LOCAL BOUNDARY BEHAVIOR OF BOUNDED HOLOMORPHIC FUNCTIONS

ALEXANDER NAGEL AND WALTER RUDIN

1. Introduction and statement of results. Let $D \subset \mathbb{C}^n$ be a bounded domain with smooth boundary ∂D , and let F be a bounded holomorphic function on D. A generalization of the classical theorem of Fatou says that the set E of points on ∂D at which F fails to have nontangential limits satisfies the condition $\sigma(E) = 0$, where σ denotes surface area measure. We show in the present paper that this result remains true when σ is replaced by 1-dimensional Lebesgue measure on *certain* smooth curves γ in ∂D . The condition that γ must satisfy is that its tangents avoid certain directions.

We now describe the setting of our theorems in more detail.

1.1. The domains under consideration. To say that a bounded open set $D \subset \mathbf{C}^n$ has C^k -boundary means that there is an open set $W \supset \partial D$ and a k times continuously differentiable function $\rho: W \to R$ (i.e., $\rho \in C^k$) such that

$$D \cap W = \{w \in W : \rho(w) < 0\}$$

and such that the vector

(1)
$$N(\zeta) = \left(\frac{\partial \rho}{\partial \bar{w}_1}(\zeta), \cdots, \frac{\partial \rho}{\partial \bar{w}_n}(\zeta)\right)$$

is different from 0 at every $\zeta \in \partial D$.

If $\rho \in C^2$ and if there is a constant $\beta > 0$ such that the inequality

$$\sum_{j,k=1}^{n}rac{\partial \stackrel{2}{
ho}}{\partial w_{j}\partial ar{w}_{k}}\left(w
ight)\!z_{j}ar{z}_{k} \geqq \left.eta
ight|z
ight|^{2}$$

holds for all $z \in \mathbb{C}^n$ and $w \in W$, then D is said to be *strictly pseudoconvex*. (As usual, $|z|^2 = \langle z, z \rangle^{1/2}$, where $\langle z, w \rangle = \sum z_i \overline{w}_i$ for $z \in \mathbb{C}^n$, $w \in \mathbb{C}^n$.)

1.2. Tangent spaces. If D has C¹-boundary and $\zeta \in \partial D$, the tangent space to ∂D at ζ is

(2) $T_{\zeta} = \{ w \in \mathbf{C}^n : \operatorname{Re} \langle w, N(\zeta) \rangle = 0 \}.$

Its maximal complex subspace is

(3) $P_{\zeta} = \{ w \in \mathbf{C}^n : \langle w, N(\zeta) \rangle = 0 \}.$

The directional condition mentioned in the opening paragraph is that

Received March 4, 1977. This research was partially supported by NSF Grant MPS 75-06687, by Princeton University, and by the William F. Vilas Trust Estate.

for no $\zeta \in \gamma$ should the tangent to γ lie in P_{ζ} . To put this into different form, let

 $\varphi \colon [0, 1] \to \partial D$

be a C^1 -parametrization of a curve γ in ∂D , with $\varphi'(t) \neq 0$ for $0 \leq t \leq 1$. Then $\varphi'(t)$ is tangent to γ at $\varphi(t)$, and hence (2) shows that

(4) Re $\langle \varphi'(t), N(\varphi(t)) \rangle = 0$ $(0 \le t \le 1).$

According to (3), the tangent to γ at $\varphi(t)$ belongs to $P_{\varphi(t)}$ if and only if (4) is replaced by the stronger condition

(5)
$$\langle \varphi'(t), N(\varphi(t)) \rangle = 0.$$

1.3. Nontangential and admissible limits. If D has C¹-boundary and $\zeta \in \partial D$, the unit outward normal at ζ is the vector

 $\nu(\zeta) = N(\zeta)/|N(\zeta)|.$

Following Stein [10] and Čirka [2] we let $\delta_{\zeta}(w)$ be the minimum of the distances from w to ∂D and from w to the affine tangent plane $\zeta + T_{\zeta}$. For $\alpha > 0$, we define

(6)
$$\Gamma_{\alpha}(\zeta) = \{w \in D \colon |w - \zeta| < (1 + \alpha)\delta_{\zeta}(w)\}$$

and we let $\mathscr{A}_{\alpha}(\zeta)$ be the set of all $w \in D$ such that

 $|\langle w - \zeta, \nu(\zeta) \rangle| < (1 + \alpha) \delta_{\zeta}(w)$

and $|w - \zeta|^2 < \alpha \delta_{\zeta}(w)$.

Since $|\text{Re} \langle \zeta - w, \nu(\zeta) \rangle|$ is the distance from w to $\zeta + T_{\zeta}$, we see that, for a sufficiently small neighborhood V of ζ , $V \cap \Gamma_{\alpha}(\zeta)$ lies in the cone

$$K_{\alpha}(\zeta) = \{ w \in \mathbf{C}^n \colon | w - \zeta \mathbf{I} < (1 + \alpha) \operatorname{Re} \langle \zeta - w, \nu(\zeta) \rangle \},\$$

and that $V \cap \Gamma_{\alpha}(\zeta) \supset V \cap K_{\beta}(\zeta)$ for some $\beta < \alpha$. Thus $\Gamma_{\alpha}(\zeta)$ is a *nontangen*tial approach region to ζ , and $\mathscr{A}_{\alpha}(\zeta)$ is a so-called *admissible* approach region to ζ which contains

 $\Gamma_{\alpha}(\zeta) \cap \{w: |w-\zeta| < \alpha/1 + \alpha\}$

but which also contains sequences that approach ζ tangentially. (See [10, Chapter II]).

A function $f: D \to \mathbf{C}$ is said to have a *nontangential limit* (resp. *admissible limit*) at $\zeta \in \partial D$ if, for all $\alpha > 0$, $\lim f(w)$ exists as $w \to \zeta$ within $\Gamma_{\alpha}(\zeta)$ (resp. within $\mathscr{A}_{\alpha}(\zeta)$).

We let $E_{\Gamma}(f)$ be the set of all $\zeta \in \partial D$ at which *f fails* to have a nontangential limit, and we write $E_{\mathscr{A}}(f)$ for the set where *f fails* to have an admissible limit. Obviously, $E_{\Gamma}(f) \subset E_{\mathscr{A}}(f)$.

1.4. *The Fatou theorem of Korányi and Stein*. This is the theorem (proved by Korányi for the ball [6] and by Stein in general [10]) that we referred to in the opening paragraph:

THEOREM. If D has C²-boundary and if $f \in H^{\infty}(D)$ then $\sigma(E_{\mathcal{A}}(f)) = 0$. Hence also $\sigma(E_{\Gamma}(f)) = 0$.

(As usual, $H^{\infty}(D)$ is the space of all bounded holomorphic functions $f: D \to \mathbf{C}$, with sup-norm $||f||_{\infty}$.)

1.5. Statement of results. If γ is a curve in ∂D , parametrized by φ as in § 1.2, we can define a measure μ on ∂D by setting

(7)
$$\int f d\mu = \int_0^1 f(\varphi(t)) dt$$

for every continuous $f: \partial D \to \mathbf{C}$. Then μ is supported by γ , and μ depends of course on the particular parametrization φ that is chosen. But the collection of sets of μ -measure 0 depends only on γ itself, and in this sense we may speak of a property holding almost everywhere on γ .

We recall that γ is said to belong to the class $\Lambda_{1+\alpha}$ if γ has a C^1 -parametrization φ whose derivative φ' satisfies a uniform Lipschitz condition of order α ; here $0 < \alpha < 1$.

THEOREM 1. Suppose D has C¹-boundary, γ is a curve in ∂D , $\gamma \in \Lambda_{1+\alpha}$ for some $\alpha > 0$, and

(8)
$$\langle \varphi'(t), N(\varphi(t)) \rangle \neq 0$$

for every $t \in [0, 1]$. Then $\mu(E_{\Gamma}(F)) = 0$ for every $F \in H^{\infty}(D)$.

In other words, if the tangent to γ belongs nowhere to P_{ζ} (see § 1.2) then every $F \in H^{\infty}(D)$ has nontangential limits almost everywhere on γ .

Here is what happens when (8) is violated:

THEOREM 2. Suppose D is strictly pseudoconvex, with C²-boundary, and suppose $\varphi : [0, 1] \rightarrow \partial D$ parametrizes a C¹-curve γ . If

(9)
$$\langle \varphi'(t), N(\varphi(t)) \rangle = 0$$

for every $t \in [0, 1]$, then there exists an $F \in H^{\infty}(D)$ which has no limit along any curve in D that ends on γ . In particular, $\gamma \subset E_{\Gamma}(F)$.

In our next theorem, we specialize D to be the unit ball

 $B_2 = \{ z \in \mathbf{C}^2 : |z| < 1 \}.$

THEOREM 3. There exists an $F \in H^{\infty}(B_2)$ that has no admissible limit at any point of the circle

(10)
$$\gamma = \{ (e^{i\theta}, 0) : 0 \leq \theta \leq 2\pi \}.$$

Thus $\gamma \subset E_{\mathscr{A}}(F)$.

Note that the curve (10) satisfies (8). Theorem 3 shows therefore that the

conclusion of Theorem 1 cannot be strengthened to give $\mu(E_{\mathscr{A}}(F)) = 0$ for every $F \in H^{\infty}(D)$.

Our proof of Theorem 1 uses a one-variable theorem which extends the classical Fatou theorem in yet another way:

THEOREM 4. Let the segment $(0, 1) \subset \mathbf{R}$ be one edge of an open rectangle Q in the upper half of \mathbf{C} . Suppose

(a) $f: Q \to \mathbf{C}$ is a bounded C¹-function, and (b) $\partial f/\partial \bar{z} \in L^p(Q)$ for some p > 1. Then $\lim f(x + iy)$ exists for almost all $x \in (0, 1)$, as $y \to 0$.

Here, and later, L^p refers to Lebesgue measure on **C**. Note that (b) represents a considerable weakening of the classical hypothesis that $f \in H^{\infty}(Q)$, i.e. that $\partial f/\partial \bar{z} = 0$.

2. Proof of Theorem 4. For $1 \leq k \leq \infty$, we shall write C_c^k for the class of all $f : \mathbf{C} \to \mathbf{C}$ that are k times continuously differentiable and have compact support.

2.1. LEMMA. To every p, $1 , corresponds a constant <math>A_p < \infty$ such that the inequality

$$\left\| \frac{\partial f}{\partial y} \right\|_{p} \leq A_{p} \left\| \frac{\partial f}{\partial \bar{z}} \right\|_{p}$$

holds for all $f \in C_c^{-1}$.

This follows from the L^p -boundedness (for $1) of the Riesz transforms on <math>\mathbb{R}^2$. A proof is given on p. 60 of [11].

2.2. LEMMA. Suppose Ω is a bounded open set in \mathbb{C} , $1 , and <math>g \in L^{p}(\Omega)$. If $G \in C^{1}(\Omega)$ and if

(11)
$$G(z) = \frac{1}{2\pi i} \int_{\Omega} \frac{g(\zeta)}{\zeta - z} d\zeta \wedge d\bar{\zeta}$$

for almost all $z \in \Omega$, then $\partial G/\partial y \in L^p(\Omega)$.

Proof. Regard g as a member of $L^{p}(\mathbf{C})$ which is 0 off Ω . Put $k(z) = 1/\pi z$. Then k is locally L^{1} , and the convolution H = g * k, defined by

(12)
$$H(z) = \int_{\mathbf{C}} g(\zeta)k(z-\zeta)d\xi d\eta \quad (\zeta = \xi + i\eta)$$

exists for almost all $z \in \mathbf{C}$, as a Lebesgue integral. Moreover, comparison of (11) and (12) shows that the C^1 -function G coincides with H a.e. in Ω .

Choose $\chi \in C_c^{\infty}$ so that $\chi = 1$ on Ω . Choose $\psi \in C_c^{\infty}, \psi \ge 0$, so that $\int_{\mathbf{C}} \psi = 1$. For $1 \le t < \infty$, define $\psi_t(z) = t^2 \psi(tz)$.

There is a disc $D \subset \mathbf{C}$, of radius *r*, that contains the supports of χ and of

 $|g| * \psi_t$ for all $t \in [1, \infty)$. It is easily seen that

(13)
$$\int_{D} |k(z-\zeta)| d\xi d\eta \leq 2r$$

for all $z \in \mathbf{C}$.

Define $H_t = H * \psi_t$. Since H = g * k, we have

(14)
$$H_t = (g * \psi_t) * k.$$

Since $||\psi_t||_1 = 1$ for all t, Hölder's inequality and (13) lead from (14) to

(15)
$$\left\{ \int_{D} |H_{t}(z)|^{p} dx dy \right\}^{1/p} \leq 2r ||g||_{p} \quad (1 \leq t < \infty).$$

Since $g * \psi_t \in C_c^{\infty}$, Theorem 1.2.2 of [5] can be applied to (14) and shows that

(16) $\partial H_t / \partial \bar{z} = g * \psi_t$.

Hence

(17)
$$\frac{\partial (\chi H_i)}{\partial \bar{z}} = H_i \cdot \frac{\partial \chi}{\partial \bar{z}} + \chi \cdot (g * \psi_i)$$

so that (15) gives the estimate

(18)
$$\left\|\frac{\partial (\chi H_l)}{\partial \bar{z}}\right\|_p \leq M ||g||_p$$

...

in which M is a real number that depends only on χ and r. It now follows from Lemma 2.1 that

(19)
$$\left\|\frac{\partial(\chi H_t)}{\partial y}\right\|_p \leq A_p M ||g||_p \quad (1 \leq t < \infty).$$

To every compact $K \subset \Omega$ corresponds a t(K) such that $K - \text{supp } \psi_t \subset \Omega$ for all t > t(K). Since G = H a.e. in Ω , we have

(20)
$$H_t(z) = \int G(z-\zeta)\psi_t(\zeta)d\xi d\eta \quad (z \in K)$$

if t > t(K). Since $G \in C^1(\Omega)$ and $\chi = 1$ in Ω , it follows that

(21)
$$\left(\frac{\partial G}{\partial y}\right)(z) = \lim_{t\to\infty} \frac{\partial(\chi H_t)}{\partial y}(z) \quad (z\in\Omega).$$

By (19) and (21), Fatou's lemma shows that $\partial G/\partial y \in L^p(\Omega)$.

Remark. Lemma 2.2 would become false if, instead of (11), we merely assumed that $\partial G/\partial \bar{z} = g \in L^p(\Omega)$. To see this, take G holomorphic in Ω , so that $\partial G/\partial \bar{z} = 0$, but of sufficiently rapid growth near some boundary point to have $\partial G/\partial y \notin L^p(\Omega)$.

2.3. Proof of Theorem 4. To fix the notation, assume that $Q = (0, 1) \times (0, h)$. Since f is bounded, there is a sequence $y_n \searrow 0$ such that the functions $x \rightarrow f(x + iy_n)$ converge weak* in $L^{\infty}(0, 1)$, to some $\varphi \in L^{\infty}(0, 1)$. Extend f to $(0, 1) \times [0, h)$ by setting $f(x, 0) = \varphi(x)$.

Choose a small $\epsilon > 0$ and define

$$Q_{\epsilon} = [\epsilon, 1 - \epsilon] \times (0, h - \epsilon], \quad Q_{\epsilon,n} = [\epsilon, 1 - \epsilon] \times [y_n, h - \epsilon].$$

For z interior to Q_{ϵ} and for n sufficiently large, the fact that f is C^1 on the compact set $Q_{\epsilon,n}$ shows (Theorem 1.2.1 in [5]) that

$$f(z) = \frac{1}{2\pi i} \int_{\partial Q_{\epsilon}, n} f(\zeta) \frac{d\zeta}{\zeta - z} + \frac{1}{2\pi i} \int_{Q_{\epsilon}, n} \frac{\partial f}{\partial \bar{\zeta}} (\zeta) \frac{d\zeta \wedge d\bar{\zeta}}{\zeta - z}.$$

The above-mentioned weak*-convergence, combined with the fact that $\partial f/\partial \bar{\zeta} \in L^1(Q)$, shows that we can let $n \to \infty$, to obtain

$$\begin{split} f(z) &= \frac{1}{2\pi i} \int_{\partial Q_{\epsilon}} f(\zeta) \frac{d\zeta}{\zeta - z} + \frac{1}{2\pi i} \int_{Q_{\epsilon}} \frac{\partial f}{\partial \bar{\zeta}} \left(\zeta\right) \frac{d\zeta \wedge d\bar{\zeta}}{\zeta - z} \\ &= H(z) + G(z). \end{split}$$

Since *H* is the Cauchy integral of a bounded function, it is classical (see, for instance, Lemma 2.6 in Chap. V of [12]) that $\lim H(x + iy)$ exists, as $y \to 0$, for almost all x in $(\epsilon, 1 - \epsilon)$.

Since G = f - H, $G \in C^1(Q_{\epsilon})$. By Lemma 2.2, $\partial G / \partial y \in L^p(Q_{\epsilon})$. Setting

$$M(x) = \int_{0}^{h-\epsilon} \left| \frac{\partial G}{\partial y}(x, y) \right|^{p} dy$$

it follows that $M(x) < \infty$ a.e. in $(\epsilon, 1 - \epsilon)$. If $0 < y_0 < y_1 < h - \epsilon$, Hölder's inequality gives

$$|G(x + iy_1) - G(x + iy_0)| \leq M(x)^{1/p} |y_1 - y_0|^{1-1/p}.$$

Hence $\lim G(x + iy)$ exists, as $y \to 0$, for almost all x in $(\epsilon, 1 - \epsilon)$. The arbitrariness of ϵ shows that the proof is complete.

3. Proof of Theorem 1. Referring to \$1.1, we may of course assume that the gradient of ρ is bounded in *W*.

We are given $\varphi : [0, 1] \to \partial D$, $\varphi \in C^1$, $\varphi' \in \Lambda_\alpha$ for some $\alpha \in (0, 1)$. Since (8) is assumed to hold, we may assume, without loss of generality, that there is a constant $\eta > 0$ such that

(22) Im
$$\langle \varphi'(x), N(\varphi(x)) \rangle \ge \eta > 0$$
 $(0 \le x \le 1)$.

The proof proceeds in several steps. We extend φ to a map Φ of a rectangle Q into D, in such a way that each point $\varphi(x) \in \gamma$ is an end point of a nontangential curve ψ_x lying in $\Phi(Q)$. We then show that $F \circ \Phi$ and Q satisfy the hypotheses of Theorem 4, and that F therefore has limits along almost all of

https://doi.org/10.4153/CJM-1978-051-2 Published online by Cambridge University Press

588

the curves ψ_x . The desired conclusion follows then from Čirka's recent extension of Lindelöf's theorem to *n* variables.

Step 1. The map Φ . Extend φ' to be a (\mathbb{C}^n -valued) function on \mathbb{R} , with compact support, of class Λ_{α} . Let u(x, y) be the Poisson integral of φ' , for $y \geq 0$, and define

(23)
$$\Phi(x + iy) = \varphi(x) + iyu(x, y)$$
 $(0 \le x \le 1, y \ge 0)$
Since $(\partial \Phi/\partial y)(x) = iu(x, 0) = i\varphi'(x)$, we have, by (22),

$$\left[\frac{\partial}{\partial y}\left(\rho\circ\Phi\right)\right](x) = 2 \operatorname{Re} \sum_{j=1}^{n} \frac{\partial\rho}{\partial w_{j}} \left(\Phi(x)\right) \frac{\partial\Phi_{j}}{\partial y}(x)$$
$$= -2 \operatorname{Im} \left\langle\varphi'(x), N(\varphi(x))\right\rangle \leq -2\eta$$

If h > 0 is small enough, it follows that Φ maps the rectangle $Q = (0, 1) \times (0, h)$ into $W \cap D$, and that $(\partial/\partial y)(\rho \circ \Phi)(x + iy) \leq -\eta$, hence

(24)
$$\rho(\Phi(x+iy)) \leq -\eta y \quad (x+iy \in Q).$$

Standard estimates of the Poisson integral show that $|y(\partial u/\partial x)|$, $|y(\partial u/\partial y)|$, and $|u(x, y) - \varphi'(x)|$ are dominated by Cy^{α} , where *C* depends on α and on the Lipschitz constant of φ' . Hence differentiation of (23) yields

(25)
$$\left| \frac{\partial \Phi}{\partial \bar{z}} \left(x + iy \right) \right| \leq C_1 y^{\alpha} \quad (0 \leq x \leq 1, y > 0).$$

Step 2. The curves ψ_x . For $0 \leq x \leq 1, y \geq 0$, define

(26)
$$\psi_x(y) = \Phi(x + iy).$$

We claim that $\psi_x(y)$ tends nontangentially to $\psi_x(0) = \varphi(x) \in \gamma$ when $y \searrow 0$. Setting $\zeta = \varphi(x), w = \psi_x(y), (23)$ shows that

(27)
$$\zeta - w = -iyu(x, y).$$

Thus $|\zeta - w| \leq cy$ and, by (22)

Re
$$\langle \zeta - w, N(\zeta) \rangle = y$$
 Im $\langle u(x, y), N(\varphi(x)) \rangle \ge \frac{1}{2}y\eta \ge (2c)^{-1}\eta |\zeta - w|$

as soon as y is small enough. Thus $\psi_x(y)$ lies in some cone $K_{\alpha}(\zeta)$ (see § 1.3) for all sufficiently small y.

Step 3. Now let $F \in H^{\infty}(D)$. Define $f: Q \to \mathbb{C}$ by $f(z) = F(\Phi(z))$. Fix $z \in Q$, for the moment. Then $w = \Phi(z)$ is the center of a ball in D whose radius is at least $|\rho(w)|/C_2$, where C_2 is an upper bound for the gradient of ρ in W. The one-variable Schwarz lemma, applied to restrictions of F to complex lines through w, shows therefore that

(28)
$$\left| \frac{\partial F}{\partial w_j}(w) \right| \leq C_2 |\rho(w)|^{-1} ||F||_{\infty} \leq C_2 ||F||_{\infty} \eta^{-1} y^{-1},$$

by (24), since $w = \Phi(x + iy)$. We now conclude from (25), (28), and the formula

(29)
$$\frac{\partial f}{\partial \bar{z}}(z) = \sum_{j=1}^{n} \frac{\partial F}{\partial w_{j}}\left(\Phi(z)\right) \frac{\partial \Phi_{j}}{\partial \bar{z}}(z)$$

that $|(\partial f/\partial \bar{z})(x + iy)| \leq C_3 y^{\alpha-1}$, so that $f \in L^p(Q)$ for some p > 1. [Observe that (29) depends on the fact that F is holomorphic.] The other hypotheses of Theorem 4 are obviously satisfied.

It follows that $\lim f(x + iy)$ exists, as $y \searrow 0$, for every x in a set $E \subset (0, 1)$ whose complement has measure 0. In other words, F has a limit along the *nontangential* curve ψ_x that ends at $\varphi(x)$, for every $x \in E$. Since $F \in H^{\infty}(D)$, Čirka's Lindelöf theorem (Theorem 1 in [**2**]) asserts that F has a nontangential limit at $\varphi(x) \in \gamma$, for every $x \in E$.

This completes the proof of Theorem 1.

Remark. The technique of mapping the rectangle Q into D by a map Φ that satisfies $\partial \Phi/\partial \bar{z} = 0$ on the real axis has been used by Henkin and Tumanov to study peak sets for the algebra A(D). (These will be defined in the section that follows.)

4. Proof of Theorem 2.

4.1 Definitions. Let $D \subset \mathbb{C}^n$ be a domain. Let A(D) denote the algebra of all continuous complex functions on \overline{D} that are holomorphic in D. A function $G \in A(D)$ is said to *peak on the set* $K \subset \partial D$ if G(w) = 1 for every $w \in K$ but |G(w)| < 1 for all other $w \in \overline{D}$. If K is such that some $G \in A(D)$ peaks on K, then K is a *peak set* for A(D).

4.2. LEMMA. If $D \subset \mathbb{C}^n$ is a domain and if $K \subset \partial D$ is a peak set for A(D), then there exists an $F \in H^{\infty}(D)$ which has no limit along any curve in D that ends at a point of K.

Proof. Let $G \in A(D)$ peak on K. Then Re (1 - G(w)) > 0 if $w \in \overline{D} \setminus K$. Hence there is a well defined branch of log (1 - G(w)), holomorphic on D and continuous on $\overline{D} \setminus K$. Moreover,

 $\operatorname{Re}\left[\log\left(1-G(w)\right)\right] = \log\left|1-G(w)\right| \to -\infty$

as $w \to K$, and

 $|\mathrm{Im} [\log (1 - G(w))]| = |\arg (1 - G(w))| \le \pi/2.$

Setting $F(w) = \exp [i \log (1 - G(w))]$, F has the desired properties.

4.3. COROLLARY. Let $D \subset \subset \mathbb{C}^n$ have C¹-boundary. If $K \subset \partial D$ is a peak set for A(D), if γ (parametrized by φ) satisfies the hypotheses of Theorem 1, and if μ is the measure on γ defined by (7), then $\mu(K \cap \gamma) = 0$. *Proof.* By Lemma 4.2, some $F \in H^{\infty}(D)$ has no limit along any curve in D that ends on K. Thus $K \subset E_{\Gamma}(F)$. By Theorem 1, $\mu(E_{\Gamma}(F)) = 0$.

Remark. This corollary has been proved for C^2 -curves by Henkin and Tumanov (in an as yet unpublished paper) by different methods. A third proof, for C^2 -curves in the boundary of the unit ball in \mathbb{C}^n , appears in [8].

4.4. Proof of Theorem 2. The hypotheses of Theorem 2 show, by a theorem of Davie and \emptyset ksendal [3], that the range of φ is a peak set for A(D). Thus Theorem 2 follows from Lemma 4.2.

Remark. If $D \subset \mathbb{C}^n$ is strictly pseudoconvex with C^2 -boundary, and if M is a real C^1 -submanifold of ∂D whose tangent space lies in P_{ζ} for every $\zeta \in M$, it follows from [9] that every compact $K \subset M$ is a peak set for A(D). (The same result was obtained earlier, under stronger regularity assumptions, in [1; 4 and 7].) We understand that Nils Øvrelid has proved that the boundary of every C^2 -strictly pseudo-convex domain contains such manifolds of real dimension n - 1. In conjunction with Lemma 4.2, this implies that there exists an $F \in H^{\infty}(D)$ such that the set $E_{\Gamma}(F)$ (where F has no nontangential limit) contains a manifold of real dimension n - 1.

5. Proof of Theorem 3. We change notation slightly, and let

$$B = \{ (z, w) \in \mathbf{C}^2 : |z|^2 + |w|^2 < 1 \}.$$

Put $n_k = (k!)^2$ and define

(30)
$$F(z, w) = w^2 \sum_{k=1}^{\infty} (n_k - n_{k-1}) z^{n_k}$$

We will show that $F \in H^{\infty}(B)$ and that F does *not* have an admissible limit at any point $(e^{i\theta}, 0)$, although F(z, 0) = 0 for all z with |z| < 1.

Put $g_k(z) = (n_k - n_{k-1})z^{n_k}$. Then $|g_k(z)| \leq \sum |z|^m$, where *m* ranges over the integers that satisfy $n_{k-1} < m \leq n_k$. Hence $\sum_{1}^{\infty} |g_k(z)| \leq (1 - |z|)^{-1}$. Since $|w|^2 < 1 - |z|^2$ in *B*, we have |F(z, w)| < 2. Thus $F \in H^{\infty}(B)$.

Put $r_k = 1 - (1/n_k)$ for $k \ge 2$. Since $(r_k)^{n_k}$ increases to the limit 1/e as $k \to \infty$, and since $n_k/n_{k-1} = k^2$, we obtain the following estimates for $z = r_k e^{i\theta}$:

$$|g_k(z)| = (1 - k^{-2})n_k(r_k)^{n_k} > n_k/3$$

for large k,

$$\sum_{s=1}^{k-1} |g_s(z)| \leq \sum_{s=1}^{k-1} n_s < kn_{k-1} = k^{-1}n_k,$$

and

$$\sum_{s=k+1}^{\infty} |g_s(z)| \leq \sum_{k+1}^{\infty} n_s(r_k)^{n_s} < \sum_{k+1}^{\infty} n_s(r_{s-1})^{n_s} < \sum_{k+1}^{\infty} n_s e^{-s^2}.$$

The ratio test shows that the last sum is the tail end of a convergent series, hence it tends to 0 as $k \to \infty$. It follows that there is a k_0 such that

(31)
$$\left| \sum_{s=1}^{\infty} g_s(r_k e^{i\theta}) \right| \ge \frac{n_k}{4} = \frac{1}{4(1-r_k)} \quad (0 \le \theta \le 2\pi)$$

for all $k \geq k_0$.

Now fix c, 0 < c < 1. For $k \ge k_0$ it follows from (30) and (31) that

(32)
$$|F(r_k e^{i\theta}, c\sqrt{1-r_k^2})| \ge c^2/4$$
 $(0 \le \theta \le 2\pi).$

But note also that $(r_k e^{i\theta}, c\sqrt{1-r_k^2})$ tends to $(e^{i\theta}, 0)$ within an admissible approach region. In fact, setting $\zeta = (e^{i\theta}, 0)$, a little computation shows that the points in question lie in $\mathscr{A}_{\alpha}(\zeta)$ if $\alpha > 4/(1-c^2)$. (See § 1.3.) Since $F(re^{i\theta}, 0) = 0$ for 0 < r < 1, (32) shows that F does not have an admissible limit at $(e^{i\theta}, 0)$.

We thank Steven Wainger for helpful discussions concerning Theorem 4.

References

- 1. D. Burns and E. L. Stout, Extending functions from submanifolds of the boundary, Duke Math. J. 43 (1976), 391-404.
- E. M. Čirka, The theorems of Lindelöf and Fatou in Cⁿ, Mat. Sb. 92 (134) (1973), 622–644 (Math. USSR Sb. 21 (1973), 619–639).
- 3. A. M. Davie and B. Øksendal, *Peak interpolation sets for some algebras of analytic functions*, Pacific J. Math. 41 (1972), 81-87.
- 4. G. M. Henkin and E. M. Čirka, *Boundary behavior of holomorphic functions of several complex variables*, in Contemporary Problems in Mathematics, Vol. 4, Moscow, 1975 (in Russian).
- 5. L. Hörmander, An introduction to complex analysis in several variables (Van Nostrand, 1966).
- 6. A. Korányi, Harmonic functions on hermitian hyperbolic space, Trans. Amer. Math. Soc. 135 (1969), 507-516.
- 7. A. Nagel, Smooth zero sets and interpolation sets for some algebras of holomorphic functions on strictly pseudoconvex domains, Duke Math. J. 43 (1976), 323-348.
- 8. ——— Cauchy transforms of measures, and a characterization of smooth peak interpolation sets for the ball algebra, to appear, Rocky Mountain J. Math.
- 9. W. Rudin, Peak interpolation sets of class C¹, to appear, Pacific J. Math.
- 10. E. M. Stein, Boundary behavior of holomorphic functions of several complex variables (Princeton University Press, 1972).
- 11. ——— Singular integrals and differentiability properties of functions (Princeton University Press, 1970).
- 12. E. M. Stein and G. Weiss, *Introduction to fourier analysis on euclidean spaces* (Princeton University Press, 1971).

University of Wisconsin, Madison, Wisconsin