Bull. Austral. Math. Soc. Vol. 42 (1990) [33-39]

RADIAL GROWTH AND BOUNDEDNESS FOR BLOCH FUNCTIONS

A. BONILLA AND F. PEREZ GONZALEZ

Let B be the Bloch space of all those functions f holomorphic in the open unit disc D of the complex plane satisfying $\sup_{|z|<1} (1-|z|^2) |f'(z)| < \infty$. We establish sufficient conditions for the boundedness of functions f belonging to B satisfying a certain uniform radial boundedness condition, and, by introducing a wide class of subsets E of ∂D , which we call negligible sets for boundedness, we show that if $f \in B$ and there is a constant K > 0 such that $\limsup_{x \to e^{i\theta}} |f(z)| \leq K$ for $e^{i\theta} \in \partial D \setminus E$, then f is bounded in D. Hence a significant extension of a theorem of Goolsby is obtained.

1. INTRODUCTION

As usual, B denotes the Bloch space of all those holomorphic functions f in the open unit disc D of the complex plane C which satisfy

$$||f||_B = |f(0)| + \sup_{|z| < 1} (1 - |z|^2) |f'(z)| < \infty.$$

Endowed with the Bloch norm $\|.\|_B$, *B* is a Banach space. The space $H^{\infty}(D)$ of all bounded analytic functions in D is strictly contained in *B*, since the function $\log(1+z)/(1-z) \in B \setminus H^{\infty}(D)$. T will denote the unit circle.

The following result was shown in [5]:

THEOREM A. (Goolsby). Let E be a finite subset of T, and let $f \in B$. If there exists a constant K > 0 such that

$$\limsup_{z\to a} |f(z)| \leqslant K$$

for any $a \in T \setminus E$, then f is bounded in D.

The proof of this result depends on Theorem 4.2 in [1] which we reproduce below.

Received 17th August 1989

We are grateful to Professor José L. Fernández who attracted our attention to Dahlberg's paper [3]. I. Marrero brought us the example after Theorem 1. We also give thanks to her. Partially supported by Consejería de Educación, Gobierno Autónomo de Canarias, proyecto núm. 08/30.04.86.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 \$A2.00+0.00.

THEOREM B. (Anderson, Clunie, Pommerenke). Let $f \in B$ and let Γ be an arc ending at $e^{i\theta}$. Let $A \subseteq C$. If

$$\lim_{\substack{z \to e^{i\theta} \\ z \in \Gamma}} \operatorname{dist}[f(z), A] = 0,$$
$$\lim_{z \to r} \sup \operatorname{dist}[f(re^{i\theta}), A] \leq K_1 ||f||_B,$$

where K_1 is an absolute constant.

The constant K_1 comes from the Lehto-Virtanen maximum principle (see [1], p.30 or [7]), and depends neither on the point $e^{i\theta}$ nor on the function f. In fact, if for a fixed $\beta > 0$, we consider the expression (of Lehto-Virtanen):

(1.1)
$$\delta_0(\alpha,\beta) = \frac{\sin\beta}{\beta} \left[1 + \sqrt{1 + \left(\frac{\alpha\beta}{\sin\beta}\right)^2} \right] \cdot \exp\left[-\sqrt{1 + \left(\frac{\alpha\beta}{\sin\beta}\right)^2} \right]$$

and choose some number $\alpha > 0$ such that $\delta_0(\alpha, \beta) \ge 1$, we can assume $K_1 = 3/\alpha$. In particular, for $\beta = 3\pi/4$, we have $\delta_0(\alpha, \beta) \ge 1$ whenever $\alpha \le 0.0001989$, and hence, if $\alpha = 1/10$, then $K_1 = 30$. From now on K_1 will always represent an absolute constant.

Our major goal in this research has been to obtain a significant generalisation of Theorem A for subsets E of T bigger than a finite set. In Section 3 of this paper we show that this is the case (Theorem 3). In fact, Theorem 3 is derived from the results in Section 2, which is devoted to the establishing of sufficient conditions for the boundedness of functions $f \in B$ satisfying a certain radial uniform boundedness condition. To the best of our knowledge, although Theorem 2 is a corollary of [3], Theorem 4, the theorems in this section are new and cannot be deduced from any recent result in this area. (See [4, 6,8]). Although Theorem 1 is a particular case of Theorem 2, we have included an independent proof based upon the ideas and geometric constructions in [1] and [5]. This allows us to extend Theorem A by using the same methods invoked in its proof.

2. RADIAL GROWTH AND BOUNDEDNESS

We shall need two lemmas.

LEMMA 1. ([5], p.720). Let (r_n) be a sequence of real numbers in D such that $\lim_{n \to \infty} r_n = 1$. Then there exists a sequence of discs, Δ_n , satisfying:

- (a) $r_n \in \Delta_n;$
- (b) $1 \notin \overline{\Delta}_n$;
- (c) the angle between T and $\partial \triangle_n$ is $3\pi/4$;
- (d) diameter $(\Delta_n) \longrightarrow 0$, as $n \longrightarrow \infty$; and,
- (e) $\Delta_n \cap (\mathbb{C} \setminus \mathbb{D}) \neq \emptyset$.

then

Bloch functions

REMARK. The construction of the Δ_n 's can be made in such a way that, for each n, the two points in $\partial \Delta_n \cap T$ remain in the semiplane $\{z : \text{Im} z > 0\}$.

LEMMA 2. Let $f \in B$ and assume that there is a point $e^{i\theta_0}$ such that $\limsup_{r\to 1-0} |f(re^{i\theta_0})| < \infty$. Suppose also that U is a domain in C such that

- (i) $e^{i\theta_0} \in \overline{U}$, and
- (ii) \overline{U} does not meet the segment $\left[r_0^{i\theta_0}, e^{i\theta_0}\right)$ for some r_0 , $0 \leq r_0 < 1$.

If $A = f(\overline{U} \setminus T)$, then

(2.1)
$$\limsup_{r \to 1-0} \operatorname{dist}[f(re^{i\theta_0}, A)] \leq K_1 ||f||_B.$$

PROOF: We shall exploit ideas from [1] and [5]. Without loss of generality, we suppose $\theta_0 = 0$, and $||f||_B \leq 1$. Further we assume that, at least, U peaks at 1 across the domain $R = D \cap \{z : \text{Im} z > 0\}$. Let $\beta = 3\pi/4$ and choose α so small that $\delta_0(\alpha,\beta) \ge 1$ is as in (1.1), and put $K_1 = 3/\alpha$.

If (2.1) fails, then by the hypothesis on radial boundedness, a complex number w_0 and a sequence (r_n) of real numbers with $r_n \to 1-0$ as $n \to \infty$, can be found such that

(2.2)
$$f(r_n) \longrightarrow w_0, \text{ as } n \longrightarrow \infty$$
$$\operatorname{dist}[w_0, A] > K_1.$$

Next, let (Δ_n) be a sequence of discs having the properties stated in Lemma 1 and the Remark above. Let A_n and C_n be the two arcs of $\partial \Delta_n$ in R. Since U is connected and $\overline{U} \cap [r_0, 1)$ is empty, there is a number N such that, for any $n \ge N$, we have

(2.3) $r_n \in [r_0, 1),$ $A_n \cap U \neq \emptyset,$ $C_n \cap U \neq \emptyset.$

If G_n denotes the (open) connected component of $(C \setminus \overline{U}) \cap \triangle_n$ containing r_n , then $\overline{G}_n \subset \overline{\Delta}_n$ and $1 \notin \partial G_n \subset \partial \triangle_n \cup (\overline{U} \setminus 1)$. We assume for the moment the crucial inclusion

(2.4)
$$\overline{G}_n \subset \mathbb{D}.$$

Then $\partial G_n \subseteq \partial \triangle_n \cup (\overline{U} \setminus T)$, and if g(z) is defined to be

$$g(z)=rac{1}{lpha(f(z)-w_0)}\,,\quad z\in {\mathbb D},$$

then g is a meromorphic function which is normal:

$$\left(1-\left|z\right|^{2}\right)\frac{\left|g'(z)\right|}{1+\left|g(z)\right|^{2}}=\frac{\left(1-\left|z\right|^{2}\right)\alpha\left|f'(z)\right|}{\alpha^{2}\left|f(z)-w_{0}\right|^{2}+1}\leqslant\alpha\left(1-\left|z\right|^{2}\right)\left|f'(z)\right|\leqslant\alpha\left\|f\right\|_{B}\leqslant\alpha.$$

Now, if $z \in \partial G_n \setminus \partial \Delta_n$, then $z \in \overline{U} \setminus T$, so that $f(z) \in A$, and the inequality in (2.2) leads to $|g(z)| \leq 1/(\alpha K_1) = 1/3$. We deduce from the Lehto-Virtanen maximum principle that g is analytic and bounded in every G_n , with a bound independent of n. However $|g(r_n)| \to \infty$, as $n \to \infty$, and we reach a contradiction.

It only remains to show the inclusion in (2.4). The construction of the sequence Δ_n makes it clear that $\Delta_n \cap (\mathbb{C} \setminus R) \subseteq \mathbb{D}$, so we need only check that $\overline{G}_n \cap R \subset \mathbb{D}$. If this were not the case, there would exist a point q in $\overline{G}_n \cap R$ with $|q| \ge 1$. We may assume q is on T, for if q were off D the arcwise connectedness of G_n would yield an arc in G_n joining q with r_n , which would intersect T. Next, let E_1 and E_2 be the components of $R \cap (\mathbb{C} \setminus \Delta_n)$ whose closures contain A_n and C_n respectively. By (2.3), there are two points $t \neq 1$ and $s \neq 1$ such that $t \in E_1 \cap U$ and $s \in E_2 \cap U$. Since U is connected, we can take a curve Γ_1 defined in [0,1] such that $\Gamma_1 \subseteq U$, $\Gamma_1(0) = t$ and $\Gamma_1(1) = s$. Let $x_1 = \sup\{x \in [0,1] | \Gamma_1(x) \in A_n\}$ and let $x_2 = \inf\{x \in [x_1,1]: \Gamma_1(x) \in C_n\}$. Since $\Gamma_1(1) \notin A_n, x_1 \neq 1$ and $\Gamma_1(x_1) \in A_n$. Similarly $\Gamma_1(x_2) \in C_n$, and $x_1 \neq x_2$. Let Γ be the closed (Jordan) curve formed by Γ_1 on $[x_1, x_2]$ and $\partial \triangle_n$ so that r_n is in the interior of Γ . Since $\Gamma_1 \subseteq U \subseteq D$, q does not meet $\Gamma_{1|\{z_1,z_2\}}$. This means that if $q' \in D(q,r) \cap G_n$, for some r > 0, then q' can be joined to r_n by a curve γ in G_n . But since r_n is in the interior of Γ and q' is outside Γ , we would have that $\Gamma_1 \cap \gamma \neq \emptyset$, which is impossible because $\gamma \subseteq G_n \subseteq [\Delta_n \cap (\mathbb{C} \setminus \overline{U})]$ and $\Gamma_1 \subseteq U$. Β

We now establish our first theorem.

THEOREM 1. Let $f \in B$. If there is a constant K > 0 such that

$$\limsup_{r\to 1-0} \left| f\left(re^{i\theta}\right) \right| \leqslant K$$

for any $e^{i\theta}$ in T, then f is bounded in D.

PROOF: Suppose that f is not bounded, and let M be an arbitrary constant, $M > K_1 ||f||_B + K$. Since $\limsup_{r \to 1-0} |f(re^{i\theta})| \leq K$ for any $e^{i\theta}$, it follows that

(2.5)
$$\limsup_{r \to 1-0} \operatorname{dist}[f(re^{i\theta}), \mathbb{C} \setminus \overline{D}(O, M)] > K_1 ||f||_B$$

for each point $e^{i\theta}$. Let $U = f^{-1}(\mathbb{C} \setminus \overline{D}(0, M))$. We shall assume that $U \neq \emptyset$, for otherwise f would be bounded.

Bloch functions

Let V be any component of U. If $\partial V \cap T = \emptyset$, then $\overline{V} \subseteq D$ and f attains its maximum in \overline{V} in a point $z_0 \in (\partial V \setminus T) \cap D$, with $|f(z_0)| > M$; by continuity, |f| > M in a disc $D(z_0, \varepsilon) \subseteq D$. This contradicts the maximality of V and shows that $\partial V \cap T \neq \emptyset$.

Next, let $e^{i\alpha}$ be any fixed point in $\partial V \cap T$. The condition on radial boundednes guarantees that there exists an r_0 , $0 \leq r_0 < 1$, such that $\overline{V} \cap [r_0 e^{i\theta}, e^{i\alpha}] = \emptyset$. Put $A = f(\overline{V} \setminus T)$. By Lemma 2,

$$\limsup_{r\to 1-0} \operatorname{dist}[f(re^{i\alpha}, A)] \leq K_1 \|f\|_B.$$

Since $f(\overline{V} \setminus T) \subseteq \mathbb{C} \setminus D(O, M)$, we find that $\limsup_{r \to 1-0} \operatorname{dist}[f(re^{i\alpha}), \mathbb{C} \setminus \overline{D}(O, M)] \leq K_1 ||f||_B$, contradicting (2.5).

We do not know whether Theorem 1 holds when the condition $f \in B$ is replaced by $f \in L^1_a$, the Bergman space of all those analytic functions in D that are L^1 with respect to Lebesgue area measure. In this direction the following example shows that it is not true for an arbitrary analytic function in D.

Let f be the function defined by

$$f(z) = (1-z) \exp\left[-\exp\left(\frac{1+z}{1-z}\right)\right], \qquad z \in \mathbb{D}.$$

It is not hard to check that $f^*(e^{i\theta}) = \lim_{r \to 1-0} f(re^{i\theta})$ exists and $|f^*(e^{i\theta})| \leq 2e$, for any $e^{i\theta} \in T$. Now let us consider the sequence $a_k = ((k-1)+i\pi)/((k+1)+i\pi)$, $k = 1, 2, \ldots$ Then $a_k \in D$ and $|f(a_k)|^2 = 4/((1+k)^2 + \pi^2)e^{2e^k} \to \infty$, as $k \to \infty$. This implies that $f \notin H^{\infty}(D)$. Further, $f \notin L^1_a$ because the area integral of |f| on discs centred at a_k and with radii $(1-|a_k|)/2$ can become very large as $k \to \infty$.

On the other hand, we have the next result which is a consequence of [3], Theorem 4. As usual, "Dim" means Hausdorff dimension.

THEOREM 2. Let $f \in B$ and let E be a subset of T with Dim(E) < 1. If there exists a constant K > 0 such that $\limsup_{r \to 1-0} |f(re^{i\theta})| \leq K$ for any $e^{i\theta} \in T \setminus E$, then f is bounded.

PROOF: Since $f \in B$, $|f(z)| \leq C \log 1/(1-|z|)$. Hence the function $u(z) = \log |f(z)|$ satisfies $u(z) \leq \log \log 1/(1-|z|) + C$. In particular, $u^*(e^{i\theta}) = \limsup_{r \to 1-0} u(re^{i\theta}) \leq \text{constant for any } e^{i\theta} \in T \setminus E$, and $M(r,u) = \max_{\theta} u(re^{i\theta}) = o(1/((1-r)^{\alpha}))$ for each $\alpha > 0$. Choosing α_0 such that $0 < \alpha_0 < 1 - \text{Dim}(E)$, Theorem 4 in [3] shows that $u \leq \text{constant in D}$.

3. NEGLIGIBLE SETS FOR BOUNDEDNESS

In order to extend Theorem A it will be convenient to introduce a class of subsets of T.

DEFINITION: Let E be a subset of T. We shall say that E is a negligible set for boundedness (in short, negligible) if for every $e^{i\theta} \in E$, there is a subarc $I \subseteq T$ ending at $e^{i\theta}$ and $I \subseteq T \setminus E$.

It is clear that any negligible set is a countable set, and that any subset of a negligible set is also negligible. We list some examples.

- (i) Every finite set in T is plainly negligible.
- (ii) Let $E = (e^{i\theta_n})$ be a sequence of points on T whose arguments converge strictly to $\theta_0 \in [0, 2\pi]$. Then E is negligible.
- (iii) Let $E = (e^{i\theta_n}) \cup \{1\}$, where $2\pi > \theta_n \to 0$ and $\theta_{n+1} \theta_n \simeq 1/(n(\log n)^2)$ for each n. Then E is negligible but not a Carleson set.

We are in a position to prove the following result in two independent ways.

THEOREM 3. Let $f \in B$ and let E be a negligible set. If there is a constant K > 0 such that

$$\limsup_{z\to e^{i\theta}} |f(z)| \leqslant K$$

for any $e^{i\theta} \in T \setminus E$, then f is bounded in D.

PROOF: First of all since Dim(E) = 0, the conclusion follows immediately from Theorem 2. On the other hand, we note that if J is a subarc of $T \setminus E$ and $e^{i\theta_0}$ is an endpoint of J, then

$$\limsup_{f\to 1-0} \left| f\left(re^{i\theta_0}\right) \right| \leq K_1 \left\| f \right\|_B + K + 2;$$

this can be proved just as in [5], Theorem 2.60. But the same holds for any $e^{i\theta}$ belonging to E, since there exists an arc I ending at $e^{i\theta}$. If M is a constant satisfying $M > K_1 ||f||_B + K + 2$, then $\limsup_{r \to 1-0} |f(re^{i\alpha})| \leq M$ for any α . Now Theorem 1 implies that f is bounded.

References

- J.M. Anderson, J. Clunie and C. Pommerenke, 'On Bloch functions and normal functions', J. Reine. Angew. Math. 270 (1974), 12-37.
- [2] J.A. Cima, 'The basic properties of Bloch functions', Internat. J. Math. Math. Sci. 2-3 (1979), 369-413.

D1 1	~		
Bloch	tun	ction	8

- B.E.I. Dahlberg, 'On the radial boundary values of subharmonic functions', Math. Scand. 40 (1977), 301-317.
- [4] D. Girela, 'Integral means and radial growth of Bloch functions', Math. Z. 195 (1987), 37-50.
- [5] R.C. Goolsby, 'Boundedness for Bloch functions', Rocky Mountain J. Math. 16 (1986), 717-726.
- [6] B. Korenblum, 'Estimates and radial growth of Bloch functions', Bull. Amer. Math. Soc. (N.S.) 12 (1985), 99-102.
- [7] O. Lehto and K.I. Virtanen, 'Boundary behaviour and normal meromorphic functions', Acta Math. 97 (1957), 47-65.
- [8] N.G. Makarov, 'On the distortion of boundary sets under conformal mappings', Proc. London Math. Soc. 51 (1985), 369-384.

Departamento de Análisis Matemático Facultad de Matemáticas Universidad de La Laguna 38271 La Laguna, Tenerife Spain