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ON THE DECAY OF THE LOCAL ENERGY FOR WAVE
EQUATIONS WITH A MOVING OBSTACLE

HIDEO TAMURA

§0. Introduction

Recently the decay of the local energy for wave equations with a
moving obstacle 0(t) has been studied by Cooper [1] and Cooper and
Strauss [2] ete. In their works it has been assumed that the obstacle
O(t) is uniformly bounded in time ¢ and that the origin is contained in
o(t) for all t > 0 and 0(f) is star-shaped with respect to the origin.
(The second condition has been assumed implicitly in [2] (see Assumption
B, [2D.)

The purpose of this paper is to give a slight extension of their
works in the following two aspects: (1) We deal with a expanding
obstacle with time (Assumption (4) stated in §1). (i) We do not as-
sume that the origin is contained in the obstacle for all ¢. Instead,
we assume that there exists a point a(f) satisfying Assumptions (2) and
(3) in the obstacle for each ¢ (see §1). These assumptions are roughly
stated as follows: The obstacle is star-shaped with respect to a(t) and
a(t) moves slowly with time. However, we admit a(f) to go to infinity
as t — co. The more precise assumptions on the obstacle @(f) are made
in §1 and the main result is stated there.

§1. Assumption and main result

First we shall introduce some notations and make several assump-
tions on the moving obstacle.

Let 0(), ¢t > 0, be a bounded domain in R® with smooth boundary
and let &(t) be a domain exterior to 0(f). We denote by 2(f) the bound-
ary of &(t). Let

& =o<$<{, E@) x {t} .
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We denote by
2= U 2@ x{t}
0<t<oo
the lateral boundary of & and assume that X is smooth. For each fixed

s > 0, we introduce the notations &,0,7) and 2,0,7),0 < T < oo, as
follows :

&0, T)( 20, 7)) = ogtjdé"’(s + (s + 1) X {s + t}.
In particular, when T = oo, we write &, = &,(0, o) and X, = 2,(0, o).
In order to clarify the fixation of s, we occasionally write &(s + ¢t) and
(s +t),t>0, as &(;s) and I(t;s), respectively.

We denote by n = (n,, n,, 75, n,) the exterior unit normal to & on 3
and write n, = (n,, n,, 1,).

ASSUMPTION (1). 2 is time-like, that is |n;| <|n,| for each (z,t) e 2,
|%;| being the length of n,.

ASSUMPTION (2). There exists a point a(f) = (a,(t), a,(t), a,(t)) in O(t)
with the following properties :

(1.1) la,®)| = @) + (@) + a, () < p, p<1,

for ¢ > 0, where a,(t) = diia,,(t) , i=12,38;

(12) lay@® < CE+ D, and la,@® < CE+ D¢, 0<g<1;
(1.3) 0(t) is star-shaped with respect to a(?).

We introduce the notation: For z = (z,, 2., ,)

1.4) r(t) = |z — a®)| and z,x,t) =% ;(:)’j(t) .

Then the condition (1.3) is stated as follows:
Npy = 25, 0IM; < 0
for (x,t) €2, where we have used the summation convention.

ASSUMPTION (3). There exists a constant ¢, 0 < ¢, <1, such that
for (x,t) e

(1.5) Ny + Oitry < 0 .
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If we assume that @(f) is uniformly (strongly) star-shaped in ¢ with
respect to a(t), that is n,,, < —a .}, 0 <o, <1, then (1.5) follows from
the condition

N, < 03 |1,

for some g,, 0 <0, <o, If O() is a ball with radius p(f), then we can
take a(t) as the center of @(t) and ¢, close enough to 1.

ASSUMPTION (4). 0O(t) satisfies
(1.6) {z|r(t) < 7} € O®) C {z|7(®t) < (¢ + 7)Y

for each ¢t > 0, where 0 <o <1,y >1 and 0 <y, <y

The constants «, 8,7, 7o, ¢ and o, are used with the meanings ascribed
here throughout this paper.

Now, under Assumptions (1) ~ (4) stated above, we consider the
following equation :

(P.1) Uy — du = 0 in &
P.2) u=0 on 2
(P.3) w,0) = f(®), u(x,0)=g@  on £0).

Here the initial data f and ¢ are assumed to be of compact support
and to belong to H}(&(0)) and L*&(0)), respectively. It is known that
under this condition for initial data, the above problem has a unique
(weak) solution such that for any fixed T

ue C([0,T]; Hy(&(®) and w, e C(0, T]; L&) .

Furthermore, if the initial data f and ¢ satisfy the compatible condi-
tion of infinite order, the solution % is smooth. And also, a weak so-
lution with the above property is obtained as a limit of such a smooth
solution in the energy norm. ([1],[3])

Next, for fixed s > 0, we consider the following equation:

P.1;5s) Vy — A0 =0 in &, ,
P.2;s) v=20 on 2,
P.3;8) v(,0;8) =f(xr;s), v.(x,0;8 =g(;s on £(0;s),

where the initial data f(z;s) and g(x;s) are assumed to satisfy the
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same conditions as f(x) and g(x) in (P.8). We denote by 2(t;s) a so-
lution of problem (P.1;s) ~ (P.3;s). For the solution v(¢;s), we define
the local energy measured over B(h;s) ={z|zedé(T;s),r(T;s) < h},
r(T;s) =r(T + s), at t = T as follows:

@ Bw;hT,9) = [ (vdT;9)f + [Po(T; 9)P)ds

Let 2 > 0 be fixed and let
D(T;h) ={zlzes(D),r(T) < (T + =+ k},

where D(T ; h) is not void by (1.6). Then, the main result can be roughly
stated as follows:

MAIN THEOREM. Under Assumptions (1) ~ (4), the local energy
measured over D(T'; h) for solutions of problem (P.1) ~ (P.3) decays at
the rate of exp (—MT?%),0<6<1, as T — oo.

The explicit expression of the constant 6 will be given in the proof
of this theorem (Theorem 5).

The proof of Main Theorem is based on the ‘“so-called” energy
method. In §2 we prove several energy inequalities and from these
inequalities we deduce that the local energy decays at the rate of T,
vy>0, as T —oco. In §3, we prove Main Theorem in the way used by
Morawetz [5] and modified by the author [6].

Finally we note the following facts throughout this paper: (a) The
symbols C,C,,C,, --- are used to denote (unessential) positive constants,
which are not necessarily the same; (b) we use the summation conven-
tion; (¢) All the functions considered here are real-valued.

§2. Energy estimate

First we recall the notations »(¢) and z,(x,t) introduced by (1.4)
and set

rit;s) =r(t +s) and z,x,t;8) = z;(x,t + 8)
for fixed s > 0. Furthermore we introduce the notation:

2.1 Urssy = 25(2, 5 8)uy

where u; = 66
Zg

u,§=1,2,8.
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The next lemma is easily proved by (1.1) and (1.2).
LEMMA 2.1. (i) For p, p <1, introduced in (1.1)
2.2) la®) — a(s)| < plt — s

(ii) There exists a constant C for which the following estimates hold:

2.3) r(&;8)| < CE+ s+ D7,
2.9 lre@t; )| < Clr@t; )"t +s+ D+ ¢+ s+ 118,
2.5) |250(, 85 89)| < Cr(t; 9)7'(E + s + 1)7F.

The following identity plays an important role in the proof of ener-
gy estimates.

PrRoOPOSITION 1 (ef. Zachmanoglou [7]). Let s> 0 be fixed and let
w(z,t) be a C-function. Let A, B and E be C:-functions depending only
on r(t;8) and t. Then, the identity

(uy; — Au)(Au, + Bu, .5, + Euw)

@-6) = Fyu,t;9) + V-G, t;9) + H, t; 5)

holds, where F, = ;’t F,G = (G, G, G) and

F(u,t;s) = A + (FuP) + w,(Biry,sy + Eu) — 3Eu°
G,(u,t;s) = —u,(Au, + B,y + Ew) + 324, t; 9B(Vuf — u}) + £ 4

H(u,t;s) = %(Bmm —4,+ 2B 2E)u§

r(t; s) B
1 2B 2
+ —Z"(Bm,s) - At - r(t;s) + 2E)ur(z;s)

+ 3(A; + B,y — 2E) (U ) — (VU])
+ (Aj e (sz(x: t; 3))5)“1“; + %(Eu — E“)uz .

Proof. The proof is tedious but elementary, so we omit it.

THEOREM 1. Suppose that Assumptions (1) ~ (4) are satisfied. Let
v =v(t;s) be a C*-solution of problem (P.1;s) ~ (P.3;3) for fixed s> 1.
Suppose that the support of the initial data f(x;s) and g(t;s) is con-
tained in {x|x € £(8),r(0; N + 1), N>1. Let 0<6<pg<1. Then,
there exist constants s, = 8y(N,0) and C (independent of T and s) such
that for s > s,
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Ew;,T,8) < CEW; c0,0,s)
] @+ rts o)t 4170 + @+ 1t 807}t
“ < CEW; c0,0,8) .
Here a, p and y are the constants introduced in §1 and E(;,,) is the
notation defined by (1.7).

For the proof of Theorem 1, we have to prepare several lemmas.
First, as A, B and F in Proposition 1, we take the following functions:

2.7 A=1, B={r{t;s), E=Lrt;srE;s)",

where {(r) = — (0 + 1)’ 0<6<1,0<g,<c <1 Furthermore, we
take p = p(d) so large that for » > 0

@2.8) ¢ >0, and C(T)% U =0.

The following three lemmas are verified with a slight modification
of the proof of Lemmas 1 ~ 3 in [2].

LEMMA 2.2. Let A,B and E be as defined by 2.7). Then, F,G
and H in Proposition 1 are expressed as follows:

Fust;s) = 3u; + [FuP) + Lot ; sDu(r,sy + 7(E;5 8)7'0)
— 3Cr (s DrE; s) )t ,
Gi(u,t;8) = —u(u, + Crt; 8y, + C@(E; (5 8) " u)
+ 3252, t; ) (t; sN(Vul — uj)
+ 3252, t; 8)r(t; )L (r(t; 8) — L(r(t; Hr(t; s)Hu?,
H(u,t;s) = 3'(r(t; )i + [Fup)
+ Q@ Nrt; 97 — '@ ; MUl — uj;y)
— GO ; 924, t; 8))usm,
+ 3(Cr@; rE;8) ™ — Lt ; Nr(t; 8) ™’ .
Furthermore, it holds that
2.9 € 925,059 | < CA + ;)7 (¢ + s+ D)°*

Ca@;rE; 9™ — @@ Nr(t; 9™

> 7(t; 8)7 (0 + (e + r(t; 8)*?
—C(@ +rE;sN(t+ s+ 1%

+ @A +rE; )Mt + s+ 1D7F)

(2.10)
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for r(t;s) > 1,1, being the constant introduced in (1.6), where C is a
constant depending only on y, and .

Proof. We have only to insert A, B and E defined by (2.7) into
the expression of F', G and H. (2.9) and (2.10) follow from Lemma 2.1
and the definition of ¢(r) if we note that ¢’(r) = —6Q + 8)(p + r)~*°

LEMMA 2.3. Let A, B and E be as defined by (2.7). If we use the
notation :

w; =u; + 2z, t;8rE; ) 'u and w, = z)x,t; Hw;
then F(u,t;s) is expressed in the following way:
Flu,t;8) = o(u, 05 8) + @o(u, 05 8) + ou(u, 85 8) + 0w, t59),
where

o(u, t;8) = (1 — Lr(t; (i + [FuP)

(U, t; 8) = $L(r(t; )i + |wf + 2w,u,)

ou, t5 8) = — 3 (E; )r(t; 97 'z(w, T ; S)u?);

o, t;8) = 3t ; Nrt; )™ — CrE; Nrt; )™ )u’

Here we should note that ¢(u,t;s) > 0 and that
(2.11) o, t;8) > 31 — o)} + |Fup),
since {(r) < . Furthermore, for r(t;s) > r,

o(u,t;8) > 3r(t; 8)7 o + rt; 9) ' + rt; )

(2.12)
—C(t + s+ D Hu?
with C depending only on y, and d.

Proof. The proof is done by a direct calculation and (2.12) follows
from Lemma 2.1 if we note that {'(r) = d(p + r)7'7°.

LEMMA 2.4. Let A,B and E be as above. If w =0 on 2, then

wF(u,t;8) + n,G;(u,t;s) = %(n% — | P, + ErE 5 sHNy.sy)

ou
on
for (x,t) e X, where n, ., = n;z,(x,t;s).

Proof. Since u =0 on X, all the tangential derivatives of « also
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vanish there, so that on 2,

ou ou ou
n s Uritssy = My

U = N ;
’ “on jan an

Hence, if we have only to insert these expressions into #,F(u,t;s)
+ n,;G,(u,t;s), we obtain the desired result.
Now, we shall prove Theorem 1 with the aid of Lemmas 2.2 ~ 2.4.
Proof of Theorem 1. We integrate the identity (2.6) with 4, B and
E defined by (2.7) and u = v(¢t; s) over &,(0,T). Then, we have

J F@,T; s)de + r f W F®,t;8) + 1,G,@,t; 5)dSdt
(2 13) &(T';8) 0 J Z(t;9)

+ _[T Hw,t; s)dxdt = J. F(®@,0;s)dx .
0 Je(t;s) )

&£(0;s

By (2.8),(1.3) and Assumption (3),
1 + @5 My < My + Gy < 0

on X, so that it follows from Assumption (1) and Lemma 2.4 that the
second term on the left side of (2.13) is non-negative. Hence, this term
can be thrown away.

Next we consider the first term and recall the expressions of ¢;(u,t;s),
j=1,--.,4, in Lemma 2.3. From the condition on the support of the
initial data f(x;s) and g(x;s), we see by Assumption (1) and by the
argument of the dependence of domain that v»(t;s) =0 for |2 — a(s)|
>t+ N@E+pier0;89>t+ N+ p,0<La<1l. Consequently, tak-
ing account of (2.2) in Lemma 2.1, we have that »(¢;s) =0 for »(t;s)
> + wt + N(s + y)° since 7(t;s) <7(0;s) + ut. Therefore, by (2.12)
and the condition 0 <4 < 8, there exists a constant s, = s,(NV, d) such that
for s > s, o(v,t;8) > 0. From this fact and (2.11), we conclude that

j F@,T;9)dz > 31 — 9E@; oo, T, s) .
&(T;s)

Finally we consider the third term on the left side of (2.13). Re-
calling the expression of H(u,t;s) in Lemma 2.2, we see that the second
term is non-negative and that the first term is estimated from below
by

$0(p + r(t; 8) 7w} + [FoP) .
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By (2.9) the third term is absorbed in the first term, if we take s large
enough and note that 6 <8 And also, in view of (2.10), the fourth
term is dealt with by the above argument using the dependence of do-
main. Thus, there exists a constant s, = s(N, d), s, > s,, such that for
s> s,

Hw,t;8) > C/(1 + r(t; ) 7(v; + [FvP) + C,(1 + r(E; 8) 7% .

We shall estimate the term on the right side of (2.13). By use of
the estimate (Poincaré’s inequality):

f 703 8)~0(0; 8w < C f 7o(0; ) daz
£(0;8) £(0;s)
for C independent of s, it is easy to see that

j F(,0;8)dz < CE(w; «,0,5) .

£(0;9)

Thus, combining all the investigation given above, we obtain the desired
estimate.

THEOREM 2. Suppose that the same assumptions as in Theorem 1
are satisfied. Then,

T
j j (t;9) + O — [0,y
0 J Z(t;8)

< C(s* + T HE([w; 0,0,8)

au ’2 dSdt
an

for s > s, s, being the constant introduced in Theorem 1.

For the proof of Theorem 2, we take as 4, B and E in Proposition
1 the following functions:

(2.14) A=B=17r(;s) +1t, E=0i;s) + trit;s).
Then, the next lemma corresponding to Lemmas 2.2 ~ 2.4 holds.

LEMMA 2.5. Let A, B and E be as given by (2.14). Then, the fol-
lowing statements hold.
(i) F(u,t;s) can be expressed as follows:

F(u,t;8) = y(u,t;8) + y(u, t; 8 + vs(u,t; 9,

where
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E E \?
(U, t;58) = %A{uﬁ + zut(ur(t;s) + Xu) + (ur(t;s) + Zu)

+ (qu!Z - u?‘(t;s))} ’

P, b5 8) = —3(Hzy(x, t; 9U); ,
Yo, t5 8) = —3(r(t; )™ DU’ .

Furthermore
(2.15) [Psu, t;8)| < CE 4+ D'Prt; ) "u* .
(i) If u=0 on 2,, and if Assumptions (1) ~ (3) are satisfied, then

nFu,t;s) + n,G(u,t;s) = —;—A(ni — nP® + Npssy)

auf
an
ou
on

, a6n<l1.

= %(1 — A — lnzlz)nr(t;s)l

(i) H(u,t;s) can be estimated from below in the following way:
H(u,t;s) > —;Hl(u,t;s) ,
where
Hy(u,t;8) = C\(r(t;8) + Ort;9)7'(¢ + s + D7°ui + [Fuf)
+ Cr(t; 97 + s + D*QA + tr(t; )W
with C, and C, independent of s.

Proof. (i) is verified by a direct calculation and (2.15) readily fol-
lows from Lemma 2.1. The proof of (ii) is the same as that of Lemma
2.4 and the estimate from below follows from Assumptions (1) ~ (3).
(iii) is proved as follows: Inserting A, B and E defined by (2.14) into
the expression of H(u,t;s), we have

H(u,t;8) = —4r,@; 9)@; + |FuP) + trt; 9)7'(Ful — 45 ,y)
— (r(t; 9z, t;8) + (r(t; 8) + D)z (2, t; Nuju,
— 3r(t; 8)7*Q2r,(t; 8) + tr,(t;8) — 2tr(t; )7'r,(t; 8)Hu? .

The second term is non-negative, so that it can be thrown away. The
remaining terms are estimated with the aid of Lemma 2.1 and we ob-
tain the desired result.

Proof of Theorem 2. As in the proof of Theorem 1, we integrate
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the identity (2.6) with A, B and E defined by (2.14) and % = v(t;s) over
&,0,T). Then, we have

fj nF®,t;9) + n,G,0,t;8)dSdt = [ Fw,0; s)de
0 J Z(t;8)

£(0;8)

— Fw,T;s)dx — .[T H,t; s)dxdt .

&(T;s) 0 Je&(t;s)

By (i) of Lemma 2.5, the left side is estimated from below by

1 7 . 2 2
la- ao)jo jm) @t 8) + OO — |10l

ou r dsdt .
on

We shall estimate the three terms appearing on the right side. By
the condition on the support of the initial data, it is easily seen that

I F@,0;s8)dx < Cs*E(v; 0,0,s) .
£(0;8)

Next we consider the second term. Recall the expression of ;(u,t;s),
j=1~3, in (i) of Lemma 2.5. Then, since ¥,(v,T;s) > 0,

— F,T;8)dr < — I - Vi, T ; s)dzx .
&(Tys)

&(T;8)

Furthermore, by use of (2.15) and the Poincaré inequality, we obtain

— Fw,T;8)de <C(T + 1) *E(w; oo, T,s),

&(T'ys)

so that, in view of Theorem 1,
— f F,T;8)dzs < C(T + 1) *E®:; ,0,s) .
&(Tss)
Finally we deal with the third term. By (iii) of Lemma 2.5,

— rj H,t; s)dxdt < JT H,(v,t; s)dxdt .
0 &(t;8) 0

2(t;8)

Furthermore we have shown in the proof of Theorem 1 that v(t;s) =0
for r(t;8) > (1 + wt + N(s + p)*. Consequently,

H\(,t;8) < C(T + s + r(t; )7 (0] + [Fvf)
+ @+ 7(@E; 8N v% .

We combine this estimate with Theorem 1 to obtain
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— r H,t; )dzdt < C(T + s)~E®; c0,0,3) .
0 Jet;s)
Thus the proof is complete.
The next theorem gives the uniform decay of the local enery.

THEOREM 3. Suppose that the same assumptions as in Theorem 1
are satisfied. Then,

EW;iT,T,s) < CT*s* + s*T + T***FE(w; 0,0, s)
for s > s, 8, being the constant introduced in Theorem 1.
For the proof of this theorem, we set
(2.16) A=rt;s)+t, B=2r{t;s), E=2t.

LEMMA 2.6. Let A, B and E be as given by (2.16). Then, the
following statements hold.
(i) F(u,t;s) is expressed as F(u,t;s) = F,(u,t;s) + F,(u,t;s), where

Fi(u,t;9) = 340 + [FuP) + u,(Bi,,s) + Ew)
+ Ar(t; ) r(t; 8)U,pu + U7 ,
Fyu,t;8) = —3(ArE; s)'z,(x, t; 8)ud); .

Furthermore, Fi(u,t;s) >0 and for r(t;s) < it
Fi(u,t;8) > $t%ui + \Ful + (r(t; 8)7'zy(x, t; )u’,} .
(ii) If u=0 on 2, and if Assumptions (1) ~ (3) are satisfied, then

2

mF @, t;8) + n,G b5 8) = —;—(?’Lf — [n:)(An, + Bh,g,s) g—::l
2

> —%UOA(nf — 1P sss) g::] .

(ii) H(u,t;s) satisfies the estimate:
H(u,t;8) < Ct + s+ 1)2(r(t;s) + )2 + [FupP) .

Proof. (i) is verified exactly in the same way as in Lax and Phillips
{4], Appendix 3”. The proof of (ii) is the same as that of Lemma 2.4
and the estimate from below follows from Assumptions (1) ~ (3). (iii)
is proved by a direct calculation with the aid of Lemma 2.1.

0) We use the identity: —u?= Ar-2(ru,u + }u?) — ¥(Ar-1z;(x, t; syud);, r = r(t; s).
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Proof of Theorem 3. The proof is very similar to that of Theorems
1 and 2. Integrating the identity (2.6) with 4, B and E defined by (2.16)
and 4 = v(t;s), we have

j F,T;s)dz = j F®,0; s)de
&(T;s) £(0;8)
.17 - f j F®,t;8) + 1,G,, t; £)dSdt
0 J 2(¢;8)
— r H,t; s)dxdt .
0 Je(t;s)

We shall estimate the three terms on the right side of (2.17). First,
by the condition on the support of the initial data, we easily have

j F@,0;8)dx < Cs*E@W ; «,0,s) .
£(03s)

For the second term, using (i) of Lemma 2.6, we see that it is
majorized by

T
lgoj I (s 9+ O — 10y,
2 0d zes)

ou ] dsdt .
on
Furthermore, since it follows from Assumption (4) that on 2(¢; s)

rt;s) < CEt + 9)°,

we combine this fact with Theorem 2 to obtain that the second term is
majorized by

C(s™ + &7 + T HE®W; ,0,5) .

We deal with the third term. By use of the fact that »(f;s) =0
for r(t;s) > (1 + wt + N(s + p=, it follows from (iii) of Lemma 2.6
that

(2.18) Hw,t;8) < C(T + s + 73 )7 7°(; + [Fv[)

for 0 <t <T. Hence we combine this estimate with Theorem 1 to
conclude that

r Hw, t; 8)dzdt < C(T + s *Ew; »,0,s) .
0 Je(t;s)

Obviously, by (i) of Lemma 2.6, the left side of (2.17) is estimated from
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below by
iT°Ew; $T,T,s) .
Thus the proof is complete.

We consider the following transformation of variables:
2.19) y=x—al), t=1¢.

We denote by 2(z) and B(z), z > 0, the domain transformed by (2.19) of
&(t) and O(t), respectively. Let

2= U 2

0<r< o

and for each fixed s > 0, the notations 2, and Q(T;s) are introduced
in the same way as &, and &(T; s), respectively. Furthermore, by As-
sumption (4), it holds that for each z > 0

(2.20) Wyl <7} € Bk C {yllyl < & + )7}
Now we transform the problem (P.1;s) ~ (P.3;s) by (2.19):

Ve —20;.(z; 9V, + a;.(z;8)a,(c; 9V,

dss .
(Q ) - ij - a]rr(f; S)Vj — 0 mn ‘QS

Q.2;8) V=0 on 092(r;s), 02(r; s) being the boundary of 2(z; s)
Q.3;s8) V(@,0;9)=F(y;s), V.(y4,0;8) =Gy;s) on 20;s),

where a;(z;8) = a,(r + 8) and a;,(r;8) = —g—-aj(r;s), while by (1.1), the
T

62
Y:0Y 4
V(z;8) = V(y,7;s) a solution of problem (Q.1;s) ~ (Q.3;s) and V(zr;s)
is represented through the solution v(¢; s) = v(«,t; s) of problem (P.1;s)
~ (P.3;8) as V(y,7;8) = vy + alc;8),7;s). For this V(z;s), we define
the local energy measured over 2(h;s) ={ylye2(T;9),|lyl<hL,0<h
< oo, at =T by

operator a,(z;s)a,(c;s) — 4 is uniformly elliptic. We denote by

221 E(V;nT,s = L(n_s) (VLT 9)f + IFPV(T; 9)P) dy .

LEMMA 2.7. Let v(t;s) and V(z; 8) be solutions of problems (P.1;s)
~ @P.3;8) and (Q.1;s8) ~ (Q.3;8), respectively. Then there exist con-
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stants C, and C, independent of h, T and s such that
CEw;hT,s) <E(V;h,T,s) <CEw;h,T,s).

The next theorem is an immediate consequence of Theorem 3 and
Lemma 2.7.

THEOREM 4. Suppose that Assumptions (1) ~ (4) are satisfied. Let
V(z;8) be a C*solution of problem (Q.1;s)~ (Q.3;8) with the initial
data  F(y;8) (C=(2(0; %) N Hy(20;5) and Gy;s) (C=(R(0;s)
N LYR200; 8))). Suppose that the support of F(y;s) and G(y;s) is con-
tained in {y||ly| < N(@s + p)}. Let 0<d<p<1. Then there exist con-
stants s, = s,(N,d) and C (independent of T and s) such that for s > s,

EV;3T,T,s) < CT %™ + s°T + T**"H)E(V ; 0,0,5) .

Remark. Theorem 4 is valid also for a weak solution with the
initial data F(y;s) (e H{(R2(0;s)) and G(y;s) (e L*(2(0; s))) verifying
the condition for the support stated above.

Theorem 4 may be directly obtained by considering the transformed
equation (Q.1;s) from the beginning. However, a calculation then will
be more complicated because of the appearance of the term V,..

§3. Proof of main result

3.1. Huyghen’s Principle
We denote by L(s), s > 0, the operator

LW =W, — 2a;(c; 9W,,

3.1)
{ + a;.(z; S)a’jr(f > S)W'L‘j — Wjj — afjn(’l' H S)Wj .

We consider the equation
Q;s) LW =0  in R® X (0, )

with the initial data W(y, 0;s) (¢ H'(R®) and W.(y,0; s) (e LA(R®). Then,
the (weak) solution W(r;s) = W(y,z;s) is expressed through the free
space solution w(z,t), Qw = 0, as follows:

(3.2) W, z;8) =w + a(r; 8),7) ,

‘where the initial data w(z,0) and w,(x,0) are given by
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w,0) = W — a(0;5),0,;s),
wy(x,0) = W(x —a(0;5),0;8) —a,;,(0; 9W;(x —a(0;s),0;s) .

For given (x,,t,) and fixed ¢, t < t,, it follows from Huyghen’s principle
that the value w(x,,t,) is determined only by the value of w(x,t) on the
sphere |z — @] = ¢, — t. Therefore, using the relation (3.2), we see that
for given (¥, 7, and fixed 7,7 < z,, the value W(y,,z,; s) is determined
only by the value of W(y,z;s) on the sphere |y + a(z;8) — ¥, — a(zy; 8)|
=1, — 7. Furthermore, if the support of the initial data W(y,0;s) and
W.(y,0; s) is contained in |y| < K, then the support of w(x,0) and w,(x, 0)
is contained in |z — a(0;s)| < K. We again apply Huyghen’s principle
to w(x,?) to conclude that w(x,t) = 0 for | — a(0;s)| < ¢ — K, so that
W(y,z;8) =0 for |y + a(z;8) —a(0;8)| <+ — K.

Summing up the above investigation, we have the following proposi-
tion.

PROPOSITION 2. Let W(r;s) = W(y,z;8) be a (weak) solution of
problem (Q;s). Then the following statements hold.
(i) For given (Yy1,) and fized v,z < 7, the value W(y, z,;8) is deter-
mined only by the value of W(y,z;s) on the sphere |y + alz;8) — ¥,
— a3 8)| =1 — 7.
(ii) The backward cone with vertex (Yo, t,) expressed by |¥ — y,| = L — )
(zy — 1) 18 contained in the interior of the backward cone with the same
vertex expressed by |y + a(r;8) — Y, — alzy; 8)| = 7o — 7.
@iii) If the initial data W(y,0;s) and W.(y,0;s) have compact support
contained in |y| < K, then W(y,7;8) =0 for |y + a(r;8) —a(0;8)| <7 —K,
so that W(y,z;s) =0 for |ly] < (1 — pwr — K.
Here the constant p is as introduced in (1.1).

Proof. (i) has been proved above. (ii) is verified with the aid of
(2.2) in Lemma 2.1. (iii) follows from (ii).

For the solution W(r;s) of problem (Q;s), we define the local en-
ergy measured over |y < h, 0 < h < o0, at ¢ = T by

3.3 EW;h,T,s) = ‘[ma‘ (WAT;9F + FPW(T; 9))dy .

PROPOSITION 3. Let W(zr;s) be a solution of problem (Q;s). Then,
there exists a constant C independent of s, T and h such that
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EW;h,T,s) < CEW;h+ @+ wT,0,s) .

This implies that the motion governed by (Q;s) propagates at a speed
less than 1 4 p.

Proof. The assertion follows from relation (3.2) and the fact that
the motion governed by the free space wave equation propagates at the
speed one.

3.2. Preliminary lemma

We define several sequences, following the method in [6]. Let 0 <g¢
<p<Llandlet 0 <a<1l We put

3.4 p>all —a)?,
so that
(3.4.1) p>alp+1).

Let {T.};-, be the sequence given by
Tk = ka ’

T being large enough (determined below, Lemma 3.2) and let

so that

A — DT, — b +

J@ =0 - —8) —a @) =0+ ) —S) +a
Fig. 1
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(3.5) S; < C, k*'T .

We put g(c) = (¢ + p)*, r > 1, and define the sequence {a;};.o a; > 1, by
(3.6) a, = 9(Sp) (@ =79 .

Furthermore, we define the sequence {b.}i-, b, > 0, as follows:

(3.7 by is a (unique) root of the equation: (1 — Wt — a, = gt + S;)
(Fig. 1).

LEMMA 3.1. There exists a constant M independent of k>0 and
T such that

a, < b, < Ma, .

Proof. The proof is obviou$s from Fig. 1.

LEMMA 3.2. We can take T so large that for k> 1

3.8 ar + 20 + Wb, < 3T, — by,
3.9) G+ A4+ Wb, <A — )T — bi) + ay,
(8.10) T < T, — by, .

Proof. By definition and Lemma 3.1, T, = Ok?T), a;, = O(k*»*1T*)
and b, = O(k*?*T%). Since 0 < o« <1 and since p > a(p + 1) by (3.4.1),
we can find such a 7.

3.3. Proof of main theorem

We shall prove Main Theorem stated in §1. To this end, we in-
troduce the new notation: For G e L¥2), 2(C R? being an arbitrary
domain, we define G by G =G in 2 and G =0 in R* — 9.

LEMMA 8.8. Let U(y,7) be a (weak) solution of problem (Q.1;0)
~ (Q.2;0) with the initial data F (e HY(2(0)) and G (e L*(2(0))) such
that the support of F and G is contained in {y|y € 2(0), |y| < r*}, a4y = reb
Then, the solution U may be written as

U=R0+Fo’

where F, is o solution (defined over the whole space) of L(O)F, = 0 with

1) This domain is not void by taking r large enough if necessary.
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the initial date F (e H'(RY) and G, L(0) being the operator given by
3.1), and
F,=0 forly|§(1~y)r—a0,

while R, is a solution of problem (Q.1;b,) ~ (Q.2;b,) (that is, R, is a
solution of problem (Q.1;0) ~ (Q.2;0) for r > b,) and has compact support
of at most |y| < ay + A + wb, at © = b,. Furthermore

(3.11) Ey(Ry; 00,0,b) < CO)E(U ; 0,0,0) .

Proof. The assertion for F, follows from (iii) in Proposition 2.
By the definition of b, (see Fig. 1),

F,=0 in[y<G+p, >0,

so that by (2.20) F, = 0 on |y << 32(z) X {z}, 32(z) being the boundary
of 2(z). This implies that R, is a solution of problem (Q.1; b,) ~ (Q.2; b,).
The second assertion for R, follows from Proposition 3.2 (3.11) is verified
as follows:

Ey(Ry; 00,0,b,) < 2(E(Fy; 00,0,by) + Ey(U; 00,0,0y) .
We claim that
(3.12) E(F,, ©,0,b) < CE(U; 0,0,0)
(3.13) EyU, >,0,b) < C(b)E(U; ,0,0) .

Recalling the notation Eo(; ,,) given by (3.3) and using the property for
F,, we have

E(F,; 0,0, by =E0(F0;00,b0,0) ’

whence (3.12) follows with the aid of Proposition 3, since the initial
data of F, are F' and G. For the proof of (3.13), we give only a sketch.
By an argument similar (more simple) to that given in the proof of
Theorem 1* and by Lemma 2.7, we easily have

EO(U; o, bo, 0) (: EO(U, oo, 0, bo))
bo
< CE(U;00,0,0) + Cb) [ BU; 00,8, 0)dt .
2) In Propositions 2 and 8, only the whole space solution was discussed. However,
from the argument given there we see that these propositions are valid for the solution

considered here.
38) We use the identity (2.6) with A and B defined by (2.7) and E=0.
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We have only to apply the well known Gronwall inequality to this esti-
mate.

LEMMA 3.4. Suppose that the same assumptions in Lemma 3.3 are
satisfied. Let {T }i-o {Setior {@i}izo and {bi}i, be the sequences defined
in §§ 3.2 and let R, and F, be as in Lemma 3.3. Then we can construct
{Ri}r-: and {Fi}r., with the following properties:

(@ Ry.,=R;+F; for T > S
(b) F, is a solution of L(SpF, = 0 with the initial data Rk_l (e H'(RY)

and (1,3?_/1,) at © = 8S,, and
Fo=0  for |y <A — p)(z —8p) — ay;

(¢) R, s a solution of problem (Q.1;S, + b,) ~ (Q.2;S, + b,) and has
compact support of at most |y| < a, + A + Wb, at ¢ =S, + by;

Eo(Rk; oo, O,Sk "I' bk)
(d) < CER ;00 + A+ by, Ty + by — bi_1, Sy + bisd)
+ Ey(Ry_i; 08 + 2(0 + @by, Ty, — by, Sy + bi2))

Proof. First we consider the case of £k = 1. Let F, be a solution
of L(S)F, =0 with the initial data R, and (Ry) at r =S, In other
words, for = > S,, F, is defined as the whole space solution of L(S)F, = 0.
We continue this F, as F, = R, for < S,. Then F, satisfies the equa-
tion L(0)F, = 0 in the domain exterior to {(¥,7)||y| < (z + 9,0 <z < S}
We apply Proposition 2 to F, in this domain. Let (y,z,) be a point
with |y, < A — W(zy — S) — ay, 7o > S,.  According to (i) of Proposition
2 with s = 0, the value of F, at (¥,,7,) is determined only by the value
of F, on

1Y+ ac;0) — Yy — alzy; 0)| = 7o — ¢ (r; fixed) .

Here we put =S, + b, =b,(S, =0). By (ii) of Proposition 2. the
sphere given by the above equation with z = b, contains the sphere
1Yy — %] = A—w)(z, — by in its interior, which, furthermore, contains
the sphere |y|=(1 — (S, —b) +a (=@ — (T, —by) + a;,S; = T).
On the other hand, by Lemma 3.3, the support of B, at = b, is con-
tained in |y| < a, + (1 + Wb, In view of (3.9) in Lemma 3.2, a, + (1 + )b,
<A —-w@T — b)) + e, (see Fig. 1). This implies that F, =0 for |y|
<@ — @ —S) — a,, which, together with the definition of b, (Fig. 1),
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shows that F', is a solution of (Q.1;S, 4+ b) ~ (Q.2; S, 4+ b,)). Thus the
property (b) is established. The property (¢c) for R, follows from the
fact stated above and Proposition 3.

It remains to prove (d). By property (c),

E(R,; ©,0,S;, + b)) = E(R;;a, + 1 + /l)bn 0,8, + b))
< 2EF;a, + A+ ll)bu 0,S;, + b)
+ E(Ry;a, + A + ll)bn 0,8, + b)) .
By definition, the second term is equal to
E(Ry;a, + A + #)bn T, + b, — by, by) S, =T).

From Proposition 3 and the fact that F, = B, and F,, = (By) at ¢ = S,,
we see that

E(F;0, + (1 + b,0,8, + b) < CE(Ry; 0y + 2(1 + )by, Ty — o, by)

Thus, F, and R, with properties (a) ~ (d) are constructed. Repeating
this procedure and noting (3.9) in Lemma 3.2, we can construct {F.};.,
and {R.};., by induction on k.

The following theorem is equivalent to Main Theorem stated in §1.

THEOREM 5. Suppose that Assumptions (1) ~ (4) are satisfied. Let
U(y,z) be a (weak) solution of problem (Q.1;0) ~ (Q.2;0) with the ini-
tial data F(y) (e H{(R2(0)) and G(y) (e L*(2(0))) such that the support of
F and G is contained in {y|y € 2(0), ly| <y} Let h >0 be fixred and let
2@ h) ={ylye 2@,y <+ 1)+ k). Then, the local energy measured
over 9(c; h) at time r decays at the rate of exp (—Mz%) as ¢ — co. In
other words, there exist constants C, M and 6,0 < 8 < 1, such that

EWU; @+ 71+ h,z,0) < Cexp (—=M)E(U) ,
where 0 = (p + 1)7*, p being the constant defined by (3.4), and
B = (PFP+ @y .
Proof. In virtue of (¢) in Lemma 8.4, R, has compact support of

at most |y <a; + 1 + wb, at = =8, + b,. Hence, in view of (3.6)
and Lemma 3.1, there exists a constant N such that

a/k+(1+/~¢)blcSN(Sk+ by + 7).
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With this N, we define the constant s, = s,(N,d) introduced in Theorem

1 or Theorem 4. We may assume that S, + b, > s, by taking T (in

Lemma 3.2) large enough if necessary, so that S, + b, > s, for £k > 1.
According to Lemma 3.4, the solution U may be written as

U=>F.+R,
Jj=0
for = > S,, where
(8.14) F;=0 for |y <Q—p—S8) —ay,

3.15) R, is a solution of problem (Q.1;8S, + b,) ~ (Q.2; 8, + b,).

e+ +r<Q—-—pwt—-S,)—a, and S, + b, <<z, then F; =0 in
9(c; h), so that U = R, there. By this fact we have

EO(U; (z + T)a + h,T,O) = EO(Rn;(T + T)a + hyt - Sn - anSn + bn)
< Eo(Rn; 00, T — Sn - bn)Sn + bn) .

If we note that S, + b, > s,, then we obtain by Theorem 1¥ and Lemma
2.7 that

EU;@+ D+ ht,0 < CE(R,; ,0,S, +b,) .
Furthermore, by (d) in Lemma 3.4,

E(R,; ,0,S, + b,)
(8.16) S CER 30, + A+ by, Ty + by — by, Spsy + byy)
+ BR300 4+ 20 + )by, Ty — byys Sny + 0yy) -

Here we want to apply Theorem 4 (Remark after this theorem) to each
term on the left side. To this end, we must check that a, + 2(1 + pb,
< T, —0b,_) and that the support of R,_, at - =S,_, + b,_, is con-
tained in {y||y| < N(@S,_; + b,_. + 1)} The first fact follows from (3.8)
in Lemma 3.2 and the second one has already been established above.
Hence, using (3.10) in Lemma 3.2 and the order relation for S,, a, and
b, (the proof of Lemma 3.2), we see that the left side of (3.16) is
majorized by

CUn=2T =D - @) 4 T DB Ry 3 00,0, 80, + buo)

Furthermore, recalling the definition of p ((8.4) or (3.4.1), we have

4) Theorem 1 is valid for a class of weak solutions considered here.
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E(R,; ©,0,S, + b,) < CTE(R,_,; ©,0,S,_; + b,_) ,

where v =min(1 — «,3 — ) > 0 and C, is a constant independent of n»
and T. Repeating this step, we have

E(R,; ©,0,S, + b,) <exp(—®m — 1)M)E(R,; =, 0,8, + b)),

where M, = —log (C,T~*) > 0 if T is chosen large enough. And by (d)
in Lemma 3.4 and by the argument used in the proof of (3.11) in Lemma
3.3, it is not difficult to see that

EO(RI; oo, 0;S1 +b) < C(T)Eo(U) .

Thus, we have
EWU;@+ 71+ k7,00 < C(M)exp(—(n — DMYE) .

Now, for given z, we choose the maximal integer n such that
C+)+hrh<Q—wec—-S,) —a, and S, + b, <z. Then, n > C(T)’,
0=+ 1, for some C(T). This completes the proof.
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