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Abstract

A Hawkes process is also known under the name of a self-exciting point process and
has numerous applications throughout science and engineering. We derive the statistical
estimation (maximum likelihood estimation) and goodness-of-fit (mainly graphical) for
multivariate Hawkes processes with possibly dependent marks. As an application, we
analyze two data sets from finance.
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1. Introduction

Numerous approaches have been proposed to model clusters of extremes in univariate as
well as multivariate time series models for a variety of examples throughout the sciences and
economics. A particularly useful class of stochastic processes in this context consists of self-
exciting or Hawkes processes; see also [6, Example 6.3(c)] and the references therein. For
early references to Hawkes processes, see [9] and the numerous papers by Yoshihiko Ogata on
seismology and earthquake modeling (e.g. [15] and [16]). For applications of Hawkes process
models to finance, see, for instance, [1], [2], [5], [8], and the numerous references therein. Our
paper is mainly based on [10], [11], and [12, Chapter 5]. The novelty of our approach is the
intrinsic multivariate character coupled with the possibility of the model to allow for dependent
marks through the notion of copulas. The difficulties with using multivariate Hawkes processes
are their mathematical complexity and the typically large number of parameters to be estimated.

The paper is structured as follows. In Section 2 we introduce the concept of a multivariate
Hawkes process. Section 3 contains parameter estimation using maximum likelihood, together
with graphical goodness-of-fit tests. Section 4 gives two examples of Hawkes processes fitted
to financial data: one involving a multivariate model and the other involving a univariate
model with vector-valued marks. The choice of these parameterizations stresses more the
numerical fitting feasibility, rather than offering an in-depth search for a parsimonious model.
Mathematical details in Sections 2 and 3 are mostly omitted; the interested reader is referred
to [11].

2. Multivariate Hawkes process

In the context of marked point processes, the terms multivariate and vector-valued refer to
two different mathematical concepts. The points of a multivariate point process (with scalar-
valued marks) are triples of the form (ti , di, xi), with i ∈ I , I countable. The component
ti ∈ R is the time, di ∈ {1, . . . , d} is the component index, and xi ∈ R is the mark value of
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the ith point. In contrast, the points of a (univariate) point process with vector-valued marks
are tuples of the form (ti , xi,1, . . . , xi,d ), where xi,j ∈ R for i ∈ I and j ∈ {1, . . . , d}. The
component ti ∈ R again denotes the time and the xi,j are the components of the vector-valued
mark xi ∈ R

d .
The index di , appearing in the multivariate case, is not a mark in addition to xi ; it assigns ti

to the component di of the point process. In contrast, a point process with vector-valued marks
has d mark values xi,j , one for each of the d components.

Hawkes [9] originally introduced self-exciting point processes via intensity functions; see
also [14] for an early discussion.

Definition 1. (Hawkes process.) Consider either a multivariate marked point process N whose
j th component Nj , j ∈ {1, . . . , d}, has intensity

λj (t) := ηj +
d∑

k=1

ϑjk

∫
(−∞,t)×R

ωj (t − s)gk(x)Nk(ds × dx), t ∈ R, (1)

where ωj : R+ → R+, gk : R → R+, and ηj , ϑjk ≥ 0; or consider a point process with
vector-valued marks with intensity

λ(t) := η + ϑ

∫
(−∞,t)×Rd

ω(t − s)g(x)N(ds × dx), t ∈ R, (2)

where ω : R+ → R+, g : R
d → R+, and η, ϑ ≥ 0. Then this point process is called a Hawkes

process and the corresponding intensity is called a Hawkes intensity.

For simplicity, we refer to the process with intensity (1) as the multivariate case, whereas
we refer to the process with intensity (2) as the vector-valued case.

Remark 1. It is indeed possible to define a marked point process by specifying its intensity
process. To this end, the intensity process needs to satisfy some formal requirements; see,
e.g. Definition 6.10 and Definition 6.13 of [11]. On the other hand, the pure specification
of an intensity process leaves open questions of existence and uniqueness. In the case of a
Hawkes process, these questions can be answered successfully. Sufficient conditions are given
in Condition 1 below.

The forms of (1) and (2) are closely related to the underlying branching structure. Every
point of a Hawkes process is either an immigrant or a descendant. The immigration intensities η

govern the frequency at which new immigrants arrive. Whenever a point event occurs, be it an
immigrant or a descendant, the intensity is increased temporarily, i.e. points arrive at a higher
frequency for some time. This intensity increase causes secondary point events, which in turn
can spawn descendants of their own. How fast this effect decays in time is governed by the
decay functions ω. The amount by which the intensity increases does not only depend on the
time lag, but also on the mark value of the triggering point. The impact of a point event is
determined by the impact functions g. Moreover, the branching coefficients ϑ specify the mean
expected number of descendants of a given point event.

Remark 2. (Branching structure.) Let d ≥ 1 and j, k ∈ {1, . . . , d}.
Immigration intensities. As the name implies, the immigration intensities ηj and η govern the

frequency at which new immigrants arrive.
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Decay functions. In the multivariate case, ωj admits the following interpretation. Assume
that a point has occurred at time s ∈ R in component k, and fix some t > s such that
�t := t − s is the time lag. The intensities of all other components j ∈ {1, . . . , d} at
time t are increased proportionally to ωj (�t). An analogous interpretation applies to the
vector-valued case.

Interpretation of gk in the multivariate case. Assume that the triggering point event is part of
component di and has mark value xi . The intensity of all other components is then
increased proportionally to gdi

(xi).

Interpretation of g in the vector-valued case. Assume that the triggering point event has the
vector-valued mark xi ∈ R

d . The intensity is then increased proportionally to g(xi ).

Branching coefficients. In the multivariate case, given that the point event belongs to component
k, the intensity of component j is increased proportionally to ϑjk . In the vector-valued
case, every point event increases the intensity proportionally to ϑ .

Definition 2. (Branching matrix.) In the multivariate case define the (d × d)-matrix Q :=
(ϑjk; j, k ∈ {1, . . . , d}); in the vector-valued case define the (1 × 1)-matrix Q := ϑ . The
matrix Q is called the branching matrix.

The intensity process given in Definition 1 is the time-intensity process. It describes the
dynamics of the ground process only, i.e. the process without the marks. For a full specification
of a marked point process, we need to know the (time, space)-intensity process. But in our
situation, it suffices to specify the mark distribution; see also Definition 6.4.III.(b) of [6].

Definition 3. (Mark distribution.) Let Fj be a family of distribution functions on R with
corresponding densities fj for j ∈ {1, . . . , d}.
Multivariate case. Given that a point event is part of component j , the associated mark Xj is

independent of the past of the process and has density fj .

Vector-valued case. Any newly generated point has a vector-valued mark X ∈ R
d attached to

it; this mark X is independent of the past of the process and has joint density f . We
assume that the joint density is given through a copula C with density c, namely,

f (x) = c(F1(x1), . . . , Fd(xd))

d∏
i=1

fi(xi), x ∈ R
d .

For an introduction to copulas, see Chapter 5 of [12].

Condition 1. (Normalizing conditions.) In the multivariate case, for all j, k ∈ {1, . . . , d},
assume that ∫ ∞

0
ωj (t) dt = 1 and

∫ ∞

−∞
gk(x)fk(x) dx = 1.

In the vector-valued case, assume that∫ ∞

0
ω(t) dt = 1 and

∫
Rd

g(x)f (x) dx = 1.

The purpose of Condition 1 is twofold. It allows us to formulate Proposition 1 below in
a compact form and improves the stability of numerical calculations. On the negative side,
imposing these conditions will in general lead to more complicated impact functions g; see
Section 1.3 of [11]. From now on we assume that Condition 1 is satisfied.
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Proposition 1. (Existence and uniqueness.) Suppose that the following conditions hold.

1. The spectral radius of the branching matrix satisfies Spr(Q) < 1.

2. The decay functions satisfy

∫ ∞

0
tωj (t) dt < ∞ for all j ∈ {1, . . . , d}

in the multivariate case and ∫ ∞

0
tω(t) dt < ∞

in the vector-valued case.

Then there exists a unique point process with associated intensity process as in Definition 1.
Existence here means that we can find a probability space (�, F , P) which is rich enough to
support such a process. Uniqueness means that any two processes complying with Definition 1
and the above conditions have the same distribution.

Proof. See Theorem 6.55 of [11].

Assumption 2 in Proposition 1 is actually a stronger requirement than what is needed from a
minimalistic point of view. It does guarantee a strong coupling property which is desirable for
numerical calculations. More about the different types of convergence and stability is explained
in Definition 1 of [4] and the subsequent remarks therein; see also Proposition 6.43 and the
proof of Theorem 6.55 of [11].

3. Parameter estimation, goodness-of-fit tests, and simulation

The standard way of estimating the parameters of a Hawkes process is the maximum
likelihood method. In order to define the likelihood function, let us fix an observation period
D := [T∗, T ∗], i.e. the time interval during which empirical data have been collected.

Definition 4. (Compensator.) For all t ∈ D, define the compensator in the multivariate and
vector-valued cases respectively by

�j(t) :=
∫ t

T∗
λj (s) ds for j ∈ {1, . . . , d} and �(t) :=

∫ t

T∗
λ(s) ds.

By substituting the definition of the intensity processes, expanded expressions for the
compensators are as follows.

Multivariate case. For j ∈ {1, . . . , d} and t ∈ D,

�j(t) = ηj (t − T∗) +
d∑

k=1

ϑjk

∫
(−∞,t)×R

[ω̄j (t − u) − ω̄j (T∗ − u)]gk(x)Nk(du × dx).

Vector-valued case. For t ∈ D,

�(t) = η(t − T∗) + ϑ

∫
(−∞,t)×Rd

[ω̄(t − u) − ω̄(T∗ − u)]g(x)N(du × dx).
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The functions ω̄j and ω̄ are defined, for t ≥ 0, by

ω̄j (t) :=
∫ t

0
ωj (s) ds for j ∈ {1, . . . , d} and ω̄(t) :=

∫ t

0
ω(s) ds,

with the convention that ω̄j (t) = ω̄(t) = 0 if t < 0.

Proposition 2. (Hawkes likelihood function.) Let N be a Hawkes process which has been
observed in the time interval D = [T∗, T ∗].

1. In the multivariate case the log-likelihood is given by

log L =
d∑

j=1

∫
D×R

log λj (t)Nj (dt × dx)

+
d∑

j=1

∫
D×R

log fj (x)Nj (dt × dx) −
d∑

j=1

�j(T
∗).

2. In the vector-valued case the log-likelihood is given by

log L =
∫

D×Rd

log λ(t)N(dt × dx) +
∫

D×Rd

log
d∏

i=1

fi(xi)N(dt × dx)

− �(T ∗) +
∫

D×Rd

log c(F1(x1), . . . , Fd(xd))N(dt × dx).

Proof. The general case is proved in [11, Proposition 6.27] and the special case for copula
structured marks is derived in [10, Proposition 3.2].

Standard numerical maximization algorithms can now be used to estimate the parameters of
a corresponding Hawkes model. It then remains to assess the goodness-of-fit of an estimated
Hawkes model, which is what we will discuss next. Bear in mind that the methods mentioned
below are not specific to Hawkes processes alone, but can be used for other point processes as
well. The basic idea is to construct the so-called residual process and compare the observed
residual process with its theoretically expected counterpart.

Definition 5. (Residual process.) Assume that we have observed n points of a Hawkes process
in the time interval D.

Multivariate case. Recall that the points are of the form (ti , di, xi), where 1 ≤ i ≤ n. Define
the sequence (τ1, . . . , τn) of transformed times by

τi := �di
(ti).

Now, for j ∈ {1, . . . , d}, define the j th residual process Rj as the point process consisting
of all τi which lie in component j , i.e. where di = j .

Vector-valued case. Recall that the points are of the form (ti , xi,1, . . . , xi,d ). Define the se-
quence of transformed times (τ1, . . . , τn) by

τi := �(ti).

The residual process R is then defined to be the point process consisting of the n

transformed times τi, i = 1, . . . , n.

https://doi.org/10.1239/jap/1318940477 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940477


372 P. EMBRECHTS ET AL.

Proposition 3. (Random time change.) Take the observation period D := [T∗, ∞) and
consider a Hawkes process with strictly positive immigration intensities ηj , η > 0.

1. In the multivariate case the residual processes Rj , j = 1, . . . , d, are independent
Poisson processes with unit intensity.

2. In the vector-valued case the residual process R is a Poisson process with unit intensity.

Proof. This statement goes back to [13], [17], and [18]. Modern formulations are given in
[3, Theorem T16, Section II.6] and [6, Theorem 7.4.I].

The concept of random time change is not only valuable in goodness-of-fit analysis, but it
also forms the basis for a simulation algorithm.

Remark 3. (Simulation of a Hawkes process.) Consider first the multivariate case. One way to
simulate a multivariate Hawkes process is by using a multivariate extension ofAlgorithm 7.5.IV
of [6]. It is commonly called Ogata’s modified thinning algorithm. The adaption of this
algorithm to Hawkes processes is given in [11, Algorithm 1.21]. A corresponding algorithm
for the vector-valued case is more straightforward, since one basically has to simulate a one-
dimensional Hawkes process plus a vector-valued mark from a d-dimensional copula with given
marginal distributions; see Algorithms 3.1–3.3 of [10].

4. Two illustrative examples

The examples below highlight the statistical fitting procedures and goodness-of-fit tests.
The second example mainly stresses the differences between the multivariate and vector-valued
cases rather than giving a detailed statistical analysis. The software package underlying the
applications in this section is written in R and C++ and is available from the second author
upon request.

4.1. Multivariate Hawkes process

As an example, we fit a multivariate Hawkes process to daily stock market index data.
More precisely, we consider daily closing values from the Dow Jones Industrial Average from
1994-01-01 to 2010-12-31. Our aim is to capture extremal clustering in the context of multi-
variate Hawkes processes. The Hawkes process model is very versatile and offers many
possibilities to calibrate the model to the characteristics of the data. To keep the exposition
manageable, we focus on only one specific model. We did however look at other specifications
which turned out to be suitable as well. We make the following assumptions on decay and
impact functions and mark distributions.

Point process structure. Starting with the daily log-return data, we fix two thresholds, given
by the 10% and 90% quantiles. We retain only those days for which the return is either
below the 10% threshold or above the 90% threshold. All other days are removed. This
procedure leads to two point process components (d = 2), corresponding to the negative
and positive excesses. The mark values attached to the times are the absolute values of
the excesses.

Decay function. We use exponential decay functions ωj (t) = δj exp{−δj t}, but make the
additional assumption that the decay speeds of the two components coincide, i.e. that
δ = δ1 = δ2 > 0. As a side remark, choosing this decay function has the nice property
that the Hawkes process becomes a Markov process; see [11, Remark 1.22]. This is an
advantage for numerical computations.
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Mark distributions. We assume that the marks, i.e. the threshold excesses, have an exponential
distribution with parameter λj > 0 for j ∈ {1, 2}. This choice is partly based on
extreme value theory as discussed in Section 3.4 of [7] and Section 7.3.2 of [12],
where the exponential distribution appears as the excess limit in the Gumbel case.
Furthermore, the exponential distribution facilitates the numerics in the construction of
parametric bootstrap confidence intervals below. Another relevant example (with slower
convergence for the bootstrap) would have been the Pareto distribution.

Impact functions. In order to cover constant and linear impact effects, we take the impact
functions g̃k(x) = αk + βkx, where αk, βk ≥ 0 for k ∈ {1, 2}. Since these functions
do not satisfy Condition 1, we actually need to take the following normalized impact
functions instead:

gk(x) = g̃k(x)

E[gk(X)] = αk + βkx

αk + βk E[X] = λk

αkλk + βk

(αk + βkx).

A closer examination shows that gk has only one degree of freedom in the parameters
(αk, βk). Hence, we may set αk = 1 without loss of generality.

The full Hawkes model has six more parameters, namely two immigration intensities η1
and η2, and four branching coefficients ϑjk for j, k = 1, 2. This leads in total to the follow-
ing 11 parameters: η1, η2, ϑ11, ϑ12, ϑ21, ϑ22, β1, β2, δ, λ1, λ2. By using maximum likelihood
parameter estimation, as explained in Section 3, the following parameter estimates are obtained:

η1 = 0.018, ϑ11 = 0.74, ϑ21 = 0.83, β1 = 47, λ1 = 109, δ = 0.021,

η2 = 0.012, ϑ12 = 0, ϑ22 = 0, β2 = 74, λ2 = 122.

In order to obtain approximate confidence intervals, we applied a parametric bootstrapping
method for the more important parameters. Based on the estimated parameters, 1000 sample
paths of the same length as the original data set are generated, and then the parameters are
reestimated. This leads to the following 95% confidence intervals:

η1 ∈ [0.012, 0.032], ϑ11 ∈ [0.42, 0.82], ϑ21 ∈ [0.62, 0.94], δ ∈ [0.017, 0.030],
η2 ∈ [0.005, 0.022], ϑ12 ∈ [0, 0.21], ϑ22 ∈ [0, 0.19].
These show a fair amount of uncertainty in the parameter estimates, indicating that the data set
is still relatively small for an accurate fitting of a Hawkes model. The above parameter estimates
yield a point estimate of Spr(Q) = 0.74, with a confidence interval of I := [0.52, 0.83]. Since
I ⊆ [0, 1), the Hawkes process is well defined. The construction of asymptotic confidence
intervals based on the Fisher information matrix is a topic for further research.

We now look at the estimated Hawkes process graphically. Depicted in the top two panels of
Figure 1 is the point process consisting of negative and positive threshold excesses, as explained
above. The bottom two panels show the estimated intensity processes, corresponding to the
two components. The two intensity processes are clearly quite similar. Indeed, this is expected
as the estimated spectral radius is not too far from 1, and hence a strong coupling between the
two components exists.

Next we look at some graphical goodness-of-fit tests which are motivated by the random
time change as explained in Proposition 3. We start with what we call a barcode plot. In the top
two panels of Figure 2, the original point process is represented by vertical lines, one for each
event of the two components N1 and N2. The vertical axis in this plot is for visualization only
(all lines have the same height) and has no further meaning. In contrast, the bottom two panels
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Figure 1: Estimated Hawkes process: multivariate case (Example 4.1).

Negative component of original process

Positive component of original process

Negative component of residual process

Positive component of residual process

Figure 2: Barcode plot (Example 4.1).

show the two components of the residual process, using the same representation as in the top
two panels. The theory suggests that the residual process should consist of two independent
Poisson processes. Whether this is so may be difficult to assess from this plot. What is clearly
visible is that the clusters in the original point process have disappeared and the residual point
process exhibits no obvious clusters any more.

Next we look at the interarrival times of the residual process. The left-hand panel of Figure 3
shows a Q-Q-plot of these interarrival times against the standard exponential distribution,
separately for the two components of the residual process. The right-hand panel of Figure 3
shows the associated counting functions of the two components, i.e. the number of events versus
time. Additionally, there are two confidence bands for the Poisson null hypothesis, i.e. bands
which a genuine Poisson process does not cross on a 95% and a 99% level. We omit here
further tests for the quality of the estimated mark distributions, as such tests are not specific to
Hawkes processes.
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Residual interarrival times Residual counting processes

Figure 3: Goodness-of-fit plots for residual interarrival times and residual counting processes
(Example 4.1).
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Figure 4: Simulated Hawkes process: multivariate case (Example 4.1).

One final visual test is a comparison between the original point process and a random
sample path of the estimated Hawkes process. This has the following reasoning. At times
even an inappropriate choice of a Hawkes process is able to detect the apparent clusters in a
data set. At a first glance, there would be no reason to reject such a Hawkes model. But the
characteristics of such a Hawkes process may be quite different from what we would expect at
first. This is why we take a time interval of the same length as the original data set and simulate
a random path on this interval, using the estimated Hawkes process. Note that this has nothing
to do with a prediction. The only purpose of this is to check whether the clustering behavior of
the estimated process is indeed what the estimated intensity process suggests.

A simulated path (see Remark 3) of the estimated Hawkes process is shown in Figure 4. The
negative and positive marks are again given in the top two panels and the two intensity processes
are shown in the bottom two panels. Note that the simulated version looks comparable to the
estimated version in Figure 1, or at least, no serious discrepancy stands out.
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4.2. Hawkes process with vector-valued marks

For this example, we consider the following three indices: the Dow Jones IndustrialAverage,
the Nasdaq-100, and the SP500 Composite. The data consists of hourly observations from
1997-10-01 to 2010-03-01. Denote the log-returns of the three indices as ri,1, ri,2, and ri,3 for
i ∈ {1, . . . , n}.
Time events. Consider an equally weighted portfolio consisting of the three above indices, and

define
pi := ri,1 + ri,2 + ri,3.

Similar to the first example, we take the 1% and 99% empirical quantiles for the pi-
series. But this time we are not interested in the excesses, instead we simply record the
exceedance times ti .

Mark values. At each exceedance time ti , we define the following three-dimensional mark
xi ∈ R

3:
xi,1 = |ri,1|, xi,2 = |ri,2|, xi,3 = |ri,3|.

Hence, we obtain the following sequence of observations:

(t1, x1,1, x1,2, x1,3), (t2, x2,1, x2,2, x2,3), . . . , (tn, xn,1, xn,2, xn,3).

Point process structure. Clearly, this sequence has a structure different from that in the first
example. Indeed there are now three (simultaneous) marks attached to each point event.
This is caused by the fact that the event is not defined separately for each component,
but rather through a linear combination. Consequently, we are now dealing with a point
process with vector-valued marks.

Decay function. Again, we take

ω(t) = δ exp{−δt}, δ > 0.

Mark distribution. We assume that the marks follow a gamma distribution with parameters
ζj , σj > 0:

fj (x) = xζj −1 exp{−x/σj }
�(ζj )σ

ζj

j

, x > 0.

There are in total six parameters: ζj , σj , j = 1, 2, 3.

Impact function. We choose an additive form for the impact function g, which simplifies the
normalizing Condition 1:

g(xi ) := 1

d

d∑
k=1

gk(xi,k).

Here gk : R → R+. More specifically, we choose polynomial functions

g̃k(x) = αk + βkx + γkx
2,

and associated normalized impact functions

gk(x) = g̃k(x)

E[gk(X)] = αk + βkx + γkx
2

αk + βkζkσk + γkζk(ζk + 1)σ 2
k

.

Hence, there are nine parameters: αk, βk, γk ≥ 0, k = 1, 2, 3.
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Figure 5: Estimated Hawkes process: vector-valued case (Example 4.2).

Copula. We assume that our marks admit a three-dimensional Gauss copula with an equi-
correlation structure, i.e. the off-diagonal entries of the correlation matrix are all equal
to ρ ∈ [0, 1).

Finally, there are two more parameters: the branching coefficient ϑ and the immigration
intensity η. In total we have 19 parameters to estimate: ϑ , η, δ, α1, β1, γ1, α2, β2, γ2, α3,
β3, γ3, ζ1, σ1, ζ2, σ2, ζ3, σ3, ρ. Again, using maximum likelihood, the following parameter
estimates are obtained:

α1 = 1.821, β1 = 13.85, γ1 = 2.163, ζ1 = 2.671, σ1 = 0.006,

α2 = 5.928, β2 = 13.87, γ2 = 0.700, ζ2 = 5.185, σ2 = 0.002,

α3 = 12.83, β3 = 25.61, γ3 = 2.601, ζ3 = 4.13, σ3 = 0.002,

ϑ = 0.914, δ = 0.017, η = 0.008, ρ = 0.475.

The branching coefficient is estimated to be ϑ = 0.914, which again suggests a well-defined
Hawkes process. Note that this model allows for two different dependence structures: the
frequency dependence caused by the shared intensity process, and the dependence between the
different components, modeled through the notion of a copula. For the latter dependence, note
the estimated value of ρ. Figure 5 shows the three-dimensional mark values and the estimated
intensity process of the fitted Hawkes model.

Similar graphical goodness-of-fit tests, as well as a simulation comparison and the construc-
tion of parametric bootstrap confidence intervals, can now be made.

5. Conclusion

In this paper we have shown that multivariate Hawkes processes offer a versatile class
of point processes capable of modeling extremal behavior of financial time series. From a
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mathematical point of view, these processes are often perceived as rather involved. We have
shown that numerical procedures for estimation and simulation can be successfully implemented
and applied. The applicability of these procedures extends well beyond financial applications.
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