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PARTIALLY INFORMED INVESTORS:
HEDGING IN AN INCOMPLETE MARKET
WITH DEFAULT

P. TARDELLI,∗ University of L’Aquila

Abstract

In a defaultable market, an investor trades having only partial information about the
behavior of the market. Taking into account the intraday stock movements, the risky
asset prices are modelled by marked point processes. Their dynamics depend on an
unobservable process, representing the amount of news reaching the market. This is a
marked point process, which may have common jump times with the risky asset price
processes. The problem of hedging a defaultable claim is studied. In order to discuss
all these topics, in this paper we examine stochastic control problems using backward
stochastic differential equations (BSDEs) and filtering techniques. The goal of this paper
is to construct a sequence of functions converging to the value function, each of these is
the unique solution of a suitable BSDE.
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1. Introduction

This paper deals with the problem of hedging a defaultable claim. On this topic a large
literature can be found; see, e.g. Bielecki et al. [1], Jeanblanc et al. [13], and the references
therein. A defaultable contingent claim maturing at time T consists of a triplet (Z, Z̃, τ ). The
random variable τ models the time of default. The random variable Z is the payoff received
by the owner of the claim at T if the default does not occur before maturity. The so-called
recovery process Z̃t is such that Z̃τ is the payoff received at the time of default if τ ≤ T .

Most of the standard literature in finance is based on the assumption that the prices of
the underlying assets follow a diffusion behavior. However, empirical evidence from various
studies show that such models are inadequate for different reasons, e.g. the mispricing that they
might induce; see Runggaldier [18]. As already observed in Geradi and Tardelli [10], on very
small time scales actual prices do not really change continuously over time, but rather at discrete
random points in time in reaction to trades and/or to significant new information. Moreover,
the advent of intraday information on financial asset price quotes and the increasing number of
studies on market microstructure leads us to describe the prices as processes that are piecewise
constant and jump at irregularly spaced random times in reaction to trades or to significant new
information. Therefore, pure jump processes may be more suitable for modelling the observed
price or quantities related to the price; see, e.g. Prigent [17].
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In this paper the prices are studied by introducing a model similar to that presented by
Tardelli [20], [21], and Gerardi and Tardelli [10]. In particular, the dynamics of the underlying
asset price S is described by a pure jump process driven by two point processes and by the
default indicating process. Many authors (e.g. Zariphopoulou [22], even if in a continuous
behavior) claim that it is sensible to assume that the price dynamics depend on an exogenous
process. According to this idea, the dynamics of the price is assumed to depend on a pure jump
process X. Moreover, S and X may have common jump times and X is unobservable by the
market agents.

Taking into account the presence of the unobservable process X, in this paper we consider
a market with an investor who does not have complete information about the dynamics of the
market. He/she just observes the price behavior and the default time. The common way to
solve this problem is to use filtering theory so as to reduce a stochastic control problem with
partial information to one with complete information. Thus, a technique of projection is needed
that leads to a filtering problem with marked point process observations. This latter topic is
discussed in a way similar to that used in Ceci [5] and Tardelli [20].

Due to the presence of a pure jump price process, the market is incomplete. In such cases,
there is always some residual risk and so one may want to choose a strategy so as to minimize
a criterion related to this risk. This means that perfect replication is not possible and a suitable
alternative approach must be found. Here, the procedure consists of maximizing the mean value
of a utility function from the terminal wealth and choosing an exponential utility function;
see, e.g. Hu et al. [11] and Mania and Schweizer [16]. The problem becomes a stochastic
control problem and to deal with it many techniques can be used ranging from the dynamic
programming method, Hamilton–Jacobi–Bellman partial differential equations, and backward
stochastic differential equations (BSDEs), to duality methods. The approach followed here is
related to dynamic programming, as in Tardelli [20], [21], and it allows us to characterize the
value function as the largest solution to a suitable BSDE.

The main contribution of this paper is in Section 4, which is devoted to the construction of a
sequence of functions converging to the value function. Each of these functions is the unique
solution of suitable BSDEs, not only the largest one, as in a large part of the existing literature.

Let us note that many techniques used in this paper are inspired by the procedure followed
by Lim and Quenez [15], even if a diffusive model is investigated in that paper.

2. The market model

Let us consider an economy defined on a complete real-world probability space, (�, F , P)

for a finite time span [0, T ], T ∈ (0, +∞), equipped with {Ft }t∈[0,T ], a filtration satisfying the
usual conditions and on which all stochastic processes are defined. In this setup, let us consider
a financial market in which two assets are traded: one risk-free asset, whose price process is
assumed for simplicity to be equal to 1 at any date, and one risky asset. The price S of the risky
asset, discounted with respect to the price of the bond, is a process evolving according to the
following model:

St = S0 exp {Yt } with S0 ∈ R+.

The marked point process Y , called the log return price, is assumed to be nonexplosive R-valued
with initial condition Y0 = 0. The dynamics of Y depend on another exogenous marked point
process X, which, in general, is not directly observable by the agents and which represents the
amount of news reaching the market. Let us assume that X is nonexplosive, taking values in R

with initial condition X0 = 0.
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Let τ be a positive random variable which models a default time. This default can appear
at any time, i.e. P(τ > t) > 0 for any t ∈ [0, T ]. For t ≥ 0, let the default indicating process
be defined by Dt := 1{τ≤t} and, consequently, let the filtration generated be D := {Dt }t∈[0,T ]
with Dt := σ {Ds, 0 ≤ s ≤ t}. Let O := {Ot }t∈[0,T ] and G := {Gt }t∈[0,T ] be the filtrations
defined by

Ot := σ {Ys, Ds, 0 ≤ s ≤ t}, Gt := σ {Xs, Ys, Ds, 0 ≤ s ≤ t}.
All the filtrations satisfy the usual hypotheses of completeness and right-continuity.

Let τ admit a positive Gt -predictable intensity. This means that there exists {γt }t≥0 bounded,
nonnegative, Gt -predictable process such that

0 < γt ≤ � (1)

for a positive suitable constant � ∈ R+ and, setting λ3
s := (1 − Ds−)γs ,

M3
t := Dt −

∫ t∧τ

0
γs ds = Dt −

∫ t

0
λ3

s ds for t ≥ 0

is a Gt -martingale. Consequently, τ is a totally inaccessible G-stopping time (see, e.g. Del-
lacherie and Meyer [6, Section VI78]).

Let N0, N1, and N2 be nonexplosive counting processes defined as

N0
t =

∑
s≤t

1{Xs−Xs−�=0} 1{Ys−Ys−=0}(1 − Ds),

N1
t =

∑
s≤t

1{Ys−Ys−>0}(1 − Ds), N2
t =

∑
s≤t

1{Ys−Ys−<0}(1 − Ds).

For i = 0, 1, 2, let us assume that the process Ni admits a Gt -predictable intensity. This
means that there exist λ0

t , λ1
t , and λ2

t bounded nonnegative Gt -adapted processes such that

0 < λi
t ≤ � (2)

and Mi
t := Ni

t − ∫ t

0 λi
s ds is a Gt -martingale. Thus, by definition, we deduce that the jump

times of the processes N0, N1, N2, and D are G-stopping times.
As in Tardelli [20], the intensities of N0, N1, and N2 can take into account the arrival of

news reaching the market that produces a sudden increase in the trading activity followed by
a progressive normalization. By adequately choosing the form of these intensities, we are
able to describe also deterministic features such as seasonalities. Note that the intensity of the
jump times of Yt is assumed to be Gt -measurable in order to take into account the role of the
unobserved process X. In this setting, the dynamics of X and Y can be given by assuming the
following representation:

Xt :=
∫ t

0
ξ0
u dN0

u +
∫ t

0
ξ1
u dN1

u +
∫ t

0
ξ2
u dN2

u +
∫ t

0
ξ3
u dDu, (3)

Yt :=
∫ t

0
η1

u dN1
u −

∫ t

0
η2

u dN2
u +

∫ t

0
βu dDu, (4)

where ξ i
t for i = 0, 1, 2, 3 are Gt -predictable stochastic processes and η1

t , η2
t , and βt are just

Ot -predictable.
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From a financial point of view, the processes X and Y are supposed to have some stochastic
changes, due to market perturbations caused by the arrival of news. If at time t news, not
observable by the investor, reaches the market, only the process N0 increases and X has a
change of size ξ0

t . Otherwise, if at t news, observable by the investor, reaches the market, we
have a positive jump of the processes N1 or N2. In this last case, a change in X happens of
size ξ1 or ξ2, as well as a change in Y of size η1 or η2. Note that only these last changes are
observable. If a default occurs, Y has a jump of size β, and X of size ξ3. Note that since X is
not observed and trading is stopped at τ , we could not consider the jump of X at the moment
of the default, but this is a choice which does not simplify the procedure.

Moreover, for some real positive constant η and η̄, let us assume that, for i = 1, 2,

η ≤ ηi
t ≤ η̄. (5)

In common with many authors in this field, let us assume that βτ > −1. According to the
existing literature, see, e.g. Lim and Quenez [15], this condition is equivalent to βt > −1 for
any 0 ≤ t ≤ T almost surely (a.s.) and Sτ = Sτ−(1 + βτ ), and the price process S is still
positive after the default τ .

Remark 1. If the price process is strictly increasing or strictly decreasing, the model does not
admit any equivalent martingale measure. The particular structure chosen for the dynamics of
the process Y is the simplest one allowing the existence of equivalent martingale measures; see,
e.g. Tardelli [20] and the references therein.

As a consequence of this observation, we assume, as in Frittelli [9], that the set of the
equivalent martingale measures is not empty, thus, this set is not necessarily a singleton and
so we have a set of prices all compatible with the ‘no arbitrage’ condition. The financial
interpretation of this approach is illustrated in Frittelli [9] as well as the relationship between
the minimization of the relative entropy and the maximization of the exponential utility function.

Remark 2. The model presented in this section could be established in a more formal way.
For example, as in Tardelli [20], we could introduce a Markovian structure which would allow
us to obtain the process (X, Y, D) as a solution of a martingale problem. Otherwise, inspired
by Ceci [5], we could look at (3) and (4), as a system of stochastic differential equations
and, by introducing some suitable assumptions, we could discuss its existence and uniqueness.
However, the main part of this paper, which deals with the utility maximization property, does
not depend on the structure of the model introduced.

As a conclusion to this section, by a standard application of the Itô formula, setting

cu := (eη1
u − 1)λ1

u + (e−η2
u − 1)λ2

u + (eβu − 1)λ3
u,

the representation of the price process as a Gt -semimartingale is given by

St = S0 +
∫ t

0
Sucu du + MS

t ,

where MS
t is a Gt -local martingale represented as

MS
t =

∫ t

0
Su−(eη1

u − 1) dM1
u +

∫ t

0
Su−(e−η2

u − 1) dM2
u +

∫ t

0
Su−(eβu − 1) dM3

u.
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3. The O-representation

Recall that this paper deals with the point of view of partially informed investors. The
available information for these traders, in this economy at a certain time t ∈ [0, T ], are the
price of the financial asset up to that time and the default indicating process.

To this end, first of all, the Ot -predictable projection of the processes involved in this model
has to be found.

Definition 1. Given a process �t , Gt -adapted, let us denote by p�t the predictable projection
on O and by o�t the optional projection on O. For each Ot -predictable stopping time σ (see
Jacod [12, Theorem 1.23]), p�σ ≡ E[�σ | Oσ−] and, for each σ , Ot -stopping time (see Ethier
and Kurtz [7, Optional projection theorem, Theorem 4.2 p. 72]), o�σ ≡ E[�σ | Oσ ].

In the continuous framework, the option projection and the predictable projection coincide.
This is not the case for discontinuous models. The situation is described by the following
lemma, the proof of which follows that given in Frey [8] and Tardelli [20]. The proof is recalled
here for the sake of completeness.

Lemma 1. If the process �t is locally integrable and with finite variation, the predictable and
the optional projections satisfy o�t− = p�t .

Proof. For each Ot -predictable stopping time σ , since {σ < +∞} ∈ Oσ ,

E[p�σ 1{σ<+∞}] = E[�σ 1{σ<+∞}] = E[o�σ 1{σ<+∞}].

On the other hand, there exists a version of the process o�t with càdlàg trajectories and,
consequently, o�t− is a (P, Ot )-predictable process. Moreover, the jump times of o�t−, which
coincide with the jump times of Yt , are totally inaccessible. Hence, for each (P, Ot )-predictable
stopping time o�σ− = p�σ (see, e.g. [6]), E[o�σ− 1{σ<+∞}] = E[p�σ 1{σ<+∞}]. The thesis
is achieved by noting that a deterministic time σ ≡ t is a (P, Ot )-predictable stopping time.

Introducing the filter, i.e. the probability measure-valued process πt , which is the càdlàg
version of the conditional expectation with respect to Ot ,

o�t = πt (�) = E[�t | Ot ], p�t = o�t− = πt−(�),

where, for any bounded measurable f (t, x), recall that πt (f ) = E[f (t, Xt ) | Ot ]. As a
consequence, in Proposition 1 below, the Ot -semimartingale representation of the price process
is deduced.

For notational convenience, let m(dt, dφ) be the integer-valued random measure associated
to Yt (see Bremaud [3] and Jacod [12]), defined, for t ∈ [0, T ], φ ∈ R, as

m((0, t], dφ) =
∑
s≤t

1{Ys−Ys−�=0} δ{Ys−Ys−}(dφ). (6)

Let us denote by νt (dφ) dt the dual Gt -predictable projection of m and by ν̂t (dφ) dt the dual
Ot -predictable projection of m. In the following lemma the structures of νt (dφ) dt and of
ν̂t (dφ) dt are given. This is a crucial link between the cases of partially informed and fully
informed investors.
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Lemma 2. Since ξ i for i = 0, 1, 2, 3 are Gt -predictable stochastic processes, while η1, η2,
and β are Ot -predictable,

νt (dφ) = λ1
t δ{η1

t }(dφ) + λ2
t δ{−η2

t }(dφ) + λ3
t δ{βt }(dφ), (7)

ν̂t (dφ) = πt−(ν·(dφ)) = πt−(λ1δ{η1
. }(dφ) + λ2δ{−η2

. }(dφ) + λ3δ{β.}(dφ)). (8)

Proof. Setting �Ys = Ys − Ys−, �Ds = Ds − Ds−, and �Xs = Xs − Xs−, the integer-
valued random measure associated to Yt can be written as

m((0, t], dφ) =
∑
s≤t

[δ{�Ys }(dφ) 1{�Ys>0}(1 − �Ds) + δ{�Ys }(dφ) 1{�Ys<0}(1 − �Ds)

+ δ{�Ys }(dφ)�Ds].

Thus, as far as (7) and (8) are concerned, for any bounded positive Gt -predictable f (t, φ),
the process

∫ t

0

∫
R

f (s, φ)(m(ds, dφ) − νs(dφ) ds) is a Gt -martingale.
Equation (8) is a consequence of Lemma 1, taking into account that, if Mt is a Gt -martingale

then πt (M) = E[Mt | Ot ] is an Ot -martingale. Hence, choosing a bounded positive Ot -
predictable f (t, φ), E[∫ t

0

∫
R

f (s, φ)(m(ds, dφ) − νs(dφ) ds)|Ot ] is an Ot -martingale. The
thesis is achieved by proving that

M̃t = E

[∫ t

0

∫
R

f (s, φ)νs(dφ) ds

∣∣∣∣ Ot

]
−

∫ t

0

∫
R

f (s, φ)ν̂s(dφ) ds

is an Ot -martingale. Indeed, for t0 < t ,

E[M̃t | Ot0 ] = E

[∫ t0

0

∫
R

f (s, φ)νs(dφ) ds

∣∣∣∣ Ot0

]
+ E

[∫ t

t0

∫
R

f (s, φ)νs(dφ) ds

∣∣∣∣ Ot0

]

−
∫ t0

0

∫
R

E[f (s, φ)νs(dφ) | Os] ds

−
∫ t

t0

∫
R

E[f (s, φ)νs(dφ) | Ot0 ] ds.

Finally, we obtain E[M̃t | Ot0 ] = M̃t0 by noting that

E

[∫ t

t0

∫
R

f (s, φ)νs(dφ) ds

∣∣∣∣ Ot0

]
=

∫ t

t0

∫
R

E[f (s, φ)νs(dφ) | Ot0 ] ds.

Proposition 1. The stock price process St admits the following representation as an Ot -semi-
martingale:

St = S0 +
∫ t

0
Su−πu−(c) du + M̄S

t , (9)

where πu−(c) = πu−((eη1
. − 1)λ1

. + (e−η2
. − 1)λ2

. + (eβ. − 1)λ3
. ) and M̄S

t is an Ot -local
martingale represented as

M̄S
t =

∫ t

0

∫
R

Su−(eφ − 1)(m(du, dφ) − ν̂u(dφ) du). (10)
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Proof. Taking into account that St = S0 + ∫ t

0

∫
R

Su−(eφ − 1)m(du, dφ) in order to obtain
(9) and (10), recall the results of the previous lemma and note that∫ t

0

∫
R

Su−(eφ − 1)ν̂u(dφ) du

=
∫ t

0
Su−

∫
R

πu−((eφ − 1)ν.(dφ)) du

=
∫ t

0
Su−πu−((eη1

. − 1)λ1
. + (e−η2

. − 1)λ2
. + (eβ. − 1)λ3

. ) du.

The expression obtained in (8) for ν̂t (dφ) dt brings us to filtering techniques. The char-
acterization of the filter will be given in Appendix A as the unique solution to the Kushner–
Stratonovich equation.

4. Hedging

4.1. The value process

As a consequence of the previous discussions, the pair (Yt , Dt ) become a totally observed
marked point process, studied with respect to its internal filtration Ot . As already observed in
the introduction, this paper is devoted to the point of view of an investor, who can observe only
the risky asset price and the default time. The investor can trade in a finite time window [0, T ]
by investing in risky stocks and in a riskless bond, assuming also that there exists a default
time on the market. The underlying traded asset is assumed to be a semimartingale driven by
counting processes and the default indicating process.

As in Bielecki et al. [1], it is enough to formally define a generic defaultable European
contingent claim with maturity T through Definition 2 below.

Definition 2. On a suitable filtered probability space (�, F , P), a defaultable claim maturing
at T is represented by a triplet (Z, Z̃, τ ), where

(i) τ models the default time.

(ii) The promised payoff Z represents the random payoff received by the owner of the claim
maturing at T , provided that there is no default prior to T . This is an OT -measurable
random variable such that 0 ≤ Z ≤ B̄ for a constant B̄ ∈ R+. The actual payoff at T

associated with Z thus equals Z 1{T <τ }.

(iii) The O-adapted recovery process Z̃ specifies the recovery payoff Z̃τ received by the owner
of a claim at the time of default (or at maturity), provided that the default occurred prior
to or at the maturity date T and such that 0 ≤ Z̃ ≤ B̄.

Remark 3. In a typical contract, the payoff Z is given by some function of the asset price and,
thus, should be observed by the investor. This is the reason why, as in the existing literature, the
payoff Z is assumed to be an OT -measurable random variable and, analogously, the recovery
process Z̃ is an O-adapted recovery process.

In practice, hedging of a credit derivative after the default time is usually of minor interest.
Also, in a model with a single default time, hedging after default reduces to replication of a
nondefaultable claim; see, e.g. Tardelli [20].

In order to set a hedging problem, let us define � as the class of admissible strategies θt ,
that are real-valued, Ot -predictable, S-integrable, and self-financing. Recalling the definition
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of an integer-valued random measure associated to (Yt , Dt ) given in (6), the wealth process is
defined for θ ∈ � as

Wθ
t = w0 +

∫ t

0
θr dSr = w0 +

∫ t

0

∫
R

θrSr−(eφ − 1)m(dr, dφ).

Note that replication refers to the behavior of the wealth process Wθ
t on the random interval

[0, T ∧τ ] only. Hence, for the purpose of replication of defaultable claims of the form (Z, Z̃, τ ),
it is sufficient to consider prices stopped at T ∧ τ .

A perfect replication of a defaultable claim is described in Definition 3 below.

Definition 3. A self-financing strategy θ replicates a defaultable claim (Z, Z̃, τ ) if Wθ
t satisfies

the hedging conditions Wθ
T 1{T <τ } = Z 1{T <τ } and Wθ

τ 1{T ≥τ } = Z̃τ 1{T ≥τ }.

On the other hand, with the introduction of a pure jump process, the market becomes
incomplete and a claim is not, in general, perfectly replicable; see, e.g. Runggaldier [18].
Thus, we have to use a hedging criterion under incompleteness. The choice in this paper
consists of maximizing the expected utility of the wealth on a random time interval, i.e. to
maximize E[u(Wθ

T ∧τ − Z(1 − DT ) − Z̃τDT )] for θ belonging to the class � of admissible
strategies. Since 1{t≤τ } = 1 − Dt−,

Wθ
t∧τ = w0 +

∫ t

0

∫
R

(1 − Dr−)θrSr−(eφ − 1)m(dr, dφ).

After receiving the premium, the seller has to hedge in order to reduce the risk exposure.
The expected utility of his final wealth gives him/her a measure of the quality of a self-financing
strategy. At any t ∈ [0, T ], the agent invests the quantity θt in the risky traded asset. Thus, the
investment process θt controls the dynamics of the wealth process. Hence, a stochastic control
problem with only final reward arises.

Setting w as the amount of capital at time t and setting �t as the set of the admissible
strategies on the interval [t, T ], let us introduce the associated value process as

Vt (w) = ess sup
θ∈�t

E[u(Wθ
T ∧τ − Wθ

t∧τ + w − Z(1 − DT ) − Z̃τDT ) | Ot ]

= ess sup
θ∈�t

E

[
u

(
w +

∫ T

t

(1 − Dr−)θr dSr − Z(1 − DT ) − Z̃τDT

) ∣∣∣∣ Ot

]
.

In particular, given the risk aversion parameter α ∈ R+, let us consider an agent with
exponential utility function ua(x) = 1 − e−αx .

Remark 4. Usually the strategies are required to make the associated wealth process positive.
Note that this is a necessary assumption for power or logarithmic utility functions, which are
defined on R+. But in the case of an exponential utility function which is finitely valued for
all x ∈ R, the wealth process is no longer required to be positive. However, from a financial
point of view, it is natural to consider strategies such that at least any increment of the wealth is
bounded from below; see, e.g. Schachermayer [19]. This last observation justifies Assumption
1 below.

Assumption 1. As in Lim and Quenez [15, Equation (4.1)], we assume that � consists of that
process such that for any θ fixed and any s ∈ [0, T ], there exists a real constant Ks,θ such that
Wθ

t∧τ − Wθ
s∧τ ≥ −Ks,θ for s ≤ t ≤ T .
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Remark 5. As a consequence of Assumption 1, Wθ is bounded from below and

E

[
exp

{
−α

∫ T

t

(1 − Dr−)θr dSr

}]
< ∞.

Setting BT (τ) := Z(1 − DT ) + Z̃τDT , then BT (τ) is a function of Z, an OT -measurable
random variable, and of Z̃., an O-adapted process. Hence, the value process reduces to Vt (w) =
1 − e−αwVt and, since we are dealing with the partially observed case,

Vt = ess inf
θ∈�t

E

[
exp

{
−α

(∫ T

t

(1 − Dr−)θr dSr − BT (τ)

)} ∣∣∣∣ Ot

]
. (11)

The approach followed in this section is basically related to dynamic programming; see
Tardelli [20]. As a consequence of this method, we characterize the process Vt as the largest
solution to a suitable BSDE. The properties of Vt are given below and proved in Appendix B,
since the proofs are just slight modifications of procedures performed in Lim and Quenez [15]
and Tardelli [20].

Proposition 2. For t ∈ [0, T ∧ τ ], the following statements hold true:

(i) the process Vt is strictly positive and bounded and VT = πT (eαB.(τ ));

(ii) for any θ ∈ �, the process Vt exp {−αWθ
t∧τ } is an Ot -submartingale;

(iii) Vt is the largest Ot -adapted process verifying (ii) such that VT = πT (eαB.(τ ));

(iv) θ∗ ∈ � is an optimal strategy if and only if Vt exp {−αWθ∗
t∧τ } is an Ot -martingale;

(v) the process Vt admits an indistinguishable Ot -adapted càdlàg representation.

4.2. BSDEs: partial observation

In this section we will prove that Vt is the largest solution of a suitable BSDE. Note that we
are not able to prove a uniqueness result for this BSDE and this justifies the discussion in the
next section.

By Proposition 2, for a vanishing strategy, the process Vt is a bounded and strictly positive
Ot -submartingale. Consequently, its Doob–Meyer decomposition is

dVt = dMV
t + dAV

t , (12)

where MV
t is a square-integrable martingale and AV

t is an increasing Ot -predictable process
such that AV

0 = 0. Recalling (6) and by a classical representation of MV
t ,

Vt = V0 +
∫ t

0

∫
R

Rr(φ)[m(dr, dφ) − ν̂r (dφ) dr] + AV
t ,

where Rt(φ) is a φ-indexed process Ot -predictable, jointly measurable, and such that

E

[∫ t

0

∫
R

πr(R
2
. (φ)ν.(dφ)) dr

]
< +∞.

The main contribution of this section is the next theorem.
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Theorem 1. For t ∈ [0, T ], the process (Vt , Rt ) verifies the following BSDE:

Vt = πT [eαBT (τ)] −
∫ T

t

∫
R

Rr(φ)[m(dr, dφ) − ν̂r (dφ) dr]

+ ess inf
θ∈�t

∫ T

t

∫
R

(Vr− + Rr(φ))Kθ
r (φ)ν̂r (dφ) dr, (13)

Kθ
r (φ) = exp {−α(1 − Dr−)θrSr−(eφ − 1)} − 1. (14)

Furthermore, Vt is the largest solution to (13) and Rt is uniquely determined by the martingale
representation theorem.

Proof. By the definition of Wθ
t , setting Cθ

t := exp(−α(Wθ
t∧τ − w0)), from Itô’s formula it

follows that Cθ
t = 1+∫ t

0

∫
R

Cθ
r−Kθ

r (φ)m(dr, dφ). Hence, from the product formula with (12),
Cθ

t Vt = Cθ
0 V0 + ∫ t

0 Cθ
s− dVs + ∫ t

0 Vs− dCθ
s + [Cθ, V ]t , where Cθ

0 V0 = 1V0 = V0 and∫ t

0
Cθ

s− dVs =
∫ t

0

∫
R

Cθ
s−Rs(φ)m(ds, dφ) −

∫ t

0

∫
R

Cθ
s−Rs−(φ)ν̂s(dφ) ds +

∫ t

0
Cθ

s dAV
s ,∫ t

0
Vs− dCθ

s =
∫ t

0

∫
R

Vs−Cθ
s−Kθ

s (φ)m(ds, dφ),

[Cθ, V ]t =
∑
s≤t

�Cθ
s �Vs =

∫ t

0

∫
R

Cθ
s−Kθ

s (φ)Rs(φ)m(ds, dφ).

Therefore,

Cθ
t Vt = V0 +

∫ t

0

∫
R

Cθ
s−[Rs(φ) + (Vs− + Rs(φ))Kθ

s (φ)][m(ds, dφ) − ν̂s(dφ) ds]

+
∫ t

0

∫
R

Cθ
s−(Vs− + Rs(φ))Kθ

s (φ)ν̂s(dφ) ds +
∫ t

0
Cθ

s dAV
s .

Since Cθ
t Vt = exp(−α(Wθ

t∧τ − w0))Vt is an Ot -submartingale, the bounded variation term has
to be increasing for any strategy and it has to vanish for the optimal strategy, which implies that

AV
t =

∫ t

0

∫
R

Rs(φ)ν̂s(dφ) ds = − ess inf
θ∈�t

∫ t

0

∫
R

(Vs− + Rs(φ))Kθ
s (φ)ν̂s(dφ) ds.

Finally, the last assertion is a consequence of Proposition 2 by noting that

Vt = VT −
∫ T

t

dMV
r −

∫ T

t

AV
r dr.

5. A sequence converging to the value process

Until now, the process Vt was characterized as the largest solution to a suitable BSDE and
results on the uniqueness of solutions that are not available, due to the fact that the generator
does not have the Lipschitz property; see Carbone et al. [4]. Many authors, e.g. Bouchard and
Elie [2], discuss methods to obtain a discrete-time approximation for the value function. Since
they require existence and uniqueness for the solution of a BSDE, in this section a sequence
{V k

t }k∈N will be constructed such that

(i) {V k
t }k∈N is a nonincreasing sequence converging to Vt ;

(ii) for k ∈ N, V k
t is the unique solution of a BSDE with a Lipschitz generator.
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To achieve these results, we need a new assumption.

Assumption 2. The process βt , 0 ≤ t ≤ T , is uniformly bounded.

Definition 4. Let us define, for a constant C ∈ R+ and for any k ∈ N,

�k = {θ ∈ � : |θu| ≤ k, |θuSu−| ≤ C for all u ∈ [0, T ] a.s.} ⊂ �

and �k
t is the set of strategies in �k on the interval [t, T ∧ τ ].

Let us define

V k
t = ess inf

θ∈�k
t

πt

[
exp

{
−α

(∫ T

t

(1 − Dr−)θr dSr

)}
eαBT (τ)

]
. (15)

Note that the difference between V k
t and Vt , given in (11), relies only on the choice of the

set of strategies. In spite of that, the results obtained previously still hold.

Remark 6. Recall that �k is a bounded set and the argument of the expectation in (15) has finite
mean value. Thus, Lebesgue’s theorem applies and there exists an optimal strategy θ∗,k ∈ �k .

As a consequence, all the results given in Proposition 2 hold for V k
t , which, in particular,

means that V k
t is a bounded and strictly positive Ot -submartingale. Thus, its Doob–Meyer

decomposition isV k
t = V k

0 + ∫ t

0 dMV k

r +∫ t

0 dAV k

r withMV k

t a square-integrableOt -martingale,

AV k

t increasing Ot -predictable process such that AV k

0 = 0,

dMV k

r =
∫

R

Rk
r (φ)[m(dr, dφ) − ν̂r (dφ) dr], dAV k

r =
∫

R

Rk
r (φ)ν̂r (dφ) dr,

and where Rk
r (φ) are measurable Ot -predictable processes such that

E

[∫ t

0

∫
R

(Rk
r (φ))2ν̂r (dφ) dr

]
< +∞.

For each k ∈ N, V k
t is characterized as the unique solution of a BSDE.

Proposition 3. For t ∈ [0, T ] and Kθ
r (x) given in (14), (V k

t , Rk
t ) is the unique positive càdlàg

Ot -adapted solution of the following BSDE with Lipschitz continuous generator:

V k
t = πT [eαBT (τ)] −

∫ T

t

∫
R

Rk
r (φ)[m(dr, dφ) − ν̂r (dφ) dr]

+ ess inf
θ∈�k

t

∫ T

t

∫
R

(V k
r− + Rk

r (φ))Kθ
r (φ)ν̂r (dφ) dr. (16)

Proof. Taking into account Remark 6 and following the same approach as in Theorem 1,
the process (V k

t , Rk
t ) is a solution to (16). To obtain the uniqueness property, let

f (t, v, r) := ess inf
θ∈�k

t

[v + r(φ)]Kθ
t (φ)ν̂t (dφ).

Note that �k is a bounded set by Definition 4, the coefficients λ1, λ2, γ , and Kθ
t are bounded

by (1), (2), (5), and Assumption 2. This implies that f (t, v, r) is an infimum of linear terms
with respect to v and r with uniformly bounded coefficients so that f is a Lipschitz function
with respect to v and r . Thus, uniqueness follows by the results of Carbone et al. [4].
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Theorem 2. Under Assumption 2, Vt = lim
k→+∞ V k

t a.s. for all t ∈ [0, T ].
The next proposition allow us to obtain the proof of this theorem.

Proposition 4. There exists a càdlàg Ot -submartingale Ṽt such that

Vt ≤ lim
k→+∞ V k

t = Ṽt a.s. for all t ∈ [0, T ].

Proof. For t ∈ [0, T ], by definition the strategies are such that �k
t ⊂ �t , hence, for all

k ∈ N, V k
t ≥ Vt > 0 a.s. Moreover, �k

t ⊂ �k+1
t , which implies that {V k

t }k∈N is a nonincreasing
sequence that is also lower bounded. Thus, there exists an adapted process

Ṽt := lim
k→+∞ ↓ V k

t ≥ Vt a.s. for all t ∈ [0, T ],

which is càdlàg by [6, Theorem VI.18].
Fix 0 ≤ s ≤ t ≤ T and recall that, by Remark 6, V k

t is an Ot -submartingale, then for all
k ∈ N, E[V k

t | Os] ≥ V k
s ≥ Ṽs ≥ Vs a.s. Hence, Ṽt has finite mean value and by the monotone

convergence theorem for conditional expectation, E[Ṽt | Os] ≥ Ṽs a.s., which implies that the
process Ṽ is an Ot -submartingale.

Proposition 5. For each θ ∈ � bounded strategies, Ṽt exp(−αWθ
t∧τ ) is an Ot -submartingale.

Moreover, the process θ∗ ∈ � bounded is an optimal strategy if and only if the process
Ṽt exp(−αWθ∗

t∧τ ) is an Ot -martingale.

Proof. Since θ is bounded, there exists n ∈ N such that θ is uniformly bounded by n and for
each k ≥ n, θ ∈ �k . Thus, V k

t exp(−αWθ
t∧τ ) is an Ot -submartingale. Then, by the monotone

convergence theorem for conditional expectation, Ṽt exp(−αWθ
t∧τ ) is an Ot -submartingale.

Furthermore, the Doob–Meyer decomposition of the càdlàg O-submartingale Ṽ is

Ṽt = Ṽ0 +
∫ t

0
dM̃V

r +
∫ t

0
dÃV

r

with M̃V
t a square-integrable Ot -martingale and ÃV

t an increasing Ot -predictable process with
ÃV

0 = 0, and such that

dM̃V
r =

∫
R

R̃r (φ)[m(dr, dφ) − ν̂r (dφ) dr], dÃV
r =

∫
R

R̃r (φ)ν̂r (dφ).

As in the proof of Theorem 1, by the product formula, Ṽt exp(−αWθ
t∧τ ) = M̃θ

t + Ãθ
t with

Ãθ
t =

∫ t

0
e−αWθ

r∧τ

∫
R

[R̃r (φ) + (Ṽr + R̃r (φ))Kθ
r (φ)]ν̂r (dφ) dr,

M̃θ
t =

∫ t

0
e−αWθ

r∧τ

∫
R

[R̃r (φ) + (Ṽr− + R̃r (φ))Kθ
r (φ)][m(dr, dφ) − ν̂r (dφ) dr],

where Ãθ
0 = 0 and M̃θ

0 = 0. Since, for each strategy θ ∈ � bounded, Ṽt exp(−αWθ
t∧τ ) is

an Ot -submartingale, then dÃθ
t ≥ 0 a.s. Moreover, by the proof of Proposition 2(iv) (see

Appendix B), it is a martingale for the optimal strategy, which means that

dÃV
r =

∫
R

R̃r (φ)ν̂r (dφ) = − ess inf
θ∈�k

r

∫
R

πr((Ṽ. + R̃.)K
θ
. (φ)ν.(dφ)).
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Proposition 6. For each t ∈ [0, T ], Vt ≥ Ṽt a.s.

Proof. For any θ ∈ � and for each k ∈ N, let θk
t := θt 1{|θ |≤k}. The strategy θk

is uniformly bounded, but not necessarily admissible. To this end, let us define for each
(k, n) ∈ N2 the stopping time τk,n := inf{t ≥ 0, |Wθk

t∧τ | ≥ n} and the strategy θ
k,n
t :=

θk
t 1{τk,n≥t} = θt 1{|θ |≤k} 1τk,n≥t . By construction, the strategy θk,n ∈ �k for each (k, n) and

θt = limk→+∞ limn→+∞ θ
k,n
t a.s. Let �̃ be the set of all uniformly bounded admissible

strategies, setting

Q̃t (θ) :=
∫ t

0

∫
R

πs((Ṽ. + R̃.)K
θ
. (φ)ν.(dφ)) ds,

then ess infθ∈�̃t
Q̃t (θ) = ess infθ∈�t Q̃t (θ). Hence, (Ṽ , R̃) is a solution of the BSDE (13).

By noting that Vt is the largest process satisfying the same BSDE, Ṽt ≤ Vt a.s.

Appendix A. Filtering

Recall again that the filter πt is the probability measure-valued process, which is the càdlàg
version of the conditional expectation, i.e. for any bounded measurable F ,

πt (F ) = E[Ft(Xt ) | Ot ].
The filter satisfies a stochastic differential equation known as the Kushner–Stratonovich equa-
tion, which we are going to write using the classical innovation method; see, e.g. [3].

To this end, note that, even if Y (t) is not a counting process, the counting processes Ni ,
i = 0, 1, 2 and D do not have common jump times and, moreover,

Ot := σ {Ys, Ds, 0 ≤ s ≤ t} ≡ σ {N1
s , N2

s , Ds, 0 ≤ s ≤ t}.
Then our problem reduces to finding the filter, given Ot . For notational convenience, from

now on let N3
t := Dt . Taking into account the assumptions made in Section 2 on the model,

for a real-valued function Ft(x), bounded, and measurable with respect to (t, x) ∈ R+ × R,
and absolutely continuous with respect to t ,

Ft(Xt ) = F0(X0) +
∑
s≤t

∑
j=0,1,2,3

[Fs(Xs− + ξ
j
s ) − Fs(Xs−)]�N

j
s .

Hence, setting

AsF =
∑

j=0,1,2,3

[Fs(Xs− + ξ
j
s ) − Fs(Xs−)]λj

s ,

Ft (Xt ) = F0(X0) +
∫ t

0
AsF ds +

∑
j=0,1,2,3

∫ t

0
[Fs(Xs− + ξ

j
s ) − Fs(Xs−)](dN

j
s − λ

j
s ds),

the process Ft(Xt ) admits a Gt -semimartingale representation such that

Ft(Xt ) − F0(X0) −
∫ t

0

[
∂

∂s
Fs(Xs) + AsF

]
ds

is a Gt -martingale. In particular, for f (x), real-valued, bounded, and measurable, f (Xt ) admits
the Gt -semimartingale representation f (Xt ) = f (X0)+ ∫ t

0 Asf ds +m
f
t , where m

f
t is a zero-

mean Gt -martingale.
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The next proposition is a classical result; see [3, Theorem VIII-T9].

Proposition 7. For some Ot -predictable processes H
j
t , the main tools needed in order to obtain

the filtering equation are the following equations

E

[∫ t

0
�

j,1
s H

j
s πs(λ

j
. ) ds

]
= E

[∫ t

0
f (Xs)H

j
s λ

j
s ds

]
, (17a)

E

[∫ t

0
�

j,2
s H

j
s πs(λ

j
. ) ds

]
= E

[∫ t

0
f (Xs)H

j
s πs(λ

j ) ds

]
, (17b)

E

[∫ t

0
�

j,3
s H

j
s πs(λ

j
. ) ds

]
= E

[∫ t

0
[f (Xs) − f (Xs−)]Hj

s dN
j
s

]
. (17c)

Theorem 3. The probability measure-valued process πt (f ), which is the càdlàg version of
E[f (Xt ) | Ot ], is the solution to the Kushner–Stratonovich equation

πt (f ) = f (X0) +
∫ t

0
πs(A·f ) ds

+
3∑

j=1

∫ t

0
(πs−(λj ))+{πs−(λjf ) − πs−(λj )πs−(f ) + πs−(Rj

. f )}

× (dN
j
s − πs−(λj

. ) ds), (18)

where R
j
s f = [f (Xs− + ξ

j
s ) − f (Xs−)]λj

s for j = 1, 2, 3 and, taking into account that λ3

can vanish, a+ = (1/a) 1{a>0}, as usual in the filtering theory.

Proof. By [3, Theorem VIII-T9], the Ot -semimartingale representation for the filter is

πt (f ) = f (X0) +
∫ t

0
πs(A·f ) ds + M

f
t ,

where M
f
t is an Ot -martingale. Therefore, there exist Ot -predictable processes K

j
t such that

M
f
t =

3∑
j=1

∫ t

0
K

j
s (dN

j
s − πs−(λj

. ) ds), K
j
s = �

j,1
s − �

j,2
s + �

j,3
s .

By (17b), �
j,2
s = πs−(f ). For j = 1, 2, 3, i = 1, 3, it follows that �

j,i
s are Ot -predictable

processes, which are uniquely determined for any nonnegative Ot -predictable process H
j
s by

(17a) and (17c).
Thus, from the right-hand side of (17a), we have

E

[∫ t

0
H

j
s E[f (Xs)λ

j
s | Os] ds

]
= E

[∫ t

0
H

j
s πs(λ

jf ) ds

]
.

This implies that �
j,1
s coincides with (πs−(λj ))+πs−(λjf ). As far as �

j,3
s is concerned, since

f (Xs) − f (Xs−) =
∑

n=0,1,2,3

[f (Xs− + ξn
s ) − f (Xs−)] dNn

s ,
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the right-hand side of (17c) becomes, for j = 1, 2, 3,

E

[∫ t

0
[f (Xs− + ξ

j
s ) − f (Xs−)]Hj

s dN
j
s

]
= E

[∫ t

0
H

j
s E[Rj

s f | Os] ds

]
.

Hence, �
j,3
s coincides with (πs−(λj ))+πs(R

j
. f ), which completes the proof.

Proposition 8. If π and π ′ are two probability measure-valued càdlàg processes satisfying
(18), then π and π ′ coincide pathwise.

Proof. Since π and π ′ satisfy (18), for a suitable positive constant C,

|πt (f ) − π ′
t (f )| ≤ C�‖f ‖

{∫ t

0
‖πs − π ′

s‖ ds +
3∑

j=1

∫ t

0
(πs−(λj ))+‖πs− − π ′

s−‖ dN
j
s

}
.

Recalling that πs−(λj ) is the predictable intensity of N
j
s ,

E

[∫ t

0
(πs−(λj ))+‖πs− − π ′

s−‖ dN
j
s

]
≤ E

[∫ t

0
‖πs− − π ′

s−‖ ds

]

for another suitable constant C′, we have E[‖πt − π ′
t‖] ≤ C′ ∫ t

0 E[‖πs − π ′
s‖] ds. Thus, by

Grönwall’s inequality, E[‖πt − π ′
t‖] = 0 for all t > 0. Taking into account that for all positive

h ∈ Q,

P

(
‖πt − π ′

t‖ >
1

h

)
≤ hE[‖πt − π ′

t‖] = 0,

and that the sequence {‖πt − π ′
t‖ > 1/h} is nondecreasing when h increases,

P

(
∪h

{
‖πt − π ′

t‖ >
1

h

})
= lim

h→+∞ P

(
‖πt − π ′

t‖ >
1

h

)
= 0.

This, in turn, implies that for all t > 0, P(‖πt − π ′
t‖ > 0) = 0. Since ‖πt − π ′

t‖ has càdlàg
trajectories, in any countable T , dense subset of (0, T ),

P

(
sup

0≤t≤T

‖πt − π ′
t‖ > 0

)
= P

(
sup
T

‖πt − π ′
t‖ > 0

)
≤

∑
t∈T

P(‖πt − π ′
t‖ > 0) = 0.

Hence, each solution for the filtering equation coincides pathwise with the filter.

Appendix B. Proof of Proposition 2

Proof of Proposition 2(i). Noting that the strategy θ ≡ 0 belongs to �, it follows that

Vt ≤ πT (eαB.(τ )) = πT (exp {α(Z(1 − D.) + Z̃τD.)}) ≤ eαB̄ .

Furthermore, by [19, Theorem 2.2], there exists an optimal strategy θ∗ ∈ �. As a consequence

eαB̄ ≥ Vt = πt

[
exp

{
−α

∫ T

t

(1 − Dr−)θ∗
r dSr

}
eαBT (τ)

]
> 0.
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Proof of Proposition 2(ii). For any admissible strategy θ ∈ �, since, by the previous propo-
sition, Vt is strictly positive and bounded, it follows that α ∈ R+ and the wealth process is
assumed bounded from below. Recalling Remark 5, E[Vt exp {−αWθ

t∧τ }] < +∞, which,
obviously, means that

E[E[Vt exp {−αWθ
t∧τ } | OT ]] < +∞.

For s ∧ τ ≤ t ∧ τ ≤ T ∧ τ ,

E[exp(−α(Wθ
t∧τ − Wθ

s∧τ ))Vt | Os]

= E

[
exp

{
−α

(∫ t

s

(1 − Dr−)θr dSr +
∫ T

t

(1 − Dr−)θ∗
r dSr − BT (τ)

)} ∣∣∣∣ Os

]

= E

[
exp

{
−α

(∫ T

s

(1 − Dr−)θ̃r dSr − BT (τ)

)} ∣∣∣∣ Os

]
,

where θ̃u is a strategy belonging to � defined by fixing θ and θ∗ at time t . Hence,

E[e−α(Wθ
t∧τ −Wθ

s∧τ )Vt | Os] ≥ Vs

and Proposition 2(ii) is proved.

Proof of Proposition 2(iii). Next, let Ṽt be another process Ot -adapted verifying Proposition
2(ii) and such that ṼT = E[eαBT (τ) | OT ]. Since Ṽt exp {−αWθ

t∧τ } is an Ot -submartingale,
successively

E[ṼT exp {−αWθ
T ∧τ } | Ot ] ≥ Ṽt exp {−αWθ

t∧τ },
E[exp(αBT (τ)) exp(−α(Wθ

T ∧τ − Wθ
t∧τ )) | Ot ] ≥ Ṽt

and, finally,

Vt = ess inf
θ∈�t

E[eαBT (τ)e−α(Wθ
T ∧τ −Wθ

t∧τ ) | Ot ] ≥ Ṽt .

Proof of Proposition 2(iv). If θ∗
t is an optimal strategy then

V0 = E[exp {−α(Wθ∗
T ∧τ − BT (τ))}].

By the submartingale property E[VT exp {−αWθ∗
T ∧τ } | Ot ] ≥ Vt exp {−αWθ∗

t∧τ } and taking the
mean value of both sides, we obtain

E[VT exp {−αWθ∗
T ∧τ }] ≥ E[Vt exp {−αWθ∗

t∧τ }],
which implies the desired martingale property. Indeed, since Wθ∗

0∧τ = 0,

E[VT exp {−αWθ∗
T ∧τ }] ≡ E[V0 exp(−αWθ∗

0∧τ )].
Next, assuming that there exists a θ∗ such that Vt exp {−αWθ∗

t∧τ } is an Ot -martingale, namely,
V0 = E[exp {−α(Wθ∗

T − BT (τ))}]. At the same time we know that

V0 = ess inf
θ∈�

E[exp{−α(Wθ
T − BT (τ))}],

which means that θ∗
t is an optimal strategy.
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Proof of Proposition 2(v). Since Vt is a submartingale, by Karatzas and Shreve [14], setting
Q as the set of rational numbers, for any t ∈ [0, T ), there exist the limits

lim
s∈[0,T ]∩Q,s↓t

Vs = Vt+ , lim
s∈[0,T ]∩Q,s↑t

Vs = Vt− .

So, Vt+ for each t ∈ [0, T ] is well defined by setting

Vt+ := lim
s∈[0,T ]∩Q,s↓t

Vs, 0 ≤ t < T and VT +(ω) := VT .

From the right-continuity of Ot , Vt+ is O-adapted. Furthermore, Vt+ and, for θ ∈ �,
e−αWθ

t∧τ Vt+ are O-submartingale. Indeed, for s ≤ t and for any sequence of rationals {tn}n≥1
converging down to t ,

E[e−αWθ
tn∧τ Vtn | Os] ≥ e−αWθ

s∧τ Vs,

and by the Lebesgue theorem for conditional expectation for n → +∞,

E[e−αWθ
t∧τ Vt+ | Os] ≥ e−αWθ

s∧τ Vs.

Again, for any sequence of rationals {sn}n≥1 converging down to s,

E[e−αWθ
t∧τ Vt+ | Osn ] ≥ e−αWθ

sn∧τ Vsn,

and by the Lebesgue theorem for conditional expectation for n → +∞, by the right-continuity
of O,

E[e−αWθ
t∧τ Vt+ | Os] ≥ e−αWθ

s∧τ Vs+ ,

which gives the submartingale property of the process e−αWθ
t∧τ Vt+ . Choosing θ = 0 for s = t

and using the right-continuity of O, it follows that Vt+ = E[Vt+ | Ot ] ≥ Vt a.s.
On the other hand, since Vt is the largest process O-adapted, verifying Proposition 2(i) and

for each θ ∈ �, the process e−αWθ
t∧τ Vt+ is an O-submartingale, then for each t ∈ [0, T ],

Vt+ ≤ Vt a.s., which implies that Vt+ = Vt a.s.

Acknowledgement

The author is very grateful to the anonymous referees for the valuable comments and
suggestions which helped to improve this paper.

References

[1] Bielecki, T. R., Jeanblanc, M. and Rutkowski, M. (2006). Hedging of credit derivatives in models with
totally unexpected default. In Stochastic Processes and Applications to Mathematical Finance, J. Akahori et al.
(eds), World Scientific, Singapore, 35–100

[2] Bouchard, B. and Elie, R. (2008). Discrete-time approximation of decoupled forward-backward SDE with
jumps. Stoch. Process. Appl. 118, 53–75.

[3] Brémaud, P. (1981). Point Processes and Queues. Martingale Dynamics. Springer, New York.
[4] Carbone, R., Ferrario, B. and Santacroce, M. (2008). Backward stochastic differential equations driven by

càdlàg martingales. Theory Prob. Appl. 52, 304–314.
[5] Ceci, C. (2006). Risk minimizing hedging for a partially observed high frequency data model. Stochastics 78,

13–31.
[6] Dellacherie, C. and Meyer, P.-A. (1982). Probabilities and Potential. B. Theory of Martingales. North-

Holland, Amsterdam.

https://doi.org/10.1239/jap/1445543842 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1445543842


Partially informed investors 735

[7] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. John Wiley,
New York.

[8] Frey, R. (2000). Risk minimization with incomplete information in a model for high-frequency data. Math.
Finance 10, 215–225.

[9] Frittelli, M. (2000). The minimal entropy martingale measure and the valuation problem in incomplete
markets. Math. Finance 10, 39–52.

[10] Gerardi, A. and Tardelli, P. (2010). Stochastic control methods: hedging in a market described by pure jump
processes. Acta Appl. Math. 111, 233–255.

[11] Hu, Y., Imkeller, P. and Müller, M. (2005). Utility maximization in incomplete markets. Ann. Appl. Prob.
15, 1691–1712.

[12] Jacod, J. (1979). Calcul Stochastique et Problèmes de Martingales (Lecture Notes Math. 714). Springer, Berlin.
[13] Jeanblanc, M., Yor, M. and Chesney, M. (2009). Mathematical Methods for Financial Markets. Springer,

London.
[14] Karatzas, I. and Shreve, S. E. (1988). Brownian Motion and Stochastic Calculus. Springer, New York.
[15] Lim, T. and Quenez, M.-C. (2011). Exponential utility maximization in an incomplete market with defaults.

Electron. J. Prob. 16, 1434–1464.
[16] Mania, M. and Schweizer, M. (2005). Dynamic exponential utility indifference valuation. Ann. Appl. Prob.

15, 2113–2143.
[17] Prigent, J.-L. (2001). Option pricing with a general marked point process. Math. Operat. Res. 26, 50–66.
[18] Runggaldier, W. J. (2003). Jump-diffusion models. In Handbook of Heavy Tailed Distributions in Finance,

Elsevier, Amsterdam, pp. 169–209.
[19] Schachermayer, W. (2001). Optimal investment in incomplete markets when wealth may become negative.

Ann. Appl. Prob. 11, 694–734.
[20] Tardelli, P. (2011). Utility maximization in a pure jump model with partial observation. Prob. Eng. Inf. Sci.

25, 29–54.
[21] Tardelli, P. (2012). Modeling an incomplete market with default. In Proceedings of the 2nd Interna-

tional Conference on Stochastic Modelling and Simulation, Hikey Media, Royapettah, pp. 54–65. ISBN:
978-81-925286-4-9.

[22] Zariphopoulou, T. (2001). A solution approach to valuation with unhedgeable risks. Finance Stoch. 5, 61–82.

https://doi.org/10.1239/jap/1445543842 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1445543842

