
H. Tamura
Nagoya Math. J.
Vol. 71 (1978), 125-147

ON THE DECAY OF THE LOCAL ENERGY FOR WAVE

EQUATIONS WITH A MOVING OBSTACLE

HIDEO TAMURA

§ O Introduction

Recently the decay of the local energy for wave equations with a
moving obstacle Θ(t) has been studied by Cooper [1] and Cooper and
Strauss [2] etc. In their works it has been assumed that the obstacle
Θ(t) is uniformly bounded in time t and that the origin is contained in
Θ(t) for all t > 0 and Θ(t) is star-shaped with respect to the origin.
(The second condition has been assumed implicitly in [2] (see Assumption
(B), [2]).)

The purpose of this paper is to give a slight extension of their
works in the following two aspects: (i) We deal with a expanding
obstacle with time (Assumption (4) stated in § 1). (ii) We do not as-
sume that the origin is contained in the obstacle for all t. Instead,
we assume that there exists a point ait) satisfying Assumptions (2) and
(3) in the obstacle for each t (see § 1). These assumptions are roughly
stated as follows: The obstacle is star-shaped with respect to ait) and
a(t) moves slowly with time. However, we admit ait) to go to infinity
as ί-*oo. The more precise assumptions on the obstacle Θ(t) are made
in § 1 and the main result is stated there.

§ l Assumption and main result

First we shall introduce some notations and make several assump-
tions on the moving obstacle.

Let (Pit), t > 0, be a bounded domain in R3 with smooth boundary
and let S{t) be a domain exterior to Θ{t). We denote by Σ(t) the bound-
ary of Sit). Let

X
0<ί<oo
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126 HIDEO TAMURA

We denote by

Σ = U Σ(jb) X {t}
0<ί<oo

the lateral boundary of δ and assume that Σ is smooth. For each fixed

s > 0, we introduce the notations δ8(0, T) and 2^(0, Γ), 0 < T < oo, as

follows:

U ί)) X {s + t) .
0<t<T

In particular, when T = oo, we write <?, = *fs(0, oo) and Σs = ^(O, oo).

In order to clarify the fixation of s, we occasionally write δ(β + ί) and

Σ(s + ί), ί > 0, as <?(i s) and ^(ί s)f respectively.

We denote by n = (^, w2, ̂ 3, ̂ ) the exterior unit normal to δ on J?

and write nx = (^1? %2, ̂ 3).

ASSUMPTION (1). 21 is time-like, that is \nt\<\nx\ for each (x,t)eΣ,

\nx\ being the length of nx.

ASSUMPTION (2). There exists a point a(t) = (aβb),a2(t),az(Jb)) in Θ(t)

with the following properties:

(1.1) | α t ( ί ) | = ( a l t ( t y + a j t ? + a u ( t ) ψ 2 < μ , μ < l ,

for t > 0, where ajt(t) = — α/ί) , = 1,2,3

(1.2) |α, t(t)| < C(t + I)-' , and \ajtt(t)\ < C(t + I)- 1 -' , 0 < β < 1

(1.3) Θ{t) is star-shaped with respect to a(t).

We introduce the notation : For x = (a?!, #2, ^3)

(1.4) r(t) = \x- a(t)\ and «/a?, t) = ^ ( ^

Then the condition (1.3) is stated as follows:

nnt) = ^(», t)^y < 0

for (x, t) e Σ, where we have used the summation convention.

ASSUMPTION (3). There exists a constant σ0, 0 < σ0 < 1, such that

f o r (x, t)eΣ

(1.5) nt + σonr(t) < 0 .
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WAVE EQUATIONS 127

If we assume that Θ(t) is uniformly (strongly) star-shaped in ί with
respect to a(t), that is nr(t) < — σι\nx\, 0 < σλ < 1, then (1.5) follows from
the condition

nt < σ2\nx\

for some σ2, 0 < σ2 < σλ. If Θ(t) is a ball with radius p(t), then we can
take a(t) as the center of Θ(t) and σ0 close enough to 1.

ASSUMPTION (4). Θ(t) satisfies

(1.6) {x\r(t) < 7o} c Θ(t) C {x\r(t) < (t + r)«}

for each t > 0, where 0 < α < 1, γ> 1 and 0 < γQ < γa.

The constants a, β, γ, γ0, μ and σ0 are used with the meanings ascribed
here throughout this paper.

Now, under Assumptions (1) ~ (4) stated above, we consider the
following equation:

(P.I) utt - Δu = 0 in £

(P.2) u = 0 o n ί

(P.3) u(x, 0) = f(x) , Mt(a?, 0) = g(x) on ^(0) .

Here the initial data / and g are assumed to be of compact support
and to belong to iϊJ(<f(O)) and L2(^(0)), respectively. It is known that
under this condition for initial data, the above problem has a unique
(weak) solution such that for any fixed T

u e C([0, T] H\{£(t)) and ut e C([0, T] L\S{t)) .

Furthermore, if the initial data / and g satisfy the compatible condi-
tion of infinite order, the solution u is smooth. And also, a weak so-
lution with the above property is obtained as a limit of such a smooth
solution in the energy norm. ([1], [3])

Next, for fixed s > 0, we consider the following equation:

' S 9(P.l s) vtt - Δv = 0 in Ss

(P.2 s) v = 0 on Σs ,

(P.3;s) v(x,0;s) = f(x;s) , vt(x,0; s) = g(x; s) on*f(0;s),

where the initial data f(x s) and g(x s) are assumed to satisfy the
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128 HIDEO TAMURA

same conditions as f(x) and g(%) in (P.3). We denote by v(t;s) a so-
lution of problem (P.I; s) ~ (P.3; s). For the solution v(t s), we define
the local energy measured over B(h s) = {x \ x e £(T s), r(T s) < h},
r(T s) = r(T + s), at ί = Γ as follows:

(1.7) tf(ι; h, T, s) = f (|vt(Γ s)|2 + |Fi;(Γ s)|2)cte .

Let fe > 0 be fixed and let

D(T;h) = [x\xe£(T),r{T) <{T + rY + h} ,

where D(T h) is not void by (1.6). Then, the main result can be roughly
stated as follows:

MAIN THEOREM. Under Assumptions (1) ~ (4), the local energy
measured over D(T;h) for solutions of problem (P.I) — (P.3) decays at
the rate of exp (—MTΘ), 0 < θ < 1, as T -> oo.

The explicit expression of the constant θ will be given in the proof
of this theorem (Theorem 5).

The proof of Main Theorem is based on the "so-called" energy
method. In §2 we prove several energy inequalities and from these
inequalities we deduce that the local energy decays at the rate of T~%
v > 0, as T —> oo. In § 3, we prove Main Theorem in the way used by
Morawetz [5] and modified by the author [6].

Finally we note the following facts throughout this paper: (a) The
symbols C, C19 C2, are used to denote (unessential) positive constants,
which are not necessarily the same (b) we use the summation conven-
tion (c) All the functions considered here are real-valued.

§2. Energy estimate

First we recall the notations r(t) and Zj(x9t) introduced by (1.4)
and set

r(t s) = rit + s) a n d zά(x9 t s) = Zj(x, t + s)

for fixed s > 0. Furthermore we introduce the notation:

(2.1) u n M = Zj(x,t;s)Uj ,

where uά = —u, j = 1,2,3.
dX
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WAVE EQUATIONS 129

The next lemma is easily proved by (1.1) and (1.2).

LEMMA 2.1. (i) For μ, μ < 1, introduced in (1.1)

(2.2) \a(t) - a(s)\ < μ\t - s\ .

(ii) There exists a constant C for which the following estimates hold:

(2.3) \rt(t;s)\<C(t + s + iyt;

(2.4) \rtt(t ;s)\< C(r(t s)-\t + s + 1)^ + (t + s + I)- 1"')

(2.5) \zJt(x, t;s)\< Cr(t έ)-ι(t + s + 1)"* .

The following identity plays an important role in the proof of ener-

gy estimates.

PROPOSITION 1 (cf. Zachmanoglou [7]). Let s > 0 be fixed and let

u(x, t) be a C2-function. Let A, B and E be C2-functions depending only

on r(t s) and t. Then, the identity

(utt - Δu)(Aut + Bunt,s) + En)

= Ft(u, t s) + F G(u, t s) + H(u, t s)

holds, where Ft = — F, G = (G19 G2, (?3) and
dt

F(u,t;s) = \A(u\ + \Fuf) + ut(BunM + Eu) - %Etu
z

Gj(u, t;s)= -Uj(Aut + Bunt.s) + Eu) + %Zj(x, t s)B(\Fu\2

H(u, t s) = -5-(Br(ίit) - At + -£L- - 2E)UJ
\ r{j s) /

Bnt,s) - 2E)(ul(t;s) - \Vuf)

x, t s))t)ujut

Proof. The proof is tedious but elementary, so we omit it.

THEOREM 1. Suppose that Assumptions (1) — (4) are satisfied. Let

v = v(t s) be a C2solution of problem (P.I s) — (P.3 s) for fixed s>l.

Suppose that the support of the initial data fix s) and g(t s) is con-

tained ίn{x\xe δ(β),r(0 s) < N(s + γ)"}, N>1. Let 0 < δ <β < 1. Then,

there exist constants sQ = so(N, δ) and C (independent of T and s) such

that for s > s0
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E(v oo, T; s) < CE(v oo, 0, s)

Π {(1 + r(t s))-1"^2 + \Fv\2) + (1 + r(t s))-3~δv2}dxdt

< CE(v; oo,0, s) .

iϊere αr, β and γ are the constants introduced m §1 and E( , ,) is the
notation defined by (1.7).

For the proof of Theorem 1, we have to prepare several lemmas.
First, as A, B and E in Proposition 1, we take the following functions:

(2.7) A = 1 , B = C(r(ί *)) , # = ζ(r(t s))r(ί 5)"1 ,

where ζ(r) = σ - (p + r)~δ, 0 < δ < 1, 0 < σ0 <σ < 1. Furthermore, we
take |0 = p(δ) so large that for r > 0

(2.8) ζ(r) > σ0 and ζ(r)— - ζ'(r) > 0 .
r

The following three lemmas are verified with a slight modification
of the proof of Lemmas 1 — 3 in [2].

LEMMA 2.2. Let A, B and E be as defined by (2.7). Then, F, G
and H in Proposition 1 are expressed as follows:

F(u t s) = \{u\ + \Fu\2) + ζ(r(t s))ut(unt;s) + r(t s)~ιu)

Gj(u, t s) = —Uj(ut + ζ(r(ί s))unt;s) + ζ(r(t s))r(t s^'u)

+ &j(x, t s)ζ(r(t s))(\Fu\2 - u*)

+ %zj(x, t s)r(t s)-\ζ'(r(t s)) - ζ(r(ί s))r(t s)~ι)u2,

H(u, t;s) = K'(r(t *))(t*ϊ + \Pu\2)

+ (C(r(t *))Kt 5)"1 - C7(ra s)))(\Fu\2 - ^2

r ( ί ; s ))

+ i((ζ(r(t s)r(ί s)-ι)tt -

Furthermore, it holds that

(2.9) |(ζ(r(t s)Zj(x, t s)), | < C(l + r(ί s))-\t + s + ΐ)-β

(C(r(ί *)Mί ^ - ^ i - Cirit s))r(t s)-1

> r(jt s)-Kd(l + δ)(p + rit s)T*-°

C((l + r(t; s))-2~\t + s

+ (1 + r(t s))-1^ + s + iyι~β))
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for r(t;s) > γo,γo being the constant introduced in (1.6), where C is a

constant depending only on γ0 and δ.

Proof. We have only to insert A, B and E defined by (2.7) into

the expression of F, G and H. (2.9) and (2.10) follow from Lemma 2.1

and the definition of ζ(r) if we note that ζ"(r) = -3(1 + δ)(p + r)~2-\

LEMMA 2.3. Let A, B and E be as defined by (2.7). // we use the

notation:

Wj = Uj + Zj(x, t s)r(t s)~ιu and wz = Zj(x, t s)Wj

then F(u, t s) is expressed in the following way:

F(u, t s) = φ^u, t s) + <p2(u, t s) + φ3(u, t s) + φάu, t s) ,

where

φάu, t s) = | ( 1 - C(r(ί s)))(u] + \Vuf)

φ2(u,t s) = JC(Kί s))(^J + |w|2 + 2 w ^ )

Paίw, ί s) = — KCWt «)M* s)-ιzό{x91 s)^2)j

P4(w, t; s) = i(C7(Kί s))r(ί s)"1 - (ζ(r(ί s))r(t s)"1),)^2

we should note that <p2(u, t s) > 0 αncϊ

(2.11) ^(w, t s) > i ( l - *)(tt? +

since ζ(r) < σ. Furthermore, for r(t s) > γQ

φ£u, t;s)> M* s)-KP + r(t β ) ) " 1 ^ + r(t s))~
( 2 Λ 2 ) nu ,

— C(t + s + l)~β)u2

with C depending only on γ0 and δ.

Proof. The proof is done by a direct calculation and (2.12) follows

from Lemma 2.1 if we note that ζ'(r) = δ(ρ + r)~ι~δ.

LEMMA 2.4. Let A, B and E be as above. If u = 0 on Σs, then

duntF(u,t s) + nβs{u,t;s) = λ.(n) - \nx\
2)(nt + ζ(r(ί s))nnt;s))

dn

for (x, t) e Σ8, where nr{t.s) = nμjix, t s).

Proof. Since u = 0 on Σs, all the tangential derivatives of u also
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vanish there, so that on Σ
s

_ du __ du __ du
t dn 3 j dn nttS) rit]S) dn

Hence, if we have only to insert these expressions into ntF{u, t s)
+ njGj(u, t s), we obtain the desired result.

Now, we shall prove Theorem 1 with the aid of Lemmas 2.2 ~ 2.4.
Proof of Theorem 1. We integrate the identity (2.6) with A, B and

E defined by (2.7) and u = v(t;s) over £8(0, T). Then, we have

ί F(v, T s)dx + Γ f (ntF(v, t s) + UjGj(vy t s))dSdt
(9 ITi J / ( Γ ί * ) JojΣ(t',s)

+ Γ ί H(v, t s)dxdt = ί F(v, 0 s)dx .
JO J /(t s) J^(O s)

By (2.8), (1.3) and Assumption (3),

nt + ζ(r(t s))nra.s) < nt + σonnt.s) < 0

on ΣS9 so that it follows from Assumption (1) and Lemma 2.4 that the
second term on the left side of (2.13) is non-negative. Hence, this term
can be thrown away.

Next we consider the first term and recall the expressions of <pj(u, t s),
j = 1, ,4, in Lemma 2.3. From the condition on the support of the
initial data f(x s) and g(x s), we see by Assumption (1) and by the
argument of the dependence of domain that v(t;s) = 0 for \x — a(έ)\
>t + N(s + γ)a i.e. r(0 s) > t + N(s + γ)a, 0 < a < 1. Consequently, tak-
ing account of (2.2) in Lemma 2.1, we have that v(t;s) = 0 for r(t;s)
> (1 + μ)t + N(s + γ)a, since r(t s) < r(0 s) + μt. Therefore, by (2.12)
and the condition 0 < δ < β, there exists a constant sx = s^N, δ) such that
for s > s19 <p£v,t;s) > 0. From this fact and (2.11), we conclude that

ί F(v, T s)dx > | (1 - σ)E(v oo, T, s) .
J*(T;s)

Finally we consider the third term on the left side of (2.13). Re-
calling the expression of H(u,t s) in Lemma 2.2, we see that the second
term is non-negative and that the first term is estimated from below
by
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By (2.9) the third term is absorbed in the first term, if we take s large
enough and note that δ < β. And also, in view of (2.10), the fourth
term is dealt with by the above argument using the dependence of do-
main. Thus, there exists a constant s0 = so{N, δ), s0 > s19 such that for
s> s0

H(v, t;s)> 0,(1 + r(t s)Yl~\v] + \Vvf) + C2(l + r(ί s))-3"V .

We shall estimate the term on the right side of (2.13). By use of
the estimate (Poincare's inequality):

ί r ( 0 s)~2v ( 0 s)2dx <c[ \ Fv(0 s) f dx

for C independent of s, it is easy to see that

ί F(y, 0 s)dx < CE(y oo, 0, s) .
J^(O s)

Thus, combining all the investigation given above, we obtain the desired

estimate.

THEOREM 2. Suppose that the same assumptions as in Theorem 1
are satisfied. Then,

Γf (Tit; s) + t)(n\ -\nxf)nnt,s)
JO J Σ(t s)

< C(sa + T1+δ-ηE(v;oo,0,s)

d u dSdt
dn

for s > s0, s0 being the constant introduced in Theorem 1.

For the proof of Theorem 2, we take as A, B and E in Proposition
1 the following functions:

(2.14) A = B = r(t s) + t , E = (r(t s) + t)r(t s)"1 .

Then, the next lemma corresponding to Lemmas 2.2 — 2.4 holds.

LEMMA 2.5. Let A, B and E be as given by (2.14). Then, the fol-
lowing statements hold.
( i ) F(u91 s) can be expressed as follows:

F(u, t s) = φάu, t s) + ψ2(u, t s) + ψ3(u, t s) ,

where
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«,«„. + § « ) + («,«„„ + f «)2

+ QFu\2 - < t ; f ) ) } ,

ψ2(u, t s) = -i(Ezj(x, t s)u2)j ,

ψ3(w, ί 5) = —£

(2.15) |ψ3(w, t 8)| <

(ii) If u = 0 on ΣS9 and if Assumptions (1) ~ (3) are satisfied, then

ntF(u,t s) j(u,t s) = -—Afaί -

> 1(1 -
Δ

nnt,s))
dn

du
dn

< 1 *

(iii) ίf(%, t s) can be estimated from below in the following way:

H(u,t; s) > —H^u,t s) ,

where

H,(u9 t;s) = CMt s) + t)r(t s)-\t + s + l)~^u\ + \Vuf)

+ C2r(Jt s)-χt + s + 1)->(1 + tr(t s)~ι)u2

with CΊ and C2 independent of s.

Proof, (i) is verified by a direct calculation and (2.15) readily fol-

lows from Lemma 2.1. The proof of (ii) is the same as that of Lemma

2.4 and the estimate from below follows from Assumptions (1) — (3).

(iii) is proved as follows: Inserting A, B and E defined by (2.14) into

the expression of H(u9 t s), we have

H(uy t;s)= -irt(t s)(u] + \Fu\2) + tr(t s)~Wu\2 - u2

Ht,s))

- (rt(t s)zj(x, t s) + (r(t s) + t)zjt(x, t s))ujUt

s)~\2rt{t s) + trtt(t s) - 2tr(t s^rtf s)2)u2 .

The second term is non-negative, so that it can be thrown away. The

remaining terms are estimated with the aid of Lemma 2.1 and we ob-

tain the desired result.

Proof of Theorem 2. As in the proof of Theorem 1, we integrate
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the identity (2.6) with A, B and E defined by (2.14) and u = v(t; s) over

(?β(0, Γ). Then, we have

Π (ntF(v, t s) + UjGjiv, t s))dSdt = ί F(v, 0 s)dx
Σ(t s) J*(O;s)

Γ Cτ C
— F(i;, Γ s)dx — H(v, t s)dxdt .

J ί(T;s) Jo J £(t;s)

By (ii) of Lemma 2.5, the left side is estimated from below by

1 Cτ Γ d'M 2

—(1 — (70) (r(£ s) + £)(w? — I^PMrα-β) — dSdt .
2 Jθ J^(ί β) ' dU

We shall estimate the three terms appearing on the right side. By

the condition on the support of the initial data, it is easily seen that

f F(v, 0 s)dx < CsaE(v oo, 0, s) .
J/(O;β)

Next we consider the second term. Recall the expression of ψj(u, t s),

j = 1 ~ 3, in (i) of Lemma 2.5. Then, since ψι(v, T s) > 0,

- f F(v, T s)dx < — ί ψ3(v, T

Furthermore, by use of (2.15) and the Poincare inequality, we obtain

- ί F(v, T s)dx < C(T + iγ->E{v oo, T, s) ,
J t{T\s)

so that, in view of Theorem 1,

- f F(v, T s)dx < C(T + iy-*E(v oo, 0, s) .

Finally we deal with the third term. By (iii) of Lemma 2.5,

- Γ ί H(v, t s)dxdt < Γ ί H&, t s)dxdt .
Jθ J <?(f;s) Jo J/(ί;s)

Furthermore we have shown in the proof of Theorem 1 that v(t s) = 0

for r(ί s) > (1 + ^)ί + 2V(s + ^)α. Consequently,

Hx(i;, t;s)< C3(T + β*)1+ -'{(l + r(ί s ) ) " 1 " ^

+ (l + r(*;s))-3-V}.

We combine this estimate with Theorem 1 to obtain
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- Γ f H(v, t s)dxdt < C(T + sa)1+δ-βE(v oo, 0, s) .
Jθ J*(ί;s)

Thus the proof is complete.

The next theorem gives the uniform decay of the local enery.

THEOREM 3. Suppose that the same assumptions as in Theorem 1

are satisfied. Then,

E(v \T, T, s) < CT~\s2a + saT + T2+δ-t)E(v oo, 0, s)

for s > s0, s0 being the constant introduced in Theorem 1.

For the proof of this theorem, we set

(2.16) A = r(t s)2 + t2, B = 2tr(t s) , E = 2t .

LEMMA 2.6. Let A, B and E be as given by (2.16). Then, the

following statements hold.

( i ) F(u, t s) is expressed as F(u, t s) = Fλ(u, t s) + F2(u, t s), where

Fx(u, t;s) = iA(u] + \Vu\2) + ut(Bunt.s) + Eu)

+ Ar(t s)-2(r(t s)unt,s)u + \u2) ,

Flu, t;s) = -%(Ar(t sr%(xf t s)u2)j .

Furthermore, Fλ(u91; s) > 0 and for r(t s) < \t

Flu, t;s)> it2{u* + \Vu\2 + (r(ί sy%(x, t s)u2)ά) .

(ii) If u — Q on Σs and if Assumptions (1) ~ (3) are satisfied, then

ntF(u, t s) + nβ^u, t s) = — (n\ — \nx\
2)(Ant + Bnnt.s))

Δ

du
dn

-—σ0A(n2

t - \nx\
2)nnt,s)

du 2

dn

(iii) H(u, t s) satisfies the estimate:

H(u, t;s)<C(t + s + l)-?(r(t s) + t)(u) + \Fu\2) .

Proof, (i) is verified exactly in the same way as in Lax and Phillips

[4], Appendix 30). The proof of (ii) is the same as that of Lemma 2.4

and the estimate from below follows from Assumptions (1) — (3). (iii)

is proved by a direct calculation with the aid of Lemma 2.1.

0) We use the identity: — u2 = Ar~2(ruru + %u2) — %(Ar~ιZj(x, t; s)u2)j, r = r(ί; s).
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Proof of Theorem 3. The proof is very similar to that of Theorems

1 and 2. Integrating the identity (2.6) with A, B and E defined by (2.16)

and u = v(t; s), we have

f F(v, T s)dx = ί F(v, 0 s)dx
J *(Γ;β) J/(O;β)

(2.17) - Γ f (ϊ&ίFOy, ί s) + nfijiy, t s))dSdt
Jθ jΣ(t s)

- Γ f H(v,t;s)dxdt .
Jθ J /(ί β)

We shall estimate the three terms on the right side of (2.17). First,

by the condition on the support of the initial data, we easily have

f F(v,0; s)dx < Cs2aE(v oo, 0, s) .
J /(O β)

For the second term, using (ii) of Lemma 2.6, we see that it is

majorized by

du*dSdt.
2 Jθ j i (ί s) dn

Furthermore, since it follows from Assumption (4) that on Σ(t s)

r(t;s)<C(t + s)a ,

we combine this fact with Theorem 2 to obtain that the second term is

majorized by

C(s2a + saT + T2+δ-t)E(v;oo,0,s) .

We deal with the third term. By use of the fact that v(t s) = 0

for r(ί s) > (1 + μ)t + N(s + γ)% it follows from (iii) of Lemma 2.6

that

(2.18) Hdυ, t;s)<C(T + s«)2+^(l + r(t έ)rι'\v] + \Fv\2)

for 0 < t < T. Hence we combine this estimate with Theorem 1 to

conclude that

Γ f H(v, t s)dxdt < C(T + sa)2+δ-βE(v oo, 0, s) .
Jθ Jt(t s)

Obviously, by (i) of Lemma 2.6, the left side of (2.17) is estimated from
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below by

Thus the proof is complete.

We consider the following transformation of variables:

(2.19) y = x- ait) , r = ί .

We denote by Ω(τ) and B(τ), τ > 0, the domain transformed by (2.19) of
£(t) and Θ(t), respectively. Let

Ω = U fl(r)
0<r<oo

and for each fixed s > 0, the notations Ωs and β(Γ s) are introduced
in the same way as is and i(T s), respectively. Furthermore, by As-
sumption (4), it holds that for each r > 0

(2.20) {y\\y\ < γ0} c S(r) C {(y||y| < (r + γ)"} .

Now we transform the problem (P.I; s) ~ (P.S s) by (2.19):

Vτΐ - 2αir(r 8)Vtj + aiτ(τ β)αir(r 8)Vi3
; ^ X )7 = 0 in Ωs

(Q.2 s) 7 = 0 on dΩ(τ β), aβ(r s) being the boundary of Ω(τ s)

(Q.3;*) F(y,0;^) = ί t(y;«), Fτ(y, 0 5) = G(y s) on

where α/τ; s) = cι̂ (r + s) and αJΓ(τ; s) = —a,j(τ;s), while by (1.1), the
dτ

operator aiτ(τ s)aJτ(τ s ) — - — — Δ is uniformly elliptic. We denote by

V(τ s) = V(y, τ s) a solution of problem (Q.I s) ~ (Q.3 5) and F(τ s)
is represented through the solution t;(ί s) = t;(^, £ s) of problem (P.I s)
— (P.3 s) as F(#, τ s) == v(̂ / + α(r 5), τ 5). For this F(r s), we define
the local energy measured over S)Qι\ s) = {y\yeΩ(T; s),\y\ < h}9 0 < h
< 00, at τ = T by

(2.21) £fo(F Λ, T, s) = f (I Fr(Γ «)|2 + |ΓF(Γ 5) |2) dy .

LEMMA 2.7. Lei v(t s) and F(r s) &β solutions of problems (P.I s)
— (P.3;s) and (Q.I 5) — (Q.3; s), respectively. Then there exist con-
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stants C1 and C2 independent of h, T and s such that

CλE(y h, T, s) < EQ(V h, T, s) < C2E(v h, T, s) .

The next theorem is an immediate consequence of Theorem 3 and

Lemma 2.7.

THEOREM 4. Suppose that Assumptions (1) ~ (4) are satisfied. Let

V(τ;s) be a C2-solution of problem (Q.I s ) ~ (Q.3; s) with the initial

data F(y s) (C-(β(0 «)) Π £R(fl(0 s))) and G(y *) (C"(fl(0 s))

Π L2(β(0 s))). Suppose that the support of F(y s) and G(y 5) is con-

tained in {y\\y\ < N(s + γ)a). Let 0 < δ < β < 1. Then there exist con-

stants s0 — so(N9 δ) and C (independent of T and s) such that for s > s0

E0(V iT, T, s) < CT~\s2a + saT + T2+δ^)EQ(y 00,0, s) .

Remark. Theorem 4 is valid also for a weak solution with the

initial data F(y s) (e Hl(Ω(0 s))) and G(y ;s)(e L\Ω(0; s))) verifying

the condition for the support stated above.

Theorem 4 may be directly obtained by considering the transformed

equation (Q.l s) from the beginning. However, a calculation then will

be more complicated because of the appearance of the term Vjτ.

§3. Proof of main result

3.1. Huyghen's Principle

We denote by L(s), s > 0, the operator

L(s)W - Wτΐ - 2aJτ(τ s)Wjτ

+ aίτ(τ s)aJτ(τ s)WiJ - WjΊ - ajττ(τ ;s)Wj .

We consider the equation

(Q s) L(s)W = 0 in R* x (0, 00)

with the initial data W(y, 0 s) (e H'iR3)) and Wv(y, 0 s) (e L2(i23)). Then,

the (weak) solution W(τ s) = W(y, τ s) is expressed through the free

space solution w(x,t), Ow = 0, as follows:

(3.2) W(y,τ s) = w(y + α(τ «), τ) ,

where the initial data ^(ίu, 0) and wt(x, 0) are given by
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w(x, 0) = W(x - α(0 s), 0, s) ,

wt(x, 0) = Wτ(x - α(0 s), 0 s) - α,r(0 s)W^(# - α(0 s), 0 s) .

For given (x09t0) and fixed £, t < ί0, it follows from Huyghen's principle

that the value w(x0, t0) is determined only by the value of w(x, t) on the

sphere \x — xo\ = ί0 — t. Therefore, using the relation (3.2), we see that

for given (y0, τ0) and fixed τ, τ < τ0, the value TFG/o> Γo s) is determined

only by the value of W(y, τ s) on the sphere \y + a(τ s) — y0 — α(r0 §)|

= τ0 — τ. Furthermore, if the support of the initial data W(y, 0 s) and

Wτ(yy 0 s) is contained in |τ/| < ίC, then the support of w(x, 0) and Wί(ίc, 0)

is contained in \x — α(0; ̂ )| < if. We again apply Huyghen's principle

to w{xy t) to conclude that w(x9 ί) = 0 for \x — α(0 s)\ < t — K, so that

W(y,τ; s) = 0 for |y + α(r 5) - α(0; *)| <τ-K.

Summing up the above investigation, we have the following proposi-

tion.

PROPOSITION 2. Let W(τ s) = W(y,τ s) be a (weak) solution of

problem (Q s). Then the following statements hold.

( i ) For given (y0, τ0) and fixed τ9τ < r0, the value W(yQf r0 s) is deter-

mined only by the value of W(y,τ;s) on the sphere \y + a(τ;s) — y0

— a(τ0; s)\ = τ0 — τ.

(ii) The backward cone with vertex (yQ9 τQ) expressed by \y — yo\ = (1 — μ)

(τ0 — τ) is contained in the interior of the backward cone with the same

vertex expressed by \y + α(τ s) — y0 — α(τ0 s)\ = τ0 — r.

(iii) 7/ ίfeβ initial data W(y, 0 s) αnώ ΐ^Γ(2/, 0 5) have compact support

contained in \y\ < K, then W(y, τ s) — 0 for \y + a(τ s) — α(0 s)| < τ — K,

so that W(y,τ s) = 0 for \y\ < (1 - μ)τ - K.

Here the constant μ is as introduced in (1.1).

Proof, (i) has been proved above, (ii) is verified with the aid of

(2.2) in Lemma 2.1. (iii) follows from (ii).

For the solution W(τ s) of problem (Q s), we define the local en-

ergy measured over \y\ < h, 0 < h < 00, at τ = T by

(3.3) E0(W h, T,8)=[ (I Wτ(T s)\2 + \FW(T s)\2)dy .
J\y\<h

PROPOSITION 3. Let W(τ s) be a solution of problem (Q s). Then,

there exists a constant C independent of s, T and h such that
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E0(W; h,T,s) < CE0(W;h + (1 + μ)T,0,s) .

This implies that the motion governed by (Q s) propagates at a speed

less than 1 + μ.

Proof. The assertion follows from relation (3.2) and the fact that

the motion governed by the free space wave equation propagates at the

speed one.

3.2. Preliminary lemma

We define several sequences, following the method in [6]. Let 0 < δ

< β < 1 and let 0 < a < 1. We put

(3.4) p > a(l - a)-1 ,

so that

(3.4.1) p > a(p + 1) .

Let {Tk}κ=0 be the sequence given by

Tk = kpT ,

T being large enough (determined below, Lemma 3.2) and let

— Z J
 1 m 9

so that

fit) = (1 - μ)(χ - Sk) - ak, h(τ) = (1 + μ){τ - Sk) + α*

Fig. 1
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(3.5) Sk < Cpk
p+1T .

We put g(τ) = (r + γ)a, γ > 1, and define the sequence {ak}k=09 ak > 1, by

(3.6) ak = g(Sk) (a0 = r ) .

Furthermore, we define the sequence {bk}k=09 bk > 0, as follows:

(3.7) bk is a (unique) root of the equation: (1 — μ)t — ak — g(t + Sk)

(Fig. 1).

LEMMA 3.1. There exists a constant M independent, of k > 0 and

T such that

a* < bk k

Proof. The proof is obvious from Fig. 1.

LEMMA 3.2. We can take T so large that for k > 1

(3.8) ak + 2(1 + μ)bk < \{Tk - bk_d ,

(3.9) ak_x + (1 + μ)bk.λ < (1 - μ)(Tk - bk_x) + ak ,

(3.10) ik*T <Tk- bk_x .

Proof. By definition and Lemma 3.1, Tk = O(kpT), ak = O(kaip+1)Ta)

and 6Λ = O(kaip+1)Ta). Since 0 < α < 1 and since p > α(p + 1) by (3.4.1),

we can find such a 7\

3.3. Proof of main theorem

We shall prove Main Theorem stated in § 1. To this end, we in-

troduce the new notation: For G e L2(β), S ( c R3) being an arbitrary

domain, we define G by G = G in 2 and G = 0 in # 3 — 2.

LEMMA 3.3. Let U(y,τ) be a (weak) solution of problem (Q.l O)

- (Q.2 0) with the initial data F (e Hl(Ω(0))) and G (e L2(β(0))) such

that the support of F and G is contained in {y\y e Ω(0), \y\ < γa}, a0 = γa.ι)

Then, the solution U may be written as

U = R0 + Fo,

where Fo is a solution (defined over the whole space) of L(0)F0 = 0 with

1) This domain is not void by taking γ large enough if necessary.
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the initial data F ( e H\R%)) and G, L(0) being the operator given by

(3.1), and

F0 = 0 for \y\ < (1 - μ)τ - a0 ,

while RQ is a solution of problem (Q.I; δ0) ~ (Q.2; bQ) (that is, Ro is a

solution of problem (Q.I 0) ~ (Q.2 0) for τ > b0) and has compact support

of at most \y\ < a0 + (1 + μ)b0 at τ — b0. Furthermore

(3.11) EQ(RQ oo, 0, 60) < C(bo)Eo(U oo, 0,0) .

Proof. The assertion for Fo follows from (iii) in Proposition 2.

By the definition of b0 (see Fig. 1),

Fo = 0 in \y\ < (r + γ)a , τ > b0 ,

so that by (2.20) F o = 0 on U*o<r<~ 9#(r) X {̂ }» 3^W being the boundary

of Ω(τ). This implies that Ro is a solution of problem (Q.I δ0) — (Q.2 δ0).

The second assertion for Ro follows from Proposition 3.2) (3.11) is verified

as follows:

E0(R0 oo, 0, δ0) < 2(E0(FQ oo, 0, δ0) + E0(U oo, 0, 60)) .

We claim that

(3.12) E0(F0, oo, 0, b0) < CE0(U oo, 0,0)

(3.13) EQ(U, oo, 0, bQ) < C(bQ)EQ(U oo, 0,0) .

Recalling the notation Eo(;,,) given by (3.3) and using the property for

Fo, we have

E0(F0 oo, 0, 60) = E0(F0 oo, δ0,0) ,

whence (3.12) follows with the aid of Proposition 3, since the initial

data of Fo are F and G. For the proof of (3.13), we give only a sketch.

By an argument similar (more simple) to that given in the proof of

Theorem 13) and by Lemma 2.7, we easily have

E0(U oo, 60,0) ( = E0(U oo, 0, δ0))

< C&iU oo, 0,0) + C2(δ0) Γ° E0(U oo, ί, O)dt .
Jo

2) In Propositions 2 and 3, only the whole space solution was discussed. However,
from the argument given there we see that these propositions are valid for the solution
considered here.

3) We use the identity (2.6) with A and B denned by (2.7) and £7=0.
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We have only to apply the well known Gronwall inequality to this esti-

mate.

LEMMA 3.4. Suppose that the same assumptions in Lemma 3.3 are

satisfied. Let {Tk}k=l0, {Sk}k=0, {ak}k=0 and {bk}%=0 be the sequences defined

in §§3.2 and let Ro and Fo be as in Lemma 3.3. Then we can construct

{/2*}?-i and {Fk}k=1 with the following properties:

(a) Rk^ = Rk + Fk for τ> Sk;

(b) Fk is a solution of 1/(5*)^ = 0 with the initial data Rk_x (e Hι(Rz))

and (βfc-iτ) at τ = Sk, and

Fk = 0 for \y\ < (1 - μ)(τ - Sk) - ak

(c) Rk is a solution of problem (Q.l S*. + bk) ~ (Q.2;SΛ + bk) and has

compact support of at most \y\ < ak + (1 + μ)bk at τ = Sk + bk

E0(Rk;oo,Q,Sk + bk)

(d) < C{EQ{Rk_γ ak + (1 + μ)bk, Tk + bk- bk_19Sk^ + bk_d

+ JS70(Λ*-i ak + 2(1 + μ)bk, Tk - bk_ιySk.x + bk_0) .

Proof. First we consider the case of fc = 1. Let Fx be a solution

of L{Sι)Fι = 0 with the initial data Ro and (ROΐ) at τ = S^ In other

words, for r > Slf Fx is defined as the whole space solution of L(S1)F1 = 0.

We continue this Fx as Fx = RQ for τ < Sv Then Fx satisfies the equa-

tion L(0)Fj = 0 in the domain exterior to {(y,τ)\\y\ < (τ + γ)%0 < τ < SJ.

We apply Proposition 2 to Fx in this domain. Let (yo,τo) be a point

with \yo\ < (1 — μ)(τ0 — Sj) — alf τ0 > Sx. According to (i) of Proposition

2 with s = 0, the value of Fx at (yQ, τ0) is determined only by the value

of Fλ on

\y + a(τ 0) — y0 — α(τ0 0)| = τ0 — τ (τ fixed) .

Here we put τ = So + b0 = b0 (So = 0). By (ii) of Proposition 2. the

sphere given by the above equation with τ = b0 contains the sphere

\y — yo\ = (i—μ)(Γo _ fr0) in its interior, which, furthermore, contains

the sphere \y\ = (1 - μXS, - 60) + αx (= (1 - μ)(Tx - 60) + a1,S1 = ΓJ.

On the other hand, by Lemma 3.3, the support of i?0 at τ = δ0 is con-

tained in I?/| < a0 + (1 + μ)b0. In view of (3.9) in Lemma 3.2, a0 + (1 + μ)&0

< (1 - μXTj - 60) + a, (see Fig. 1). This implies that Fλ = 0 for |j/|

< (1 — μ)(τ — SΊ) — alf which, together with the definition of bλ (Fig. 1),
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shows that Fx is a solution of (Q.l SΊ + &i) ~ (Q.2;5j + bx). Thus the

property (b) is established. The property (c) for Rx follows from the

fact stated above and Proposition 3.

It remains to prove (d). By property (c),

E0(R, oo, 0, Sx + bλ) = EQ(R, a, + (1 + /i)^, 0, Sx + bx)

< 2(EQ(Fι ax + (1 + μ)^, 0, Sx + &J

+ E.iR. a, + (1 + μ)bu09S1 + 6J) .

By definition, the second term is equal to

#o(#o αx + (1 + μ)^, 2\ + δx - δ0, &0) (S, = Γx) .

From Proposition 3 and the fact that Fι = RQ and F l r = (RQτ) at τ — S19

we see that

Eo(Fi fit! + (1 + /i)6i, 0, Sx + 6χ) < CS 0(β 0 a, + 2(1 + μ)bu Tx - b0, bQ) .

Thus, Fx and βj with properties (a) — (d) are constructed. Repeating

this procedure and noting (3.9) in Lemma 3.2, we can construct {Fk}^2

and {Rk}k=2 by induction on k.

The following theorem is equivalent to Main Theorem stated in § 1.

THEOREM 5. Suppose that Assumptions (1) — (4) are satisfied. Let

U(y,τ) be a (weak) solution of problem (Q.l O) — (Q.2;0) with the ini-

tial data F(y) ( e £fJ(£?(O))) and G(y) ( e L2(J2(0))) such that the support of

F and G is contained in {y\y e 42(0), \y\ < γa}. Let h> 0 be fixed and let

@(τ h) = {y\y e £?(τ), \y\ < (r + γ)a + h}. Then, the local energy measured

over Q)(τ\K) at time τ decays at the rate of exp (—Mτθ) as τ—> oo. In

other words, there exist constants C, M and θ, 0 < θ < 1, such that

E0(U (τ + γ)a + h,τ,0)<C exp (-Mτθ)Eo(U) ,

where θ = (p + I)" 1 , p being the constant defined by (3.4), and

EQ(ϋ) = ί (\FF\2 + G2)dy .

Proof. In virtue of (c) in Lemma 3.4, Rk has compact support of

at most \y\ < ak + (1 + μ)bk at τ = Sk + bk. Hence, in view of (3.6)

and Lemma 3.1, there exists a constant N such that

ak + (1 + μ)bk < N(Sk + bk + γ)a .
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With this N, we define the constant s0 = sQ(N, δ) introduced in Theorem

1 or Theorem 4. We may assume that Sλ + bx > sQ by taking T (in

Lemma 3.2) large enough if necessary, so that Sk + bk > s0 for k > 1.

According to Lemma 3.4, the solution U may be written as

U = ± Fn + Rn
.7=0

for τ > Sn, where

(3.14) Fj = 0 for \y\ < (1 - μ)(τ - Sj) - aό ,

(3.15) Rn is a solution of problem ( Q . l ; S n + 6n) - (Q.2;S r e + 6n).

If (τ + γ)a + h< (1 - μ)(τ — Sn) - an and Sn + bn < τ, then Fά = 0 in

@(τ h), so that U = Rn there. By this fact we have

E0(U;(τ + ry + h,τ,0) - E0(Rn;(τ + γ)a + hyτ - Sn - bn9Sn + bn)

< E0(Rn; oo,τ -Sn- bn,Sn + bn) .

If we note that Sn + bn> s0, then we obtain by Theorem 14) and Lemma

2.7 that

EQ(U (r + ry + h, τ, 0) < C0E0(Rn oo, 0, Sn + bn) .

Furthermore, by (d) in Lemma 3.4,

E0(Rn; oo,0, Sn + bn)

(3.16) < C(E«{Rn_λ an + (1 + μ)bn, Tn + bn - bn_l9Sn_x + bn_x)

+ EoiR^ an + 2(1 + μ)bn, Tn - b^S^ + bn_J) .

Here we want to apply Theorem 4 (Remark after this theorem) to each

term on the left side. To this end, we must check that an + 2(1 + μ)bn

< \{Tn — bn_^ and that the support of i?n_χ at τ = Sn_λ + bn_λ is con-

tained in {y\\y\ <N(Sn^ + bn^ + γ)a). The first fact follows from (3.8)

in Lemma 3.2 and the second one has already been established above.

Hence, using (3.10) in Lemma 3.2 and the order relation for Sn, an and

bn (the proof of Lemma 3.2), we see that the left side of (3.16) is

majorized by

+ ^ ( p + 1 ) Γ l + α) + T~*)EQ(R„__, \ OO, 0, Sn_X + &»_,) .

Furthermore, recalling the definition of p ((3.4) or (3.4.1), we have

4) Theorem 1 is valid for a class of weak solutions considered here.
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E0(Rn; oo,0,Sn + bn) < CiT-ΈάR^ ootOiSn^ + bn_x) ,

where v = min (1 — a, β — δ) > 0 and C2 is a constant independent of n

and T. Repeating this step, we have

E0(Rn oo, 0, Sn + bn) < exp (—(w - ΐ)M1)E0(R1 oo, 0, St + bλ) ,

where ikZΊ = —log (C2T~V) > 0 if T is chosen large enough. And by (d)

in Lemma 3.4 and by the argument used in the proof of (3.11) in Lemma

3.3, it is not difficult to see that

E0(Ri; 00,0,^ + &i) < C(T)E0(U) .

Thus, we have

EQ(U (r + γ)a + h, τ, 0) < C(T) exp (-(n - l)M1)Sfl(i7) .

Now, for given τ, we choose the maximal integer n such that

(T + γ)a + h < (1 - μ)(τ - Sn) - an and Sn + bn < τ. Then, n > CΊ(ZV,

^ = (p + I)- 1, for some Cλ(T). This completes the proof.
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