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TENSOR PRODUCTS OF UNITARY SUPER-VIRASORO 
MODULES WITH CENTRAL CHARGE ^ 

MURRAY R. BREMNER 

ABSTRACT. The two Virasoro superalgebras, known as the Neveu-
Schwarz algebra and the Ramond algebra, each have two unitary irre
ducible lowest weight modules with central charge ^ . In this paper, I 
show how tensor products of these modules decompose into finite direct 
sums of irreducible modules with central charge ^. 

1. Introduction. Let V denote the Virasoro algebra; that is, the complex 
Lie algebra with basis {Lm : m G Z} U {<?} and commutation relations 

[LmLn] = (n - m)Lm+„ - <W7,oT2 (w3 - m)c, 

[Lmc] = 0. 

We consider two Z/2Z-graded extensions of V ; that is, Lie superalgebras ft \ — 
ft(0)®ftil) where Jl(0) := V and ft{l) is defined as follows: for ft = 9^S (the 
Neveu-Schwarz algebra), ft{l) has basis {Gm : / w G Z + | } , and for Ĵ  = ^ 
(the Ramond algebra), ft^V) has basis {Gm : m G Z}. In each case the additional 
(anti)commutation relations are 

[LmGn] = {\m - n)Gm+m [cGm] = 0, 

[GmGn] = 2Lm+n — èm+,ho^(m — ^)c. 

We have [ft{a)ft^] Ç A<a+P\ a,(3 G Z/2Z; in the enveloping associative 
superalgebra 11 (A) we have [xy] = xy - (-l)af5yx for x G ft{a\y G ft{(3\ 

We write fto for the subalgebra spanned by LQ and c (and Go if ft = %, ), 
and ft± for the subalgebra of ft spanned by the Lm and Gn with ±m, ±n > 0. 
If ft = 9tS, let Z := ±Z and if ft = ^ , let Z := Z; then Z is the set of 
eigenvalues for the adjoint action of LQ on ft. 

By an ft -module we mean a Z/2Z-graded vector space fW = fW(0) 0 !Af(1) 

on which ft acts such that [xy]v = x(yv) — (—\)a^y(xv) for x G ft(a\y G 
ft{P\ v eM,cmdftia)M(/3) Ç"W<a+0), for a,/? G Z/2Z. The nonzero elements 
of fW(0) are even; those of fTVf(1) are odd. An element v G fW is homogeneous 
if v G ^ ( 0 ) or v G ^ ( 1 ) . Let S^ be an ft -module with lowest weight h G C; 
that is, 

M = 0 ^ + " 1 ^ + « = iA' e fW : LOJT = (A + /?)*}, 
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where Mh+n — {0} for n < 0, dim^V4 ^ 1, and d i m ^ / ^ < oo for n G Z, A7 ^ 0. 
If fW is generated by an eigenvector for c, then c acts on fW as multiplication 
by a scalar z G C, the central charge of fW. From now on we assume that all 
modules 9rf satisfy these conditions. 

An important class of lowest weight modules are the Verma modules. Given 
A and z, h G C, we first define Z/2Z-graded vector spaces C-,/, and C:j2, which 
always have dimension 1 or 2. If A = 5V£S, or if A = %^ and h — — ̂ z , 
then Cz^ := Cx where x is even, and CZi/7 := Cx where x is odd. If A = %^ 
and h^ ~^Â7->

 t n e n C_-,/? ;— C* © CGox where x is even. We regard each Cr,/, 
and C_^ as an irreducible J3_ 0 ^-module by defining J^_x := 0, L0x := /zx, 
ex := zx, and if J3 = ^ and /? = —z/24 we also define Gox := 0. Now define 

V(z,h) := ttW®^^©*,)^, and 

respectively the V̂<?A? and odd Verma modules over A with central charge z and 
lowest weight h. For all z,/z G C, V(z,/z) (respectively V(z,/z)) has a unique 
maximal submodule M{z,h) (respectively M(z,/z)), and therefore a unique ir
reducible quotient L(z,/z) (respectively L(z,/z)), the éw^ (respectively odd) ir
reducible lowest weight A -module with central charge z and lowest weight h. 
The evenness or oddness of a module is its parity. For more detail, see [9j. The 
distinction between even and odd Verma modules is a special case of the parity 
change functor, for which see [8; pp. 156-7]. 

Let o be the conjugate-linear anti-automorphism of A of order 2 given by 
a{Lm) — L-m, a(c) = c, and a(Gn) — G-n. A lowest weight A -module fW is 
unitary if it admits a positive definite Hermitian form (,) such that (ax,y) = 
(x,a(a)y) for all a G A, x,y G M. (Taking a = L0 one sees that Mh+n -L 
%+„> for n ^ n'.) Let M be an A -module with lowest weight / i G C . Since 
dim$4+/7 < oo for n G Z we can define 

X(fW):=^X)(dimf^+^' 
A?ez 

the character of fW , where the sum is a formal power series in q with exponents 
in Z. We need to distinguish the even and odd subspaces; thus we define, for 
a G Z/2Z, 

/?ez 

where x ( 0 )(^O is the even character of fW and x ( 1 ) (^0 is the odd character 
of ^ . We have x(fW ) = X ( ° W ) + X ( 1 W )• 

The following results can be proved by standard methods (see [6), [8], [10] 
for basic information on infinite dimensional Lie algebras and superalgebras). 
Details can be found in [1]. 
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THEOREM 1.1. If (M is a unitary lowest weight ft. -module, then <M is com
pletely reducible. 

COROLLARY 1.2. Let M\ and M2 be unitary lowest weight ft-modules. Then 
M\ <g) OK2 is a direct sum of unitary irreducible lowest weight ft -modules. 

THEOREM 1.3. Let 9\{\ and 9A.2 be unitary lowest weight ft -modules. Suppose 
that M\ and Mi have the same central charge, and that x ( a ) (^ i ) = X(a)(^6) 
for each a G Z/2Z. Then M{ ^ M2. 

COROLLARY 1.4. Suppose that M is a unitary lowest weight ft-module, that 
y£o> ^L\> ̂ Li> ••• are unitary irreducible lowest weight ft -modules, and that all 
of these modules have the same central charge z G C. Suppose that x{a\^M ) = 
£ £ 0 X{a\*Li),for both a G Z/2Z. Then M * 0 ^ o #,-. 

The significance of these results is as follows. If we know which ft -modules 
are unitary (see Theorem 2.1), and the character formulas for these modules (see 
Theorem 2.2), then purely combinatorial manipulation of characters suffices to 
establish certain isomorphisms of unitary ft -modules, in particular to decom
pose certain tensor products of unitary ft -modules. The next section gives an 
application of this principle. 

2. Main results. We first recall two basic theorems in the representation 
theory of C\[ S and ^ . 

THEOREM 2.1. The ft -modules LA (z, h) and LA (z, h) are unitary if and only 
if either for m,r,s G Z, m ^ 2, we have 

\ ^ s ^ r ^ m - \ , r-s G 2Z, 

l^s^r+l^m,r-se2Z+\, 

Proof The necessity of this condition is outlined in [4]; the sufficiency is 
shown in [5] or [7]. QED 

The unitary irreducible modules with z < \ are known as the discrete series. 
For ft = ^ the only unitary modules Z/^(z,/?) and Z/^(z,/z) such that h = 
—z/24 are L^(0,0) and L^(0,0), the even and odd trivial one-dimensional 

. 3 [1 8 

7 zzz 7 z=z — I — 

2 |_ m(m + 2) J 

h = h<?J : = 
f [(m + 2)r - ms]2 - 4 

8m(m + 2) 
I when ft = 9\[S; and 
< 

[(m + 2)r - ms]2 - 4 1 
8m(m + 2) Ï 6 ' 

I when ft = ^ , 
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modules. Thus we do not need to distinguish between even and odd unitary 
irreducible ^ -modu le s except in this case. 

The characters \A(z^h) of the unitary modules LA(z,h) are stated in [5] 
using unpublished results of the second author; however, in that paper, formula 
4.10 is missing a factor of 2 on the right-hand side, and the term 2m(m + \)n 
in formulas 4.12a,b should read 2m{m + T)n. An outline of the proof of these 
character formulas is given in [11]. 

THEOREM 2.2. We have 

oo 

X(m,r,sj[[(\ +q"-h/d - < A X = 9iS 

* * ( z m , 0 = < 
n=\ 

2x(m,r,s)f[(\ + <?")/( 1 - <f), A = *L, 
n=\ 

where 

X(m,r,s)(q)-J2{qV")-(!H"))> 
«ez 

l(n) = l\m)
s{n) := \m(m + 2)rr + \({m + 2)r - ms)n + h\m

sK 

6(n) = 6{™s\n) := \m{m + 2)n2 + {{(m + 2)r + ms)n + \rs + h^. 

We write \ A (z, h) for the character of LA (z, /?) when A — 9{^S, or A = %, 
and z = h — 0. Note that we always have x{z,h) = \(z,h), since x ( a )(r , / /) = 
X(1"a)(z,/z) for a G Z/2Z. 

To define the tensor product of two modules over a Lie superalgebra, we need 
a Z/2Z-graded extension of the action of a Lie algebra on a tensor product. 
Thus for A = Am 0 Ail} and two J3-modules M = fW(0) 0 fW(1) and 
9£ = ^ ( O ) 0 ^ ( 1 ) , we define 

x(u ® v) := (JCM) 0 v + ( - 1 )a0u 0 (JCV), 

where x G J3 (a),w G fW(^}, and v G fA£ • (The parity of v G fA£ is irrelevant.) 
This definition gives M (& 9\i the structure of an A -module. 

If we take m — 2 in Theorem 2.1 we obtain only the trivial representations 
with z — h = 0. For m = 3 we obtain z = 23 = -^ and the lowest weights 
*> e { 0 , ^ } ((r ,s) = (1,1) or (2,2)) for f*£S, and /j G { | ^ } ( 0 w ) = 
(1, 2) or (2, 1)) for ^ . For m = 4 we have z ^ 1. Notice that -^ + -- = | and 
that I = zio, the central charge corresponding to m = 10. Thus we have two 
nonzero discrete series central charges for which the sum is also in the discrete 
series, and this occurs only when both central charges are -^. (This contrasts 
with the situation for the Virasoro algebra, for which see [2].) The corresponding 
tensor products are 

L , ( 1 ( ) , U J Q 9 L l 1 0 , 1 ( )J , L l , 0 , 80;os> ^ vI(), I 6 ; , 

^ MO, 1 0 ; Q S ) ^ I 1 0 , 1 0 J , 1. (1 0 , 1 6 ; Q S ) ^ tioMô*-
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TABLE 2.2 1. (JSS) 

(1,1) 0 (6,2) 4 5 
1 6 (8,6) 323 

240 

(2,2) i 
80 (6,4) a (8,8) 21 

80 

(3, 1) 7 
10 (6,6) 7 

4 8 (9, 1) 10 
(3,3) 1 

30 (7, 1) 5 7 
10 (9,3) 7T 

(4,2) 13 
16 (7, 3) 3l) (9,5) 2 

(4,4) 1 6 (7,5) f (9,7) 3 
2 

(5, 1) 13 
5 (7,7) 5 (9,9) 3 

(5,3) 1 1 
15 

(8,2) 481 

w 
(5,5) 1 0 (8,4) 2 6 1 

TABLE 2.4. (°Jl) 

(1,2) i 
8 

(5,4) 19 
4 0 (8, 3) 1 103 

240 

(2, 1) 11 
80 

(5,6) 7 
120 (8,5) 1ÏÏT 

(2,3) 1 4 0 (6, 1) 65 
16 (8,7) n 

(3,2) 13 
40 (6,3) 91 

48 (9,2) 6 5 

(3,4) 4 0 (6,5) ii> (9,4) 3 9 

(4, 1) ft (7,2) 173 
40 (9,6) 59 

24 

(4,3) 19 
48 

(7,4) 8.3 
40 (9,8) 7 

8 

(4,5) 1 
16 (7,6) 79 

120 

(5,2) 69 
40 (8, 1) 621 

80 

Since each of these tensor products has finite dimensional weight spaces, and 
since there is only a finite number of discrete series modules for either 0\[S 
or %^ with z = | , each of these tensor products must decompose into a finite 
direct sum of modules with z = | , by Corollary 1.2. 

In a tensor product of 9\£ S -modules, we can replace L^ S ( -^, h) by L^ S ( -^, //). 
However, the tensor product will decompose in the same way, except for the 
parity of the irreducible summands. Thus L (g) L and L®L have parity opposite 
to that of L <S> L, whereas L®L has the same parity as L <g> L. 

The lowest weights of the discrete series modules with z = ^ for 9^S and 
^ are listed in Tables 2.3 and 2.4; there are 25 in each case. 

All the weights of a tensor product of modules differ from the lowest weight 
by an element of Z. Thus for a module L^ (^, h) to occur in the decomposition 
of LA(^h\) <8> L*(l,h2) we must have h - (h{ + hi) e | Z for O^S, and 
h — (h\ +hi) G Z for %,. This cuts down the number of possibilities considerably. 
For each tensor product, the following list gives the lowest weights that can occur 
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in the decomposition, with notation (r, s) »—+ h — h){]s. 

£ * 5 ( ^ , 0 ) < g > £ ^ 5 ( ^ , 0 ) , hx+h2 = 0: 

(1,1)»—>/z = 0, (9,7)»-+/?= | , (9 ,5)»-+/?=?, (9, 1) »->/? = 10. 

£ * s ( 7 
10 • , 0 ) ® £ ^ 5 ( ^ , - ^ ) , Al + hi ~-

1 
10 

(5,5) ^ * = *>> (5,1) 
l-> /? = 

13 _ 
5 ife + 

5 
2 

£ * s ( 7 
10' , - ^ ) ® i : ^ 10' 

-1) 
1 0 ' ' 

h 1 + /?2 
_ 1 

5 

(7 ,7 ) .—&=£, (3,1).—/»=•& = £ + ^, (7,5)i-»/»= | = 5 + 1. 

(7,l).-/,= f± = i + f 

(3,4) . - / , = £ , ( 7 , 4 ) - / , = ! = £ + 2 . 

^ ( ^ ) ® £ * - ( i , i ) , A 1 + A 2 = | g : 

(5,4) . - A - 19 

£ ^ , i ) ® i : ^ ( i , ^ ) , A. +*2 = i : 
(9,8).—A = 2 , ( 9 , 4 ) . — / i = f = 2+4 . 

To decompose each of these tensor products, by Corollary 1.4 it suffices 
to decompose the character of the tensor product, which is the product of the 
characters of the factors, into a sum of characters of unitary modules with z = | . 
Since there are only finitely many possible summands, and the lowest power of 
q in the character of L^(^,/?) is ql\ the highest power of q in the character of 
the tensor product that we need consider is qhmdx, where /?max is the maximal 
lowest weight that can occur in the decomposition according to the above list. 
Every h in the list is â 10, but for clarity in what follows we will see all powers 
of q less than 20. 

We now list, for each tensor product, the character of the tensor product, 
the characters of the allowed summands, and the decomposition. All the power 
series listed omit one product factor in the character formula, that is, 

T T 1 + a 2 TT 1 + Q 

n=\ H n=\ H 

For 9£S, since we are assuming that both tensor factors are even, a lowest 
weight vector of weight h in an irreducible summand of the tensor product will 
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generate an even (respectively odd) irreducible submodule when h—{h\+hi) £ Z 
(respectively h — (h\ +hi) G Z+5). (This is the reason for the distinction between 
even and odd Verma modules.) 

X^S(jlv0)2 = l-q^+qi+qi - q4 - q1 + qW - q^ - qT + . . . 

x ^ , | ) = ̂ U - ^ + - - 0 x^(^iO) = ̂ , 0 ( i - ^ - ^ + . . .) 

X^S(l Jo) = ̂ 0 - ^ - ^ + ...) ^ 5 ( ^ f ) = ̂ U - ^ + • • 0 

X^ijô^Tô)2 = <7*U + <7̂  +q-q2+q^ - q^ - q9 - q^ - q^ + • • •) 

X * 5 ( ^ | ) = ^ ( 1 - qT + • • •) x ^ ( Z , _L) = ^ i ( i _ q\ + . . .) 

A ^ 1 ( ) M 0 ; * v 5 ' 5 ; ^ ^ V 5 ' l ( ) ' ^ * V V 5 ' ^ X V V K K 

X*-(W è>2 = 2 ^ ( 1 + q1 - q6 ~ qH ~ ql" + • • 0 

x * ( ^ | J ) = qMi - q 6 + • • •) x * ( ^ 1) = ? V u -</12- </14 + • • •) 
A v 10 ' 8 0 ; ^ A v 5 ' 4 0 ' ^ A V 5 7 4 { ) ; 

X ^ ^ ^ ) 2 = 2x^(|,I) + 2X^(l,f) 
From these character decompositions and Corollary 1.4 we deduce the fol

lowing result. 

THEOREM 2.5 A. The tensor product L( -^, h \ ) 0 L( -^, hi) of unitary irreducible 
lowest weight modules for 9\[S or ̂  decomposes as follows. For 9\tS, L(l,h) 
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(respectively L(jJi)) occurs if and only if h — (h\ + hi) G Z (respectively 
h — (h\ + ÏI2) € Z+ \), and its multiplicity is I. For %, L(l.h) occurs if and 
only if h — (h\ + hi) G Z, and its multiplicity is 2. 

The symmetric and skew-symmetric submodules in the tensor square of a 
module 9/[ = 9lf(()) © fW(1) over a Lie superalgebra are defined as follows. Let 

span{e\ ® 02 + 02® e\ + 0$ ®o\ + o\ ® e$ + 02 ® ^3 — o$ ® o2\ 

e, G 9rf{{)\oj G ^ f ( I ) } . and 

A2(9rf) : = 

spanj^i ® 2̂ — 02® o\ + o^®o\ — o\ <S> OT, + 02 ® o-i, + OT, ® ^2! 

*V EfWF(()),«yGfW(l)}. 

The characters of 512(fTVf ) and A2(fAf ) can be expressed in terms of the character 
of fW: for x(flO(<y) = X(())(M )(q) + X(l)(M )(q) we obtain 

X(S W ))(</) ={ ( x ( 0 ) ( ^ )(</)2 + X ( 0 W )(V2)) + Xm(M )(q)x{U(M )(q) 

+ \(x{l\M)(q)2-x(l\M)(q2)), 

and *(A2(fW ))(?) = XWL )(q)2 ~ x(S2(M ))(</). 
Calculations with this formula give 

X(S2(L*S(TCVO))) = 1 - q^+ qi - q1 + • • •, 

X(S2(L*S(^V ±))) = qH\ + q^ ~ q^ - q9 + • • •). 

For ^ , given any quotient 94 of a Verma module V<Jt(z,h) with h > — z/24, 
we have x ( 0 )(^O = x ( 1 ) (^0 — \x(M), since given any homogeneous vector 
v in the kernel of the homomorphism from V'^ (z,h) onto fW, the vector Gov 
of opposite parity will also be in the kernel (since the kernel is a submodule). 
Thus we see that 

X(S2((M )) = X ( A 2 ( ^ )) - \x(fM. )2. 

Summarizing, we have the following result. 

THEOREM 2.5B. The symmetric and skew-symmetric submodules of the tensor 
squares of the modules L(~,/z) for 9\[S and %^ are 

S2(L^Hi}AÏ)) = L^s(lA))(BL^s(lll 

A2(L^H^m-L^HlJj®L^s(lw), 
S2(L^H^^))^L^s(l^(BL^Hl%\ 

^(L^(^±))^L^(l^)(BL^(hl^ 
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3. Characters as infinite products, and an alternative proof. Theorem 
2.5a,b can also be proved using power series identities, as were the results of 
[2]. We first recall the quintuple product identity. 

THEOREM 3.1. For z ^ 0 and \x\ < 1 we have 

oo 

(a) [J( l -x")(\ -xnz)(\ - y - ' z - ' X l -x2n^z2)(\ -x2"-1!-2) 
n=\ 

_ V ^ $n2+\n,3n _ , , - 3 / 7 - K 

nEZ 

or equivalently, 

oo 

(b) f j ( l -x")(\ + xnz)(\ +xn-]z~l)(\ -x2"~lz2)(\ -x2n-]z~2) 

= Xl (~1) ,7x^7(3 ,'~1)z"3 /7 (1 +x"z^)-
nEZ 

Proof. See [31 for (a); (b) is an easy corollary. This identity is the denominator 
identity for the affine Lie algebra A^2); see [6, exercises 10.9, 12.1]. QED 

For certain values of m, r and s the expressions x(mi ris) °f Theorem 2.2 can 
be written as infinite products. 

THEOREM 3.2. If 3\m and r = m/3 or r — 2m/3, or if 3\(m + 2) and s = 

(m + 2)/3 or s = 2{m + 2)/3, then for suitable x and z, \(m,r,s) equals the 
product side of Theorem 3.1a (up to a power of a). 

Proof. First consider the case 3\m, r = m/3. Then 

Q~h"^-sXim^ \m,s) 

E \m(m+2)n2 + \( jm(m+2)—ms)n \m(m+2)tr + \ ( \m(m+2)+ms)n+~ms 
q- - • q-

nez 

E Jm{m+2)n2 + jm(m+2)n ( —\msn Amsn+jms\ q- ' yq q- > j , 
«ez 

which matches the sum side of Theorem 3.1a for x = qim{m+2"> and z = q~^ms. 
Second, consider the case 3\m, r — 2m/3. Then 

q hw.*x(m,%m,s) =^ql m(m+2)n2 + \( 2;m(m+2)—ms)n 

neZ 

\ ^ ^m(m+2)n2 + \( = m(m+2)+ms), 

neZ 
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Now replace n by —n in the first sum, and n by —n — 1 in the second sum, to 
obtain 

q ''"m/x.s-xim, |ra, s) 

\ m(m+2)n2 — \ ( j m(m+2)—ms)n 

neZ 

nez 
\ ^ \m(m+2)n2+(—jm(m+2)+\ms)n 

nez 

E \ m(m+2)n2+(m(m+2)— j m{m+2)— \ ms)n+{ \ w(m+2)— j m(m+2)— \ ms+ \ ms ) q-

neZ 

\ ^ ^m{m+2){n2+2n+\)—\(j.m(m+2)+ms){n+\)+jms 

neZ 

\ m{m+2)rr +( — j m(m+2)+ \ ms)n 

nez 

\ ^ \m(m+2)n2 +(2;m(m+2)— \ms)n+(^m(m+2)— ^ms) 

neZ 

\m(m+2)n2+ym(m+2)n s 

nez 

r 

y 
= E»" 

nez 

( l—\m{m+2)+\ms) _ (\m(m+2)- \ms)n+±(\m(m+2)- \ms)\ q - q- ~ - y , 

which is the sum side of Theorem 3.1a for x — qim(m+2) and z = q-ïMm+2">+znL\ 
The calculations for 3|(m + 2) are similar. If s = (m + 2)/3, replace n by — n in 

the first sum, and then take x = qim^m+2\ and z = q~>+2)r. If s = 2{m + 2)/3, 
replace /? by — ft — 1 in the second sum, and then take x — qin^m+2)> and z = 
^_i(m+2)(m-r)# Q E D 

Second Proof of Theorem 2.5A, B. We prove only 

(3.3) £ ^ 5 ( ^ , 0 ) ( 8 > £ ^ 5 ( ^ , 0 ) ^ X ^ 5 ( ^ 0 ) e L ^ 5 ( ^ | ) 

I) ®L^s(l,l)®L^s(l,\o\o 

as an example. By Corollary 1.4 it suffices to show that the even and odd 
characters of the two sides of (3.3) are equal. However, for fA£S, the even 
(respectively odd) character is the subseries of the character consisting of powers 
of q differing from the lowest weight by an element of Z (respectively an element 
of Z + \). Hence it suffices to show that the characters of the two sides of (3.3) 
are equal. 

We obtain z = -^, h = 0, when m = 3, r — s = 1. By Theorem 3.2 we have 

X(3,i,i)=x:^'^"(^"-^), 
neZ 
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and hence by Theorem 3.1a, with x — q5', z = q 2, we obtain 

00 

X(3, 1,1) = IJ(1 -<?n){\ -q5"~h(\ -q5"-m -</ l0"^6)(l -qm"~A). 
n=\ 

To avoid fractions in the exponents, define p := q1-. Thus the character of the 
left side of (3.3) is 

0 0 / 1 , n2/7+l \ 2 

<3-4) X ( 3 , l , D 2 n ( ^ 5 r ) 

OO 

= n < i -p l ( t e ) 2 ( i - P I O B - ' ) 2 ( I -pH)"-y-(\ -p™-12)2 

n=\ 

0 0 / 1 , „2/7+l \ 2 

x(i-^-8)2n(W) • 
By Theorem 2.2 we have 

XdO, 1,1) = Y/p
m)"2+2"~pm"2+22"+\ (z,h) = (2,0), 

wez 

l M n Q -7x j V ^ n 1 * 2 ^ „120AT+178/7+63 / »,\ / 7 3 \ 

/?EZ 

X(JO,9,5) = />7 ]T> l 20 ' '2+58 ' ' _^'2(^+i58,,+43) ( z ^ } = ( z ? 7 } j 

wez 

X(10,9, ,) = p 2 0 ^ p . 2 0 ^ + 9 8 B _ p l 2 ^ + . . « f l ^ ( Z j A ) = ( 7 5 ^ 

A?GZ 

Now let/1 (AI) := 30n2 + n, f2(n) := 30/?2 + 19/? + 3, /3(AZ) := 30/?2 + 29/7 + 7, and 
/4(AZ) := 30/72 + 49/7 + 20. Then f{{2n) = 120A?2 + 2/?, fi(~2n - 1) = 120/72 + 
118/7 + 29, /2(2/7) = 120/?2 + 38/7 + 3, /2(2w + l) = 120/72 + 158/7 + 52, ^(2/?) = 
120/72 + 58/? + 7, / 3 (2«+ 1) = 120/?2+ 178/7 + 66, f4(2n) = 120/?2 + 98/? + 20, and 

/4(-2/7 - 1) = 120/72 +22/7+ 1. Thus 

(3.5) x ( 1 0 7 l , D + x(10,9,7) + x(10,9,5) + x (10 ,9 , l ) 

_ V " V _ 1 W »73( )w2+w
 + 3()«2 + 19«+3 30/?2+29/7+7 3()«2 +49/7+20x 

//6Z 

Let #,(/7) := f/?2 + /̂7 and g2(n) := y/?2 + y n + 3. Then #,(2/7) = 30/?2 + 
/?, £i(-2/? - 1) = 30/?2 + 29/7 + 7, £2(2/?) = 30/?2 + 19/? + 3 and g2(2n + 1) = 
30/?2 + 49/? + 20. Thus the right side of (3.5) can be written as 

(3.6) ^ ( - l ) / ? ( / / , ( 2 , ? ) +p*i<-2/i-l) +pAf2(2/i) +^2(2/7+1)^ 

/?GZ 
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For k = In or — In — 1, we have ^k(k + 1) = n (mod 2); and for k = In or 

2/7 + 1, we have \k(k — 1) = n (mod 2). Thus (3.6) reduces to 

(3.7) ^ ( - ^ ^ ^ ^ ^ . a ^ ^ ^ U - a - i y . a ^ 
kez 

Now since #i(fc) + A:- \k(k+ 1) = 0 (mod 2) and £2(£) + £ + 1 - \k(k-\) = 0 
(mod 2), (3.7) becomes 

(3.8) ^ ( _ i ) * ( - / 7 ) « ' " > + £ ( - l ) * + 1 ( - / > ) R 2 ( t ) . 
*ez A-eZ 

Replace £ by —A — 1 in the second sum to get 

Â.-GZ Aez 

= £(-i)V^t2-^(-p)3to+(-p)5t+1)-
A-eZ 

Now by Theorem 3.1b with JC = (— /?)5 and z = (—p)~K this last expression 
equals 

CO 

T]o +(-iyV")(i+(-D"+ip5"_1)(i+(-i)>5""4) 
«=1 

x ( l + / ; l 0 " ^ 7 ) ( l + p 1 0 " - 3 ) 
OO 

= I T 1 +PW'"5)0 -/'l0")(l +PW"-6)(1 ~pw"-]) 

X (1 - V ° " - 9 ) ( l +/710 ' ,-4)(1 +/7K k- 7 )( l + P
1 0 w - 3 ) . 

Thus the character of the right side of (3.3) is 

(3.9) ( X ( 1 0 , l , l ) + x(10,9,7) + x(10,9,5) + x ( 1 0 , 9 , l ) ) n +_f 
«= l ^ 

= n o+/>") n O - ^ I I T V -
//^0,±1,±2(10) n=0,±l(10) n=\ l 

We must show that the right-hand sides of (3.4) and (3.9) are equal. We can 
immediately cancel 

n o-^n 
\+P 

in-] 

/i=0.±l(IO) n=\ ' 
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Thus we must show 

w=0.±I(10) n=\ n=\ l 

= n c +/y')-
/;^0.±1,±2(10) 

Take the left side of this equation, and split the factors which repeat mod 20 
into factors which repeat mod 10: 

1 +p2"-1 

1 -p2» 
//=0.±1(10) n=\ l 

n d-̂ n 
x J J c -p'°""6)2(i V ° " + 6 ) 2 o ~PH)"-4)2{\ -pU)"+4y 

Expanding the first product mod 10 and rearranging gives: 

oo 

IJ(1 +p10"-6)2(l +/710"-4)2(1 +/»2"-1) 

(1 - / 7 1 0 " - 9 ) ( 1 - / 7 I 0 " - 6 ) 2 ( 1 -pW"-4)Z(\ -pW"-'){\ -P
W") 

n 
Expand the factors which repeat mod 2 and cancel where possible: 

oo 
J J ( 1 +p10»-9) (1 +A,>0»-7)(1 +p '0»-6)2(1 +A,'0»-5) 

n=l 

X ( l + p 1 0 " - 4 ) 2 ( l + A 7 I O » - , ) ( l + / J
I O f l - 1 ) 

(1 - / 7 1 0 " - 9 ) ( 1 - ^ > 1 0 " - 6 ) ( 1 - / 7 , 0 " - 4 ) ( l - / 7 1 0 " - 1 ) 

n (1 -pW"-«)(\ -pW»-2) 

Separating the factors we are looking for (as the first product) gives 

oo 

n (i +/>"> u.o +pio"~,,)o+pn),-h)(\+pu),-4)o +/>|°"-1) 
«^().±!.±2(I0) »=1 

~ (1 - p ' 0 » - 9 ) ( l - p •"»-*)( 1 - p ' " » - 4 ) ( l - p 1 " » - 1 ) 
XJLl ( l -p '0" -») ( l -p '0" -2) • ' 

Now combine the factors (1 + pw"~")(\ -pw"~") for a = 9,6,4 and 1: 

~ (1 -p20"~ l 8)(l - / 7
2 0"- '2)( l -p™"-*)(\ -p2 0»"2) 

n c+^n (i -«"'«-«xi -p10"-2) 
;^0.±1,±2(10) "=1 ' 
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and notice that the second product is 1. This completes the proof. QED 
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