots+W_{s}$ are different from $x_{j}^{\beta} F$ for any $F \in R_{k-\beta}$ and $j=0, \ldots, s-1$, because F_{1}, \ldots, F_{s} are generic forms of R_{k}. Then we can be sure that the form $x_{i}^{\beta} x_{j}^{\beta} F$ belonging to $\left\langle x_{i}^{\beta} R_{k}\right\rangle \cap\left\langle x_{j}^{\beta} R_{k}\right\rangle$ is not one of the $x_{i}^{\beta} F_{i+1}$ which belong to $\left\langle x_{i}^{\beta} R_{k}\right\rangle \cap\left\langle x_{i}^{\beta-1} F_{i+1} R_{1}\right\rangle$. Now $\operatorname{dim}\left(R_{k-\beta}\right)=\binom{k-\beta+n}{n}$ so we can find $\binom{s}{2}\binom{k-\beta+n}{n}$ independent forms that give defectiveness. Hence in case $\left.s\left[\begin{array}{c}k+n \\ n\end{array}\right)+n\right]<\binom{d+n}{n}$ we have $\operatorname{dim}\left(O_{k, n, d}^{s}\right) \leq \operatorname{expdim}-\binom{s}{2}\binom{k-\beta+n}{n}=\operatorname{expdim}-\binom{s}{2}\binom{2 k-d+n}{n}$.

Proposition 4.11 If $s=n+1, k+2 \leq d \leq 2 k$ and

$$
\operatorname{expdim}\left(O_{k, n, d}^{n+1}\right)=(n+1)\left(\binom{k+n}{n}+n\right)-1
$$

then $O_{k, n, d}^{n+1}$ is defective with defect $\delta \geq\binom{ n+1}{2}\binom{2 k-d+n}{n}$.
Proof The proof of this fact is the same as Proposition 4.10(ii).
Proposition 4.12 If $=n+1, n \geq \frac{k+2}{d-k-2}, k+2<d \leq 2 k$ and $\operatorname{expdim}\left(O_{k, n, d}^{n+1}\right)=N$, then $O_{k, n, d}^{n+1}$ is defective with defect $\delta \geq\binom{(n+1)(d-k-1)-(d+1)}{n}$.

Proof If $k+2<d \leq 2 k$, then $2<\beta:=d-k \leq k$ and we have to study the dimension of $W_{1}+\cdots+W_{n+1}=\left\langle x_{0}^{\beta} R_{k}, x_{0}^{\beta-1} F_{1} R_{1}, \ldots, x_{n}^{\beta} R_{k}, x_{n}^{\beta-1} F_{n+1} R_{1}\right\rangle$. It is easy to see that a monomial of the form $f=x_{0}^{\beta_{0}} \cdots x_{n}^{\beta_{n}}$ with $\sum_{i=0}^{n} \beta_{i}=d$ and $0 \leq$ $\beta_{i} \leq \beta-2$ for all $i \in\{0, \ldots, n\}$ is a form of degree d which does not belong to $W_{1}+\cdots+W_{n+1}$. In fact f can be written as $x_{0}^{d-\left(\gamma_{0}+k+2\right)} \cdots x_{n}^{d-\left(\gamma_{n}+k+2\right)}$ with $\sum_{i=0}^{n} \gamma_{i}=$ $n d-(n+1)(k+2)$ and $\gamma_{i} \geq 0$ for all $i=0, \ldots, n$ and these forms are exactly $\binom{n+(n+1)(d-k-2)-d}{n}=\binom{(n+1)(d-\overline{k-1})-(d+1)}{n}$. In order for these forms to exist, one needs that $(n+1)(d-k-2)-d \geq 0$, i.e., that $n \geq \frac{k+2}{d-k-2}$. This is sufficient to show that if we expect that $O_{k, n, d}^{n+1}=\mathbb{P}^{N}$, and if $n \geq \frac{k+2}{d-k-2}$ and $k+2<d \leq 2 k$, then $O_{k, n, d}^{n+1}$ is defective.

Let us note that what we just saw is not sufficient to say that the defect δ is exactly equal to $\binom{(n+1)(d-k-1)-(d+1)}{n}$, because in $R_{d} \backslash\left\langle W_{1}+\cdots W_{n+1}\right\rangle$ we can find also monomials like $x_{0}^{\beta_{0}} \cdots x_{n}^{\beta_{n}}$ with $\sum_{i=0}^{n} \beta_{i}=d$, at least one $\beta_{i}=\beta-1$ and each of the others $\beta_{j} \leq \beta-2$. Hence $\delta \geq\binom{(n+1)(d-k-1)-(d+1)}{n}$.

All the results on defectiveness lead us to formulate the following:

Conjecture $2 O_{k, n, d}^{s}$ is defective only if Y is as in Lemma 4.1(c) or (d).
The conjecture amounts to saying that the defect of Y can only occur if defect of the fat points schemes X or T imposes it.

Remark 4.13 In many examples the defect of Y is exactly the one imposed by X or by T, i.e., the inequalities on δ in Lemma 4.1 are equalities. But this is not always the case. For example if we consider the variety $O_{4,5,6}^{2}$ (see Example 4) here, we get that the corresponding scheme Y has defect 86 in degree 5. Here we have that X is given by two 5 -fat points in \mathbb{P}^{6}, and it is easy to check that $h^{0}\left(\mathcal{J}_{X}(5)\right)=126$ (all quintics through X can be viewed as cones over a quintic of a \mathbb{P}^{4}), so that its defect is 84 . Hence, even if Y is "forced" to be defective by X, its defect is bigger, i.e., Y should impose on quintics 12 conditions more than X does, but it imposes only ten conditions more.

It is easy to find similar behavior if $d=k+1$, for instance for $n=8, s=3$, $d=k+1=2$ or $n=10, s=3, d=k+1=2$.

In the case of \mathbb{P}^{2}, we are able to prove our conjecture for small values of s :
Theorem 4.14 Let X, Y be as above, $n=2$ and $s=3,4,5,6$ or 9 . then

$$
H(Y, d)=\min \left\{H(X, d)+2 s,\binom{d+2}{2}\right\}
$$

The proof uses mainly the method of Horace on the scheme Y [Hi]. For a detailed proof, see [Be, BC].

Notice that this result implies that Y can be defective only when X is.
In general, it is quite a hard problem to determine, and even to formulate a conjecture upon, the postulation for a union of $s m$-fat points in \mathbb{P}^{n}.

For what concerns \mathbb{P}^{2}, there is a conjecture for the postulation of a generic union of fat points, [Ha]. For a generic union $A \subset \mathbb{P}^{2}$ of $s m$-fat points with $s \geq 10$, the conjecture says that A is regular in any degree d. This has been proved for $m \leq 20$ [CCMO]. For $s \leq 9$ all the defective cases are known (see [Ha] or [CCMO] for a complete list).

This allows us to list all the defective cases for some values of s (for related results see also [BF2]):

Corollary 4.15 Let $n=2, s \leq 6$ or $s=9$. Then $O_{k, 2, d}^{s}$ is defective if and only if
(i) $s=2, k=1$ and $d=3$, or $k \geq 2$ and $k+2 \leq d \leq 2 k$,
(ii) $s=3, \frac{3 k+5}{2} \leq d \leq 2 k$,
(iii) $s=5,2 k+4 \leq d \leq \frac{5 k+3}{2}$,
(iv) $s=6, k \equiv 2(\bmod 5)$ and $\frac{12(k+1)}{5} \leq d \leq \frac{5 k+3}{2}$, or $k \not \equiv 2(\bmod 5)$ and $\frac{12(k+1)}{5}+$ $1 \leq d \leq \frac{5 k+3}{2}$.
The case $s=2$ is given by Corollary 4.8 and Propositions 4.4, 4.9 and 4.10, while the other cases follow from Theorem 4.14 and the classification in [CCMO]. Notice that there are no defective cases for $s=4$ or $s=9$. In case $s=2$ defectiveness is forced exactly by defectiveness of X or T.

References

[A] B. Ådlandsvik, Varieties with an extremal number of degenerate higher secant varieties. J. Reine Angew. Math. 392(1988), 16-26.
[AH] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables. J. Algebraic Geom. 4(1995), no. 2, 201-222.
B] E. Ballico, On the secant varieties to the tangent developable of a Veronese variety. J. Algebra 288(2005), no. 2, 279-286.
[BF] E. Ballico and C. Fontanari, On the secant varieties to the osculating variety of a Veronese surface. Cent. Eur. J. Math. 1(2003), no. 3, 315-326.
[BF2] , A Terracini lemma for osculating spaces with applications to Veronese surfaces. J. Pure Appl. Algebra 195(2005), no. 1, 1-6.
[Be] A. Bernardi, Varieties Parameterizing Forms and Their Secant Varieties. Tesi di Dottorato, Universitá di Milano.
[BC] A. Bernardi and M. V. Catalisano, Some defective secant varieties to osculating varieties of Veronese surfaces. Collect. Math. 57(2006), no. 1, 43-68.
[CGG] M. V. Catalisano, A. V. Geramita, and A. Gimigliano. On the secant varieties to the tangential varieties of a Veronesean, Proc. Amer. Math. Soc. 130(2002), 975-985.
[CCMO] C. Ciliberto, F. Cioff, R. Miranda, and F. Orecchia, Bivariate Hermite interpolation and linear systems of plane curves with base fat points. In: Computer Mathematics, Lecture Notes Series on Computing 10, World Scientific Publ., River Edge, NJ, 2003, pp. 87-102.
[Ge] A. V. Geramita, Inverse Systems of Fat Points. Queen's Papers in Pure Appl. Math. 102(1998), 3-104.
[Ha] B. Harbourne, Problems and progress: A survey on fat points in $\mathbb{P}^{p 2}$. Queen's Papers in Pure Appl. Math. 123(2002), 87-132.
[Hi] A. Hirschowitz, La méthode de Horace pour l'interpolation à plusieurs variables. Manuscripta Math. 50(1985), 337-388.
[I] A. Iarrobino, Inverse systems of a symbolic power. III. Thin algebras and fat points. Compositio Math. 108(1997), no. 3, 319-356.
[IK] A. Iarrobino and V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci. Lecture Notes in Mathematics 1721, Springer-Verlag, Berlin, 1999.
[Se] B. Segre, Un'estensione delle varietà di Veronese ed un principio di dualità per le forme algebriche. I and II. ti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat.(8) 1(1946), 313-318; 559-563.
[Te] A. Terracini, Sulle V_{k} per cui la varietà degli $S_{h}(h+1)$-seganti ha dimensione minore dell'ordinario. Rend. Circ. Mat. Palermo 31(1911), 392-396.
[W] K. Wakeford, On canonical forms. Proc. London Math. Soc. (2) 18(1919/20), 403-410.

Dipartimento di Matematica di Bologna
Porta San Donato 5
40126, Bologna
Italia
e-mail: abernardi@dm.unibo.it

Dipartimento di Matematica and C.I.R.A.M.
Università di Bologna
Bologna
Italia
e-mail: gimiglia@dm.unibo.it

DIPTEM,
Università di Genova
Genova
Italia
e-mail: catalisano@dimet.unige.it
Dipartimento di Matematica
Università di Bologna
Bologna
Italia
e-mail: ida@dm.unibo.it

[^0]: Received by the editors August 6, 2004; revised October 4, 2004.
 All authors supported by MIUR. The last two authors supported by the University of Bologna, funds for selected research topics.

 AMS subject classification: $14 \mathrm{~N} 15,15 \mathrm{~A} 69$.
 (C)Canadian Mathematical Society 2007.

