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RADIAL GROWTH AND BOUNDEDNESS FOR BLOCH FUNCTIONS

A. BONILLA AND F . PEREZ GONZALEZ

Let B be the Bloch space of all those functions / holomorphic in the open unit
disc D of the complex plane satisfying sup (l — |z|2) | / '(z) | < oo. We establish

sufficient conditions for the boundedness of functions / belonging to B satisfying
a certain uniform radial boundedness condition, and, by introducing a wide class
of subsets E of dD, which we call negligible sets for boundedness, we show that if
f e B and there is a constant K > 0 such that lim sup |/(z)| s£ K for e'e € 8D\E,

then / is bounded in D. Hence a significant extension of a theorem of Goolsby is
obtained.

1. INTRODUCTION

As usual, B denotes the Bloch space of all those holomorphic functions / in the
open unit disc D of the complex plane C which satisfy

II/IIB = 1/(0)1+ S U P ( l - I*!') l/'(*)l < CO-
MO V >

Endowed with the Bloch norm ||. | |B, B is a Banach space. The space H°°(D) of
all bounded analytic functions in D is strictly contained in B, since the function
log(l + z)l{\ -z)eB\ H°°(D). T will denote the unit circle.

The following result was shown in [5):

THEOREM A. (Goolsby). Let E be a Unite subset of T, and let f € B. If there

exists a constant K > 0 such that

lim sup |/(^)| < K
z—>a

for any a E.T \E, then f is bounded in D.

The proof of this result depends on Theorem 4.2 in [1] which we reproduce below.
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THEOREM B. (Anderson, Clunie, Pommerenke). Let f € B and let T be on arc

ending at eie. Let A C C. If

lim dist[f(z),A]=0,
z—*e

zer

then l imsupdis t [ / ( re < f l ) , A] < Kx \\f\\B ,
r—»1—0

where K\ is an absolute constant.
The constant K\ comes from the Lehto-Virtanen maximum principle (see [1], p.30

or [7]), and depends neither on the point e10 nor on the function / . In fact, if for a
fixed /3 > 0, we consider the expression (of Lehto-Virtanen):

(1.1) S0{a,fi) =
- -MA)1

and choose some number a > 0 such that 60{a,/3) > 1, we can assume Kt = 3/a. In
particular, for j3 = 37r/4, we have 6o(a,j3) > 1 whenever a < 0.0001989, and hence, if
o = 1/10, then K\ = 30. From now on Ki will always represent an absolute constant.

Our major goal in this research has been to obtain a significant generalisation of
Theorem A for subsets E of T bigger than a finite set. In Section 3 of this paper
we show that this is the case (Theorem 3). In fact, Theorem 3 is derived from the
results in Section 2, which is devoted to the establishing of sufficient conditions for
the boundedness of functions f E B satisfying a certain radial uniform boundedness
condition. To the best of our knowledge, although Theorem 2 is a corollary of [3],
Theorem 4, the theorems in this section are new and cannot be deduced from any
recent result in this area. (See [4, 6,8]). Although Theorem 1 is a particular case of
Theorem 2, we have included an independent proof based upon the ideas and geometric
constructions in [1] and [5]. This allows us to extend Theorem A by using the same
methods invoked in its proof.

2. RADIAL GROWTH AND BOUNDEDNESS

We shall need two lemmas.

LEMMA 1. ([5], p.720). Let (rn) be a sequence of real numbers in 0 such that

lim r n = 1. Tien there exists a sequence of discs, A n , satisfying:
n—»oo

(a) r n € ^ n ;
(b) l £ A n ;
(c) t ie angle between T and 9An is 3ir/4;
(d) diameter(An) —> 0, as n —> co; and,
(e) An
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REMARK. The construction of the A n ' s can be made in such a way that, for each n,
the two points in d A n PI T remain in the semiplane {z: Imz > 0} .

LEMMA 2 . Let f £ B and assume that there is a point ei6° such that
limsup |/('*e*eo)| < co. Suppose also that U is a domain in C such that
T—>1— 0

(i) eig°eU, and

(ii) U does not meet the segment \rl
0 °,e%e° J for some TQ, 0 < ro < 1.

If A = f(U\J), then

(2.1) limsupdist[/(re ' \ A)} < Id \\f\\B .
r-»l—0

PROOF: We shall exploit ideas from [1] and [5]. Without loss of generality, we
suppose $o — 0, and | |/ | |B ^ 1. Further we assume that, at least, U peaks at 1
across the domain R = D (1 {z: Imz > 0}. Let /3 = 3TT/4 and choose a so small that
60(a,/3) > 1 is as in (1.1), and put K\ = 3/a.

If (2.1) fails, then by the hypothesis on radial boundedness, a complex number w0

and a sequence (rn) of real numbers with rn —> 1 — 0 as n —> oo, can be found such
that

/(rn)—»«;0 , asn—> oo

Next, let ( A n ) be a sequence of discs having the properties stated in Lemma 1 and the
Remark above. Let An and C n be the two arcs of d A n in R. Since U is connected
and U D [ro, 1) is empty, there is a number N such that, for any n ^ N, we have

(2.3) An D U ± 0,
cn n u £ 0.

If Gn denotes the (open) connected component of (C \ IT) D A n containing r n , then

Gn C A n and 1 ^ 9Gn C 5 A n U (U \ l ) . We assume for the moment the crucial

inclusion

(2.4) Gn C D.

Then 8Gn C d A n U (U \ l) , and if g(z) is denned to be

g{z) = —777-1 r . z e D,
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then g is a meromorphic function which is normal:

Now, if z e 9Gn \ SAn, then * G Jj \ T, so that /(z) e A, and the inequality in
(2.2) leads to \g(z)\ < l/(aKi) = 1/3. We deduce from the Lehto-Virtanen maximum
principle that g is analytic and bounded in every Gn, with a bound independent of n.
However |<7(rn)| —> oo, as n —> oo, and we reach a contradiction.

It only remains to show the inclusion in (2.4). The construction of the sequence An

makes it dear that A n D (C \ R) C D, so we need only check that Gn D R C D. If this
were not the case, there would exist a point q in Gn f~l R with \q\ ̂  1. We may assume
q is on T, for if q were off D the arcwise connectedness of Gn would yield an arc in Gn

joining q with rn , which would intersect T . Next, let E\ and E? be the components of
R fl (C \ An) whose closures contain An and Cn respectively. By (2.3), there are two
points t T£ 1 and s ^ 1 such that t £ Ex fl U and s £ E2 C\ U. Since U is connected,
we can take a curve Fi defined in [0,1] such that Fj C U, 1^(0) — t and 1^(1) = s.
Let xi = sup{a; e [0,l]/ri(x) € An} and let x2 = inf{z G [xi, 1]: Ti(x) G C n }. Since
Ti(l) £ An, xi ± 1 and I ^ z i ) G ̂ 4n. Similarly ri(z2) G Cn, and X! ^ x2. Let
F be the closed (Jordan) curve formed by Fj on [x1)z2] and dAn so that rn is in
the interior of F. Since Fi C U C D, q does not meet r1|[a.lia!2]. This means that if
q' G D{q,i") H G,i, for some r > 0, then q' can be joined to rn by a curve 7 in Gn.
But since rn is in the interior of F and q' is outside F, we would have that Fj D 7 j= 0,
which is impossible because 7 C Gn C [An D (C \ 17)] and Fx C £/. D

We now establish our first theorem.

THEOREM 1 . Let f e B. If there is a constant K > 0 such that

limsup|/(reifl)| < K
r-»l-0

for any el° in T, tAen / is bounded in D.

PROOF: Suppose that / is not bounded, and let M be an arbitrary constant,
M > Kx | | / | |B + K. Since limsup \f(reie)\ < K for any eie, it follows that

r-»l— 0

(2.5) l imsup dist[ /(re i f l ) ,C \D(O,J l f ) ] > Kx \\f\\B
r—»1—0

for each point eie. Let tf = f~x{C \D(0,M)). We shall assume that U ^ 0, for
otherwise / would be bounded.
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Let V be any component of U. If dV n T = 0, then V C D and / attains
its maximum in V in a point z0 G (dV \ T) D D, with |/(zo)| > M\ by continuity,
| / | > M in a disc D(«0 )e) C D. This contradicts the maximality of V and shows that
0FnT^0.

Next, let e*a be any fixed point in dV D T. The condition on radial bound-
ednes guarantees that there exists an r0, 0 < r0 < 1, such that V D [roex0,eta} = 0.
Put A = f(V \ T). By Lemma 2,

Since / (FVT) C C \ D(O,M), we find that limsupdist[/(reia),C \ D(O,M)} ^
i—>l-0

Kx | | / | |B , contradicting (2.5). D

We do not know whether Theorem 1 holds when the condition / G B is replaced
by / 6 L\, the Bergman space of all those analytic functions in D that are L1 with
respect to Lebesgue area measure. In this direction the following example shows that
it is not true for an arbitrary analytic function in D.

Let / be the function defined by

€ D.

It is not hard to check that f*(eie) = lim f(reie) exists and |/*(e''fl)l < 2e, for
r—>1 —0

any exB G T. Now let us consider the sequence a* = ((k — 1) + in)/((k + 1) + ix),

k = 1,2,.... Then ak £ D and |/(afc)|2 = 4/((l + fc)2 + tAe2^ -> oo, as k -» oo.
This implies that / £ JJ°°(D). Further, / £ L\ because the area integral of | / | on
discs centred at a* and with radii (1 — |ajt|)/2 can become very large as k —» oo.

On the other hand, we have the next result which is a consequence of [3], Theorem
4. As usual, "Dim" means Hausdorff dimension.

THEOREM 2 . Let f G B and let E be a subset ol T with Dim(E) < 1. If there
exists a constant K > 0 such that limsup |/(re*°)| < K for any eie G T \ E, then f

r-»l-0

is bounded.

PROOF: Since / G B, \f{z)\ < Clog 1/(1 - |z|). Hence the function u(z) =
logl/(*)l satisfies u(z) < loglogl/(l - |z|) + C. In particular, u*(eiB) =
limsupu(re*e) ^ constant for any ex0 G T \ E, and M(r,u) = Maxu(re*e) =
r—»l-0 e

o(l/((l -r)a)) for each a > 0. Choosing a0 such that 0 < a0 < 1 - Dim(£),
Theorem 4 in [3] shows that u ^ constant in D. D
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3. NEGLIGIBLE SETS FOR BOUNDEDNESS

In order to extend Theorem A it will be convenient to introduce a class of subsets
of T .

DEFINITION: Let E be a subset of T. We shall say that £ is a negligible set for
boundedness (in short, negligible) if for every ctS g £ , there is a subarc J C T ending
at eie a n d / C T \ £ .

It is clear that any negligible set is a countable set, and that any subset of a
negligible set is also negligible. We list some examples.

(i) Every finite set in T is plainly negligible,
(ii) Let E = (elOn) be a sequence of points on T whose arguments converge

strictly to 00 6 [0,27r]. Then E is negligible,

(iii) Let E = (e**") U{1}, where 2TT > 0n -> 0 and 0n+1 -6n ~ l/(n(logn)2)

for each n. Then E is negligible but not a Carleson set.

We are in a position to prove the following result in two independent ways.

THEOREM 3 . Let f 6 B and let E be a negligible set. It there is a constant
K > 0 such that

limsup |/(z)| < K

tor any ei6 6 T \ E, then f is bounded in D.

PROOF: First of all since Dim(JEJ) = 0, the conclusion follows immediately from
Theorem 2. On the other hand, we note that if J is a subarc of T \ E and e100 is an
endpoint of J, then

limsup \f(rei6°)\ ^ Kx | | / | | B + K + 2;
/-.l-O

this can be proved just as in [5], Theorem 2.60. But the same holds for any e*e belonging

to E, since there exists an arc I ending at e*e. If M is a constant satisfying M >
Ki II /IIB + - ^ + 2 >

 t h e n limsup | / ( r e l a ) I ^ M for any a. Now Theorem 1 implies that
r—»1—0

/ is bounded. 0
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