
NOTES ON LOCALLY COMPACT CONNECTED 
TOPOLOGICAL LATTICES 

TAE HO CHOE 

I t was shown in (2) t ha t if 
(1) L is a locally compact connected topological lattice and if 
(2) L is topologically contained in R2, the Euclidean plane, 

then each compact subset of L has an upper bound and a lower bound in L. 
I t was also asked whether this result could be proved without assuming con­
dition (2). In this note, we show tha t this result continues to hold if condition 
(2) is weakened to: L is finite-dimensional. 

In (11), i t was shown t h a t the centre of a compact topological lat t ice is 
total ly disconnected. We shall prove t h a t this result is also t rue even in a locally 
compact , locally convex topological lattice with 0 and 1. This yields t h a t any 
locally compact topological Boolean algebra is totally disconnected. 

Finally, we shall give a necessary and sufficient condition for a topological 
lat t ice to admi t enough continuous latt ice homomorphisms into / , the closed 
uni t interval, to distinguish points. 

T h e terminology and notat ion used in this note is the same as in (1 ; 2; 5 ) . 
I t is well known t h a t any locally compact connected topological latt ice is 
chain-wise connected, which means t ha t for any pair a, b with a < b there 
exists a compact connected chain from a to b. 

T H E O R E M 1. If L is a locally compact connected topological lattice of finite 
dimension, then each compact subset of L is bounded. 

Proof. W e recall from (1) t ha t a locally compact connected topological 
latt ice is locally convex, and from (9) t h a t its codimension is not less than 
its breadth . I t was also shown in (6) t ha t if L is a locally compact and locally 
convex topological latt ice of finite breadth, then for a neighbourhood U of a 
point p in L, there exist a neighbourhood V of p and a closed interval [s, t] 
( = s V (t A L) with s ^ t) such t h a t V C [s, t] C U. Now let us begin the 
proof of the theorem. Let A be a compact subset of L. For every a Ç L, 
consider L as a neighbourhood of a. Choose a neighbourhood V(a) of a and 
a closed interval [s(a), t(a)] such t h a t V(a) C [s(a), t(a)]. Clearly 
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is also an open covering of A. Having a finite open sub-covering { V(cii)} of 
{V(a)}, we can easily see that A is bounded by the elements inf s(at) and 
sup t(a,i) in L. 

The following corollaries are immediate. 

COROLLARY 1. If L is a locally compact and locally convex topological lattice of 
finite breadth, then each compact subset is bounded. 

COROLLARY 2. If L is a locally compact connected metric topological lattice of 
finite dimension, then L is simply connected i.e., the fundamental group ir1 of L 
is trivial. (See 2, Theorem 5.) 

An element a of a lattice L is neutral if and only if every triple {a, x, y) in L 
generates a distributive sublattice of L. An element is in the centre of a lattice 
with 0 and 1 if and only if it is neutral and complemented. I t is well known that 
the centre of a lattice with 0 and 1 forms a Boolean lattice. It is also well 
known that the connected component of an element in a topological lattice L 
forms a sublattice of L. 

THEOREM 2. / / L is a locally compact, locally convex topological lattice with 
0 and 1, then the centre of L is totally disconnected. 

Proof. Let C be the centre of L and let E be the connected component of C 
containing an element c. Choose neighbourhoods U, V, and W of c, in L, such 
that U* (where * denotes topological closure) is compact, V is convex and 
W V W C V C U*, W A W C V C C/*. We now show that W C\ E = {c}. 
Assume that there is an element d' 7^ c in W C\ E. There are two cases to 
consider. 

Case 1. c V d' ^ c. Let d — c V d'', thus c < d. Furthermore, 

d £ W V W CV, 

and d G E, since £ is a sublattice. Hence d G V C\ E. Since V is convex, 
[c, d] C V. 

Case 2. c V d' — c. In this case let d = d', so that d < c. Then 

d£Wr\ECVr\E, 

and [d, c] C V. The cases are entirely analogous and thus we shall only 
consider the first case. Note that [c, d] is a compact sublattice since it is a 
closed subset of U*. Further, a little verification shows that since C is a sub-
lattice of L, we have 

{c V {d A L)} H C = c V (d A C) D c V (d A E). 

Note that c V (d A C) is a connected sub-Boolean topological lattice 
containing more than one point. Further, it is contained in the centre of the 
compact lattice [c, d] (= c V id A L)). In fact, every element in c V (d A C) 
is relatively complemented in the closed interval [c, d] and is a neutral element 
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of [c, d] since it is neutral in L. Now we recall that the centre of a compact 
topological lattice is totally disconnected (11); this contradiction completes 
the proof. 

We note that compactness implies local convexity in a topological lattice, 
and hence Theorem 2 yields the theorem in (11). 

COROLLARY 3. If L is a locally compact topological Boolean lattice, then L is 
totally disconnected. 

Proof. I t suffices to show that the connected component E of zero 0 in 
L is {0} itself. Suppose that E contains an element a other than 0. Then we 
have a A E = [0, a], since if x £ [0, a], then x = x/\a^x/\E. Since x A E 
is connected, and contains 0, we have x £ E, hence x £ Q> A E. Thus a A E 
is a locally compact connected non-degenerate topological Boolean lattice in 
its relative topology. Therefore it is locally convex. It must be totally dis­
connected by Theorem 2. This is a contradiction. 

A non-degenerate closed interval K = [a, b] (i.e., a 9e b) in a topological 
lattice L is called /-reducible if and only if there exists at least one non-
constant continuous lattice homomorphism of K into the closed unit interval / 
with the usual lattice operations and the usual topology. Let Hom(L, / ) 
denote the collection of continuous lattice homomorphisms of a topological 
lattice L into / . 

LEMMA 1. Let L be a topological lattice. Then Hom(L, / ) distinguishes points 
if and only if L is distributive and each non-degenerate closed interval in L is 
I-reducible. 

Proof. Suppose that Hom(L, / ) distinguishes points and let [a, b] be a 
non-degenerate interval of L. Choose <£ £ Hom(L, 7) such that <j>{a) ^ <t>{b). 
Then clearly the restriction of <j> on [a, b] is non-constant, and it is in 
Horn ([a, b], I). Thus the interval [a, b] is /-reducible. We now show that L is 
distributive. Since Hom(L, / ) distinguishes points, the evaluation mapping: 
L —» J110111^'7) i s a lattice monomorphism. Thus L must be distributive. 

Conversely, for a, b G L with a ^ b, either [a, a V b] or [a A b, a] is 
non-degenerate. Assume that [a, a V b] is /-reducible. Let a V b = c. For a 
non-constant mapping/ G Horn ([a, c]} I) we define F: L —» / by 

F(x) = f(a V (c A x)); 

then F G Hom(L, / ) . Further, F (a) ^ F(b) since F (a) ^ F{c). 

Recently Lawson (10) gave an example of a compact connected metrizable 
distributive topological lattice L with Hom(L, / ) consisting of constant map­
pings only, i.e., Hom(L, / ) does not separate points. 

THEOREM 3. If L is a locally compact connected distributive topological lattice, 
and if each non-degenerate closed interval in L has a finite-dimensional non-
degenerate closed subinterval, then Hom(L, / ) distinguishes points. 
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Proof. I t is enough to show that any finite-dimensional non-degenerate 
closed interval K = [a, b] in L is an /-reducible interval. We recall (3; 5) that 
Ca([a, b]) ^ the breadth of [a, b] S the dimension of [a, b] (= n > 0), where 
Ca([a, &]) denotes the number of atoms of the centre of [a, b]. Now consider the 
set {m \ Ca(x, y) = m for some [x, y] C [a, &]}. Let m be the maximal positive 
integer of the set and let m = Ca([x, y]) for some [x, ^] C [a, &]• Then the 
interval [x, 3/] is iseomorphic with a Cartesian product of m non-degenerate 
compact connected chains (see 7). Therefore, since m ^ 1, [x, y] contains a 
non-degenerate compact connected chain, which is also a closed interval of L. 
It was established in (12) that for any compact connected chain C, Hom(C, / ) 
is point-separating. Thus C is, of course, /-reducible if C is non-degenerate. 

From the proof of Theorem 3, the following corollary is immediate. 

COROLLARY 4 (L. W. Anderson). If Lis a locally compact connected distributive 
topological lattice of finite breadth, then Hom(L, I) separates points. 
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