
Figure 1: VAST Process Maps Dyads

(12%). Antibiotic usage trends (Fig. 1) on the ACCS floors, which were showing a nonsignificant increasing trend (P = .70) before and after the intervention, now show a nonsignificant decreasing trend (P = .20). **Conclusions:** There are numerous opportunities for antibiotic optimization on adult surgical floors. Although handshake stewardship is a labor-intensive intervention, preliminary findings after 1 year show that, on ACCS units, there may be a trend toward a sustained impact. **Disclosures:** None

Antimicrobial Stewardship & Healthcare Epidemiology 2023;3(Suppl. S2):s37–s38 doi:10.1017/ash.2023.267

Presentation Type:

Poster Presentation - Poster Presentation

Subject Category: Antibiotic Stewardship

Variations in implementation of antimicrobial stewardship via telehealth at select Veterans Affairs medical centers

Geneva Wilson; Amanda Vivo; Daniel Livorsi; Rabeeya Sabzwari; Christopher Crnich; Robin Jump and Charlesnika Evans

Background: Antimicrobial stewardship programs (ASPs) seek to reduce the prevalence of antimicrobial-resistant and healthcare-associated infections. There are limited infectious disease (ID) physicians and pharmacists to support these ASPs, particularly in rural areas. The Veterans Health Administration has a robust telehealth program in place. Our previous work has demonstrated the feasibility of using telehealth modalities to support ASPs at rural Veterans Affairs medical centers (VAMCs) by pairing them with an ID expert from a larger, geographically distant, VAMC. This program, dubbed the Videoconference Antimicrobial Stewardship Team (VAST), emphasizes discussion of patients undergoing treatment for an active infection and additional relevant clinical topics with a multidisciplinary team at the rural VA. VAST implementation is ongoing at VAMCs. To understand and compare the qualitative differences in implementation, we used process maps to describe the VAST at 3 VAMC dyads. Methods: Team members from each dyad participated in interviews at 3, 6, and 9 months after beginning their VAST sessions. Questions addressed several aspects of VAST implementation and included identifying cases and topics to discuss; advance preparation for meetings; the frequency and general structure of VAST meetings; and documentation including workload capture. The research team used the responses to develop process maps to

permit visual display and comparison of VAST implementation. Results: The first dyad began in January 2022 and the third in March 2022. The sessions had 3 phases: preparation, team meeting, and documentation of experts' recommendations. Tasks were shared between VAST champions at the rural VAMC and the ID experts (Fig. 1). The preparation phase showed the most variation among the 3 dyads. In general, champions at the rural VA identified cases and topics for discussion that were sent to the ID expert for review. The approaches used to find cases and the type of preparatory work by the ID expert differed. Team meetings differed in both frequency and participation by professionals from the rural site. Documentation of expert recommendations processes appeared similar among the dyads. Discussion: Each of the 3 dyads implemented VAST differently. These results suggest that the overall structure of the VAST is readily adaptable and that each site tailored VAST to suit the clinical needs, workflow, and culture of their partner facility. Future work will seek to determine which aspects in the preparation, team meeting, or documentation phases are associated with successful ASPs, including assessment of quantitative and qualitative outcomes.

Disclosures: None

Antimicrobial Stewardship & Healthcare Epidemiology 2023;3(Suppl. S2):s38 doi:10.1017/ash.2023.268

Presentation Type:

Poster Presentation - Poster Presentation Subject Category: Antibiotic Stewardship Predictors of antimicrobial use in intensive care unit patients Owen Albin; Jonathan Troost and Keith Kaye

Background: Identification of predictors of antibiotic use can inform targeted antimicrobial stewardship initiatives and can account for sources of bias in before-and-after interventional stewardship studies. To date, no study has identified clinical predictors of antimicrobial use within intensive care units (ICUs), where antimicrobial resistance is most prevalent and problematic. **Methods:** As part of an ongoing prospective, single-arm, pilot feasibility trial of an ICU diagnostic stewardship intervention, we performed a nested retrospective cohort study to explore associations between patient clinical variables and ICUs antimicrobial use and resistance rates (AURs). We included all patients hospitalized in 3 ICUs (surgical, medical, and cardiac) from 2017 to 2021 at Michigan Medicine, a large, tertiaryTable 1. Clinical variables independently associated with ICU antimicrobial utilization rates

Variables associated with increased ICU-AURs			
Comorbidities	Medical Interventions	Diagnoses	Labs & Vitals
Bronchiectasis Paraplegia Immunocompromised status Metastatic malignancy	Use of central line Vasopressor use Stress dose steroids use	Bacteremia Urinary tract infection Pneumonia Surgical site infection Intraabdominal infection	Abnormal WBC Elevated SOFA score Positive respiratory culture
Variables associated with decreased ICU-AURs			
Comorbidities	Medical Interventions	Diagnoses	Labs & Vitals
Coronary artery disease	Receipt of invasive nonsurgical procedure (i.e. endoscopy, catheterization)	COVID-19	Oliguric AKI

care, academic medical center. Data were extracted from the electronic medical record using a structured query. Admission-level data were captured, including patient demographics, medical comorbidities, International Classification of Disease, Tenth Revision (ICD-10) admission diagnoses, as well as calendar day-level data including vital signs, clinical and microbiologic laboratory data, measures of acute severity of illness, ventilator-supplemental oxygen metrics, and procedural interventions using current procedural terminology (CPT) codes. ICU AURs were defined as total antibiotic days of therapy per patient per 100 ICU days. Associations between clinical variables and ICU AURs were calculated as rate ratios (RRs). Multiple imputation using fully conditional specification was performed to create 25 imputation data sets. Negative binomial regression models were constructed for each data set using backward selection. Variables retained in >50% of models were included in a final multivariate model. Results: In total, 15,177 ICU patient admissions were captured. Age, sex assigned at birth, and race did not independently associate with ICU AURs. Comorbidities, medical interventions, admission diagnoses, and laboratory data that independently associated with ICU-AURs are shown in Table 1. The clinical variables most strongly associated with increased ICU-AURs were pneumonia (RR, 1.55; 95% CI, 1.451.64), bacteremia (RR, 1.35; 95% CI, 1.25-1.46), intraabdominal infection (RR, 1.35; 95% CI, 1.18-1.55), SOFA score (RR, 1.27; 95% CI, 1.14-1.42), abnormal WBC (RR, 1.26; 95% CI, 1.20-1.32), and immunocompromised status (RR, 1.20; 95% CI, 1.10-1.31). Clinical variables most strongly associated with decreased ICU-AURs were cardiac ICU (RR, 0.56; 95% CI, 0.52-0.60), COVID-19 (RR, 0.62; 95% CI, 0.56-0.70), and receipt of an invasive nonsurgical procedure (RR, 0.90; 95% CI, 0.82-0.98). Conclusions: In this single-center retrospective cohort study, several clinical variables were independently associated with ICU-AURs. These results may be used to identify patient subgroups for potentially high-yield ICU-based stewardship interventions and to account for sources of bias in before-and-after studies of ICU-based stewardship interventions.

Disclosures: None

Antimicrobial Stewardship & Healthcare Epidemiology 2023;3(Suppl. S2):s38–s39 doi:10.1017/ash.2023.269

Presentation Type:

Poster Presentation - Poster Presentation Subject Category: Antibiotic Stewardship Congruence between International Classification of Disease, Tenth Revision (ICD-10) code and written documentation for outpatient encounters with antibiotic prescriptions Charles Oertli; Milner Owens Staub and Sophie Katz

Background: Antimicrobial stewardship programs (ASPs) often rely on *International Classification of Diseases, Tenth Revision* (ICD-10) codes to assess antibiotic appropriateness for provider feedback. Concordance between encounter ICD-10 codes and documented indication for antibiotics based on manual chart review varies greatly (74%–95%) in the inpatient setting. Data on concordance between documented indication and ICD-10 code in the outpatient setting are scarce. **Methods:** We conducted a retrospective cohort study of 650 randomly selected outpatient encounters with antibiotic prescriptions from walk-in and retail clinics between July 15 and September 15, 2021, at Vanderbilt University Medical Center. We performed chart review to compare documented

antibiotic indication to the 3 most frequent encounter-associated ICD-10 codes. Also, 12 encounters were excluded due to insufficient available written documentation. The 95% CI for proportion of encounters with concordant antibiotic indications was calculated using Stata version 15.1 software. Results: Of the 638 antibiotic prescriptions with written documentation available for chart review, 204 (32%) were for amoxicillin, 102 (16%) were for amoxicillin-clavulanate, 61 (10%) were for cefdinir, and 56 (9%) were for azithromycin. Overall, 540 (84.6%; 95% CI, 81.6%-87.4%) of 638 encounters had concordant antibiotic indication based on documentation in the note and associated ICD-10 for the encounter. Of the 540 encounters with concordant ICD-10 and documented indications, 348 (64%), 130 (24%), and 35 (6%) were listed as the first, second, and third ICD-10 codes, respectively. An additional 27 (5%) had a concordant ICD-10 code listed beyond the third position. In total, 125 (19.6%) of 638 encounters did not have the intended antibiotic indication as documented in the note in the 3 most frequent encounter-associated ICD-10 codes (whether a lower position or incongruent ICD-10 code with documentation). Of those 125 encounters, 42 (34%) had a documented diagnosis of strep pharyngitis, 16 (13%) had a documented diagnosis of skin or soft-tissue infection, 11 (9%) had a documented diagnosis of urinary tract infection, and 11 (9%) had a documented diagnosis of acute otitis media. Conclusions: Our data suggest that outpatient antimicrobial prescriptions correlate relatively well with encounter ICD-10 codes. However, most ASP prescribing goals aim to reduce inappropriate prescribing to 10% or fewer of prescriptions based on indication. Therefore, providers may not trust individual prescribing feedback that is based on data that is only correct 85% of the time. For ASPs to accurately assess prescribing and provide trusted, meaningful recommendations and specific feedback to individual prescribers, more reliable and valid data are needed. We intend to evaluate whether requiring outpatient antibiotic indications on prescriptions increases data reliability and validity.

Disclosures: None

Antimicrobial Stewardship & Healthcare Epidemiology 2023;3(Suppl. S2):s39 doi:10.1017/ash.2023.270

Presentation Type:

Poster Presentation - Poster Presentation Subject Category: Antibiotic Stewardship Pneumonia panel results and antibiotic prescribing in COVID-19 patients in 2020 versus 2022

Aysha Hussain; Trevor Van Schooneveld; Scott Bergman; Molly Miller; Paul D. Fey and Erica Stohs

Background: Antibiotics are frequently prescribed in patients with COVID-19 infections to treat secondary bacterial pneumonia. The pneumonia panel (PNP) is a molecular diagnostic tool that rapidly detects 33 bacterial and viral targets. The utility of this panel in COVID-19 patients and how it may direct antibiotic use is unknown. We sought to understand the utilization of PNP in patients with COVID-19 pneumonia over time by comparing clinical parameters, microbiologic results, and antibiotic use between May-December 2020 and January-July 2022. Methods: We implemented the PNP in May 2020 with antimicrobial stewardship guidance, provider education, and order restriction to critical care and infectious disease clinicians. From February-July 2021 prescribers received regular structured antimicrobial stewardship feedback regarding PNP results; from August 2021 to January 2022, no antimicrobial stewardship feedback was provided; from February to July 2022, intermittent feedback was provided. We compared PNP and culture results from sputum or bronchoalveolar lavage samples and antibiotic use and modification within 24 hours of PNP result from patients with confirmed COVID-19 pneumonia between May-December 2020 and January-July 2022. Clinical data and antibiotic use were abstracted through chart review. We excluded patients who died within 72 hours of PNP, those who had concurrent nonpulmonary infections, and those whose COVID-19 test was >30 days prior. Results: We included 114 patients in 2020 and 71 patients in 2022. The overall median age was 61 years, 71% were male, and 66% were mechanically ventilated without statistical differences between the cohorts,