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RADIAL GROWTH AND BOUNDEDNESS FOR BLOCH FUNCTIONS

A. BonNIiLLA AND F. PEREZ GONZALEZ

Let B be the Bloch space of all those functions f holomorphic in the open unit
disc D of the complex plane satisfying sup (1 - |z|’) |f(2)] < co. We establish
lzl<1

sufficient conditions for the boundedness of functions f belonging to B satisfying
a certain uniform radial boundedness condition, and, by introducing a wide class
of subsets E of 8D, which we call negligible sets for boundedness, we show that if
f € B and there is a constant K > 0 such that limsup |f(z)] < K for '’ € 6D\E,

z—set®
then f is bounded in D. Hence a significant extension of a theorem of Goolsby is

obtained.

1. INTRODUCTION

As usual, B denotes the Bloch space of all those holomorphic functions f in the
open unit disc D of the complex plane C which satisfy

171l = 1£@)1 + sup (1= 12) I£'(2)] < oo.
|z|<1

Endowed with the Bloch norm |||z, B is a Banach space. The space H*(D) of
all bounded analytic functions in D is strictly contained in B, since the function
log(1+ 2)/(1 ~2) € B\ H®(D). T will denote the unit circle.

The following result was shown in [5]:

THEOREM A. (Goolsby). Let E be a finite subset of T, and let f € B. If there
exists a constant K > 0 such that

limsup|f(z)| < K

z—a

for any a € T\ E, then f is bounded in D.
The proof of this result depends on Theorem 4.2 in [1] which we repraoduce below.
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34 A. Bonilla and F. Perez Gonzalez [2]

THEOREM B. (Anderson, Clunie, Pommerenke). Let f € B and let [ be an arc
ending at e®. Let ACC. If
lim,_ dist{f(2), 4] =0,

zel
then limsup dist[f (re*?), 4] < K1 |||l g »
r—1-0

where K, is an absolute constant.

The constant K; comes from the Lehto-Virtanen maximum principle (see [1], p.30
or [7]), and depends neither on the point €*® nor on the function f. In fact, if for a
fixed B > 0, we consider the expression (of Lehto-Virtanen):

(11)  b(aB) = sigﬁ [1'+ 1+ ('s%)z‘ TP [_ o (s;ﬂﬂ)z}

and choose some number a > 0 such that §3(a,8) > 1, we can assume K, = 3/a. In
particular, for 8 = 3x/4, we have §y(a,8) > 1 whenever a < 0.0001989, and hence, if
a =1/10, then K, = 30. From now on K; will always represent an absolute constant.

Our major goal in this research has been to obtain a significant generalisation of
Theorem A for subsets E of T bigger than a finite set. In Section 3 of this paper
we show that this is the case (Theorem 3). In fact, Theorem 3 is derived from the
results in Section 2, which is devoted to the establishing of sufficient conditions for
the boundedness of functions f € B satisfying a certain radial uniform boundedness
condition. To the best of our knowledge, although Theorem 2 is a corollary of [3],
Theorem 4, the theorems in this section are new and cannot be deduced from any
recent result in this area. (See [4, 6,8]). Although Theorem 1 is a particular case of
Theorem 2, we have included an independent proof based upon the ideas and geometric
constructions in [1] and [5]. This allows us to extend Theorem A by using the same
methods invoked in its proof.

2. RADIAL GROWTH AND BOUNDEDNESS
‘We shall need two lemmas.
LEMMA 1. ([5], p.720). Let (r,) be a sequence of real numbers in D such that
"an;o rn = 1. Then there exists a sequence of discs, A\, , satisfying:
(a) ™ G_An;
(b) 1¢A4,;
(c) the angle between T and 84, is 3n/4;

(d) diameter(A,) — 0, as n — o0; and,

(e) A.N(C\D)#0.
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REMARK. The construction of the A, ’s can be made in such a way that, for each n,
the two points in A, N T remain in the semiplane {z: Imz > 0}.

LEMMA 2. Let f € B and assume that there is a point €% such that
limsup |f(re‘9°)| < 00. Suppose also that U is a domain in C such that
r—1-0

(i) e €U, and

(i) U does not meet the segment [,,.(")90,3;'00) for some rg, 0 <rp < 1.

I A=f(@\T), then

(2:1) lim sup dist(f (re™®, 4)] < K1 ||fllp -

ProOF: We shall exploit ideas from [1] and [5]. Without loss of generality, we
suppose 89 = 0, and ||f|lz < 1. Further we assume that, at least, U peaks at 1
across the domain R = DN {z: Imz > 0}. Let 8 = 37/4 and choose a so small that
So(a,8) 2 1 is as in (1.1), and put K, = 3/a.

If (2.1) fails, then by the hypothesis on radial boundedness, a complex number w,
and a sequence (rn) of real numbers with r, =+ 1 — 0 as n — oo, can be found such
that

f(rn) — wo, asn — oo

(2.2)
diSt[qu, A] > Kl‘

Next, let (A,) be a sequence of discs having the properties stated in Lemma 1 and the
Remark above. Let A, and C, be the two arcs of 8\, in R. Since U is connected
and U N [rg,1) is empty, there is a number N such that, for any n > N, we have

T € [7'0’1)’
(2.3) A, NU #£0,
CnnNU #£0.

If G, denotes the (open) connected component of (C\U) N A, containing r,, then
GnCA, and 1 ¢ 8G, C 8A,U (U\1). We assume for the moment the crucial

inclusion
(2.4) G, CD.

Then 8G, C 8A,U (U\T), and if g(2) is defined to be

1
A T
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then g is a meromorphic function which is normal:

a @) (1-1F)alf()
(=) et = = w1

<a(1-12P) If () <allfllp < e

Now, if z € 8Gn \ 0A,., then z € U\ T, so that f(z) € A, and the inequality in
(2.2) leads to |g(z)] < 1/(aK:) = 1/3. We deduce from the Lehto—Virtanen maximum
principle that g is analytic and bounded in every G,,, with a bound independent of n.
However |g(r,)| — o0, as n — oo, and we reach a contradiction.

It only remains to show the inclusion in (2.4). The construction of the sequence A,
makes it clear that A, N(C\ R) C D, so we need only check that G, N R C D. If this
were not the case, there would exist a point ¢ in G, N R with |q| > 1. We may assume
g ison T, for if ¢ were off D the arcwise connectedness of G,, would yield an arcin G,
joining g with r, , which would intersect T. Next, let E; and E; be the components of
RN (C\ A,) whose closures contain 4, and C, respectively. By (2.3), there are two
points £ # 1 and s # 1 such that t € E,NU and s € E;NU. Since U is connected,
we can take a curve I'; defined in [0,1] such that ')y C U, T'1(0) =t and (1) = s.
Let z; = sup{z € [0,1]/T1(z) € An} and let z; = inf{z € [z1,1]: I'y(z) € Cn}. Since
(1) ¢ An, 21 # 1 and I'y(z,) € A,. Similarly T'y(z2) € Cn, and z; # z2. Let
I’ be the closed (Jordan) curve formed by I'; on [z;,z;] and A, so that r, is in
the interior of I'. Since I'; C U C D, q does not meet I'y|;,,z,). This means that if
q¢' € D(q,7) N Gy, for some r > 0, then ¢' can be joined to r, by a curve 4 in Gy,.
But since r, isin the interior of " and ¢' is outside I', we would have that 'y Ny # @,
which is impossible because ¥ C G, C [A,N(C\TU)] and T, C U. 0

We now establish our first theorem.

THEOREM 1. Let f € B. If thereis a constant K > 0 such that

limsup If(reia)| £ K

r—1-0

for any €® in T, then f is bounded in D.
PROOF: Suppose that f is not bounded, and let M be an arbitrary constant,
M > K, ||fllg + K. Since lim sup If(re‘o)l < K for any €', it follows that
r—1-0

(2.5) lim sup dist f (re*®),C\D(O, M) > K1 |Ifg

for each point €. Let U = f~1(C\D(0,M)). We shall assume that U # 0, for
otherwise f would be bounded.
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Let V be any component of U. If 8V N T = @, then V C D and f attains
its maximum in V in a point z, € (8V \ T) N D, with |f(z)| > M; by continuity,
{f] > M in a disc D(2¢,¢) € D. This contradicts the maximality of V' and shows that
VNT #£0.

Next, let ¢** be any fixed point in 8V N T. The condition on radial bound-
ednes guarantees that there exists an ry, 0 < ro < 1, such that V' n [roe"e, e"") =0.
Put 4 = f(V\T) By Lemma 2,

limlsug)dist[f(‘re'.a, A) < Ky |Ifllp-

Since f(V\T) € C\ D(O,M), we find that limsupdist[f(re®),C \ D(0,M)] <
0

r—1-—

K1 ||fll g, contradicting (2.5). 1]
We do not know whether Theorem 1 holds when the condition f € B is replaced
by f € L}, the Bergman space of all those analytic functions in D that are L! with
respect to Lebesgue area measure. In this direction the following example shows that
it is not true for an arbitrary analytic function in D.
Let f be the function defined by

z

f(z) = (1 - z)exp [-—exp GJ_”)] ,  zeD.

It is not hard to check that f‘(em) = lim f(rew) exists and |f* (e‘a)l £ 2e, for

r—1-0

any e € T. Now let us consider the sequence a; = ((k — 1) +iw)/((k + 1) +i7),
k=1,2,.... Then az € D and |f(as) = 4/((1+k)2+7r2)e2°k — 00, as k — 0.
This implies that f ¢ H>(D). Further, f ¢ L. because the area integral of |f| on
discs centred at ap and with radii (1 — |ax|)/2 can become very large as k — oo.

On the other hand, we have the next result which is a consequence of [3], Theorem
4. As usual, “Dim” means Hausdorff dimension.

THEOREM 2. Let f € B and let E be a subset of T with Dim(E) < 1. If there
exists a constant K > 0 such that limsup |f(re‘9)| < K for any ¢ € T\ E, then f
r—1-0

is bounded.

PROOF: Since f € B, |f(z)] < Clogl/(1—|z]). Hence the function u(z) =
log|f(2)| satisfies u(z) < loglogl/(1—|z]) + C. In particular, u*(e*) =
limsupu(re"e) < constant for any e € T\ E, and M(ru) = Mg.xu(re‘o) _

r—1-0
0(1/((1 = r)?)) for each & > 0. Choosing ag such that 0 < oy < 1 — Dim(E),
Theorem 4 in [3] shows that u < constant in D.
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3. NEGLIGIBLE SETS FOR BOUNDEDNESS

In order to extend Theorem A it will be convenient to introduce a class of subsets
of T.

DEFINITION: Let E be a subset of T. We shall say that F is a negligible set for
boundedness (in short, negligible) if for every e*® € E, there is a subarc I C T ending
at e and ICT\E.

It is clear that any negligible set is a countable set, and that any subset of a
negligible set is also negligible. We list some examples.

(i) Every finite set in T is plainly negligible.
(ii) Let E = (ew") be a sequence of points on T whose arguments converge
strictly to 8y € [0,2x]. Then E is negligible.
(iii) Let E = (e*»)U{1}, where 27 > 0,, — 0 and 6,4, — 0, ~ 1/ (n(log 'n)z)
for each n. Then E is negligible but not a Carleson set.

We are in a position to prove the following result in two independent ways.

THEOREM 3. Let f € B and let E be a negligible set. If there is a constant
K > 0 such that
limsup|f(z)| < K

z—et

for any € € T\ E, then f is bounded in D.

PRroOF: First of all since Dim(E) = 0, the conclusion follows immediately from
Theorem 2. On the other hand, we note that if J is a subarc of T\ E and &% is an
endpoint of J, then ‘

limsup|f(re®)| < Ky [lfllp + K +2;
—1-

this can be proved just as in [5], Theorem 2.60. But the same holds for any e*® belonging
to E, since there exists an arc I ending at e?®. If M is a constant satisfying M >

K, ||fllg+ K +2, then limsup If(rei“)| € M for any a. Now Theorem 1 implies that
r—1-0
f is bounded. 0
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