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ON SUPERRECURRENCE 

KARMA DAJANI 

ABSTRACT. Let T be a non-singular, conservative, ergodic automorphism 
of a Lebesgue space. We study a kind of weighted cocycles called 
//-cocycles. We introduce the notions of //-superrecurrence and //-super-
transience. We use skew products to give necessary and sufficient conditions 
for //-superrecurrence. 

1. Introduction. In studying cocyles Klaus Schmidt [4] proved that a cocycle of/ 
is recurrent if and only if it is superrecurrent. In this paper, we study a kind of weight
ed cocycles [6] called H-cocycles. A natural problem is to try to generalize Schmidt's 
results [4] to H-cocycles. It is still unknown whether H-recurrence is equivalent to H-
superrecurrence\ however, we have made some progress toward a general understand
ing of the problem. In Section 3 we use skew products to obtain necessary and suf
ficient conditions of //-superrecurrence of //-cocycles. We also define the notion of H-
supertransience and prove the following dichotomy: an //-cocycle is either 
//-superrecurrent or //-supertransient. In the remainder of Section 3, we show that the 
sufficient conditions which we obtained for //-superrecurrence can be relaxed. Finally, 
in Section 4 we give a few examples. 

2. Definitions and preliminaries. Let (X, $, //) be a Lebesgue probability space. 
Let T: X —» X be a non-singular automorphism of X: that is, T is a measurable bijection 
of X such that for A G % 

H(TA) = 0 if and only if /z(A) = 0. 

We also assume that the transformation T is conservative: for all B G <B with ^i(B) > 0, 
there exists n ^ 0 such that /i(/?n T~nB) > 0, and aperiodic: /i(Urt>o{ x : T^x — x} ) = 
0. 

The non-singularity of T allows us to define for an integer n G Z a measure / i o F o n 
X defined by [i o /™(A) = ixÇT'A) for A G iB. These measures are equivalent to /i. For 
n G Z, let un{x) — ^^~(x) be the Radon-Nikodym derivative o f / x o T with respect to 
/x. Thus ^^—(x) is the almost everywhere unique function satisfying 

p f ( A ) = / ^ * W . J A dji{x) 

It is easy to see that 
un{x) = O;I(JC)O;I(7JC) . . . u\iTn~{x), 

Received by the editors September 26, 1988, revised September 19, 1989. 
AMS subject classification: Primary: 28D99, 47A35, Secondary: 60J15, 34C35. 
©Canadian Mathematical Society 1991. 

48 

https://doi.org/10.4153/CMB-1991-008-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-008-7


ON SUPERRECURRENCE 49 

and 
(jjn+m(x) = ujn(x)ujm(Tnx) for all n,m £ Z. 

Let/: X —• R be any measurable function. 

DEFINITIONS. 

(1) The cocycle off is defined to be the function/*: ZxX—^R given by 

f£?-o7(rt0> i f / i > 0 ; 
/*(#I,JC) = <0, if/i = 0; 

I - / * ( -n , 7**), if n < 0. 

We have the following cocycle identity: 

f*(n + m,x) = f*(n,x) +/*(m, Tnx), for all n, m G Z, 

and for almost all JC G X. 

(2) The H-cocycle off is defined to be the function/*: Z x X—+ R given by 

f E?=o7(^MW, i f " > 0 ; 
/*(/!,*) = < 0 , ifn = 0; 

I -o;w(jc)/;(-n, r JC), if « < 0. 

/* satisfies the H-cocycle identity; 

/*(n + m,x) =f*(n,x) + ujn(x)f*(m, Tnx), 

for all n,m £ Z, and for almost all JC G X. 

Observe that when T is measure preserving, the cocycle off coincides with the 
H-cocycle off. 

(3) The H-cocycle (or cocycle) off is said to be H-recurrent (or recurrent) if for 
every e > 0, and for every B e *B with /i(#) > 0, there exists n ^ 0 such that 

/xffln r-nfin {*: |/*(/i,*)| < e}] > o. 

(or/z[£H T ^ ^ n {x: \f*(n,x)\ < e}] > 0). 
(4) The H-cocycle (or cocycle) off is to be H-superrecurrent (or superrecurrent) if 

for every e > 0 and for every B G #, there exists n ^ 0 such that 

/x[2?n r " f i f l {* : |/,(/I,JC)| + | logo^OOl < e}] > 0. 

(or/i[£H r " B n {JC:/*(>Z,JC)| + | \ogun{x)\ < e}] > 0. 
(5) A measurable function/ on X is said to be an H-coboundary iff(x) = g(jc) — 

a;i(jt)(7jt) for some measurable function g on X. 
(6) Two functions/, g on X are said to be H-cohomologous if their difference is an 

//-coboundary. 
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3. //-Superrecurrence and skew products. Let (R, C, A ) be the real line with the 
Lebesgue a-field and Lebesgue measure. With every measurable function/: X —-> R we 
associate the skew product Tf (built from/) defined on X x R x R by 

r + / t o Tf(x,r,s) = (7X ——,s + loga;i(x)). 
V O;I(JC) / 

where X x Rx Ris given the product a-field and the product measure /x = /x x À x A. 
We also see that 

7?(*,r,5) = (rJC, r + / * ( ^ X ) , J + logun(x)). 

PROPOSITION 1. / l is invariant under Tf. 

PROOF. We only need to show that p, -measure of measurable rectangles is invariant 
under Tf. To this end, let A G (B and U, V G C\ observe that 

Jy\A xUxV) = {(x,r,s) :xeT~lA, r G UJ\(X)U - / ( J C ) , s G V-logwiC*)} 

so that, 

fL[1yl(A *U*V)]= [ f J d^(x)dX(r)dX(s) 
J JT lA Juj\(x)U—f(x) JV—\ogu\(x) 

= jT_iAUX(x)dn(x)\(U)\{V) 

= f dn(x)X(U)X(V) 
JA 

= JJuJvd^x)dX(r)dX(s) 
= p{AxUxV). 

Let/, g be two measurable functions on X. Denote by Tf,Tg, the skew product of/ 
and g respectively as defined above. 

PROPOSITION 2. Iff is H-cohomologous to g then tf is isomorphic to tg. 

PROOF. Let h: X —> R be such that/(jc) - g(x) = h(x) - UJX (x)h(Tx). 
Define A : X x R x R —•> X x R x R by A (JC, r, s) = (JC, r + /I(JC), s). It is easy to check 

that A is the required isomorphism. 
Now, suppose that p is equivalent to the measure v. Denote by ^ the Radon-Nikodym 

derivative of p with respect to v. We have for every n G Z the following relationship: 

dpoT1 dpoT1 du oT1 dv 
(1) JL. (x) = -~—^{x) —r—ix) — W . 

dp dv o 771 di/ d/x 
Since in the next Proposition we will be considering two different equivalent measures 
in order to avoid confusion when the //-cocycle of a function/ is taken with respect to a 
specific measure p we denote it by/T. Observe that for every n G Z equation (1) gives: 

(2) mn,x)=^(x)(f'^)\n9x). 
dp V dvJ * 
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PROPOSITION 3. Ifpis equivalent to v then Tf is isomorphic to Tf ^ . 
J du 

PROOF. Define X:X x R x R —>X x R x R by \(x,r,s) = (x,r- ^ s - l o g ^ Y 

Then À is the required isomorphism. 

LEMMA 1. Let T be a measure preserving automorphism of a Lebesgue space 
(X, (B,fi). If there exists two sets E and F of positive measure such that p(F) < oo 
and a.e. x G E visits F infinitely often under the action ofT, then E is contained in the 
conservative part ofX. 

PROOF. Assume not: then there exists a wandering set D C X such that /i(D) > 0 
and ji [EH (U^TD)] > 0. We shall assume with no loss of generality that /i(£D D) > 
0. Then 

I oo 1 

U Tn(EnD)nF\ 
—oo -1 

/
oo 
Y, Xv(EnD)nF(x)dii(x) 

n=—oo 
/ o o 

Z) XWDnr-»F(x)dfi(x) 
n=—oo 

r oo 

= L „ E XF(rX)dii(x) 
Jtno „ = _ 0 0 

= oo, 

by hypothesis which is a contradiction. 
LEMMA 2. Let T be non-singular, ergodic automorphism of a Lebesgue space and 

Tf.fi as defined before. Suppose there exist two sequences of sets Em and FminXxRxR 
and A C X with /i(A) > 0 such that: 

(a) pL(Fm) < oo for all m, 
(b) p, a.e. (JC, r, s) G Em visits Fm infinitely often under the action ofTf, and 
(c) A x R x R C UmEm. 

Then 7} is conservative. 
THEOREM 1. Let T be an ergodic, conservative, non-singular automorphism of a 

non-atomic Lebesgue probability space (X, *B, ji), andf: X—+Rbea measurable func
tion. Let tf be the skew product onXxRxR built from f. Then Tf is conservative if and 
only if the H-cocycle off is H-superrecurrent. 

PROOF. Suppose 7} is conservative. Let A c X with yi{A)> 0. Let U = ( ^ , ^ F ) 

and V = ( - § , § Y Then Ax U xV cXxRxR such that p(A x U x V) > 0. By 

Conservativity of Tf there exists n ^ 0 such that 

(Ax Ux V)f)7f(Ax UxV) > 0 . 
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But (x,r,s) G (A x U x V) n 7}~"(A x l / x V ) implies that JC G A H r~rtA, |r| < 

é ' M < t ' l ^ u f I < ^ , a n d | j + loga;nU)| < f. Then |logujn(x)\ < \s\ + § < e, 

or that e - e < a;„(x) < ee. Also \r +/*(/I,JC)| < ^ • ^«W < | which implies that 

|/*(n,jc)| < § + |r| < e.Thus 

(AxUxV)f]Tfn(AxUxV) CAnT~nAn{x: |/,(/I,JC)|+| logw„(jc)| < 2e} x [ /xV. 

Since /I is the product measure it follows that 

li(AH r M f l {x : |/*(n,jc)| +\ogujn(x)\ <2e})> 0. 

Therefore/* is //-superrecurrent. 

Conversely, suppose/* is //-superrecurrent. Let e > 0 and A C X with /x(A) > 0. 
For m G N let Em = A x Bm x Bm, and Fm — A x B(m+£)ee x Bm+£, where Bm = {r e R : 
\r\ < m). Then, fl(Fm) < oo for all ra, and A x R x R C \Jm Em. By superrecurrence 
of/* a.e. x G A has infinitely many non-zero integers n such that JC G T~nA C\ {x : 
|/*(n,JC)| + | log a;n(jt)| < e} . Call such an integer n good for JC. NOW, let (JC, r, )̂ G £m 

and let n be good for x. Then, 

Tf(x, r,s) = Tnx, ——, s + log un(x) 

is such that T"x G A, V^xf < ^ ( M + |/*(n,*)|) < ee(m + e), and |s + logaUx)| < 
|s| + | loga;„(x)| < m + e. Thus Tf(x,r,s) G Fm. Since a.e. i G A has infinitely many 
good n it follows by Lemma 2 that 7/ is conservative. 

COROLLARY 1. If ^ is equivalent to v then ft is H-superrecurrent if and only if 
ELY 
du J* ( / • % ) " . * . 

Let A C X be given and consider the induced transformation TA : A —> A given by 
7 ĴC = r ^ x where r(jc) = min{/i > 0 : T^x G A}. With an //-cocycle/* under the 
action of T we associate an //-cocycle/4 under the action of TA given by 

I n - l 

fï(n,x)=f* E K ^ U . 

In particular,/^ =/*4(l,x) =/*(r(x),x). Also u;f (*) = a;Kjc)(x) = ^(x). 

With/4 we associate the skew product TfA: A x R x R —• A x R x R defined by 

TfA (x9 r,s)= TAx, —7——-, s + log uf(x) 
V ^1 W 

Now for (x,r,s) G A x R x R the first return time of (JC, r, s) to A x /? x R is the same as 
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the first return times, r(x), of x to A. Thus, 

7>(x,r,s) = 7^*, —TT-r-»5 + loë^\ (*) 
V wf(i) J 

h/*(r(x),x) 
, j + loga;^)W 

= 7*x)(*,r,*) 

= (f/ j (x,r,s). 
\ /AxRxR 

Since conservativity is preserved under inducing, it follows that TfA is conservative if 
and only if 7/ is conservative. 

DEFINITION. The //-cocycle off is said to be H-supertransient if and only if for 
every B € *B with positive measure and for all real numbers M > 0, 

^[ l imsup^n T~nBn {x : |/*(/I,JC)| + | logu;w(jc)| < M} ] = 0. 
n—KX) 

PROPOSITION 4. Either/* is H-superrecurrent or is H-supertransient. 

PROOF. Assume that/* is not //-superrecurrent, then the skew product 7} is not con
servative by Theorem 1. Let B C X be any set of positive measure and let M > 0 be any 
real number. For x G B, call n good foxx if x G BC\ T~nBn {x : |/*(n, JC)| +1 log un(x)\ < 
M}. Let 

A\ = {x € B : x has infinitely many good n}, and 

A2 = B\AX. 

If /x(Ai) > 0, then for /nGiV, let 

£m - Ax x £m x Bm, 

and 

F m = Ai X ^(M+m)^ X #m+M, 

where /?/ = { r G R : | r\ < 1}. Then Um^Em = Ai xRxR, fi(Fm) < oo for all m and 
for any (JC, r, 5) G £m and « good we have 

r w G 5, 

!/*(".*) +H < \f*(n,x)\+(x)\r\ < ( M + m ) ^ 
u;„(z) u;,,(z) 

and 
|^ + logo;/I(jc)| < |s| + | logo;n(jc)| < m + M. 

That is, 7p(;c, r, s) G Fw for all good n. By Lemma 2 7/ is conservative, which is a 
contradiction since/* was assumed not to be //-superrecurrent. Thus //(A2) = 1, and/* 
is //-supertransient. 
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In the remainder of this section we show that we can characterize the 

//-superrecurrence of an //-cocycle by means of the asymptotic behaviour of |/*(n,*)| + 

| logo;n(jc)| for points x G X. Precisely, we will show that/* is //-superrecurrent if and 

only if l iminf^oo |/*(W,JC)| + | logo;„(x)| = 0, and/* is //-supertransient if and only if 

liminfn_+oo \f*(n,x)\ + | loga;n(x)| = oo. 

PROPOSITION 5. The H-cocycle off is H-superrecurrent if and only if 

liminf |/*(n,jc)| + | loga;n(jt)| = 0 a.e. 
n—KX) 

PROOF. Assume/* is //-superrecurrent. Let e > 0 and let 

D = {x G X : liminf \f*(n,x)\ + | \ogcjn(x)\ > 0 } . 
n—+00 

We claim that n(D) = 0. For if p,(D) > 0, then there exists an integer N > 0 so large 

such that, 

C = {x G D : |/*(/I,JC)| + | logu;n(jc)| > 2e for all \n\ > N} 

has positive measure. Using Rokhlin's lemma we can find B C C of positive meaure 

such that B H TB = </> for all 0 ^ |n| < N. Also for each x G B and each \n\ > N 

either |/*(W,JC)| > e or | \ogujn{x)\ > e, otherwise |/*(n,Jt)| + | logo;„(x)| < 2e with 

|n| > N, a contradiction. Hence, 

ti[B(l T~nBn {x: \f*(n,x)\ < e} H {x : | log^n(jc)| < e}] = 0 for n ^ 0, 

but this contradicts //-superrecurrence of/*. Thus, lim infn_^oo |/*(w, x)\+\ log un(x)\ — 0 

a.e. 

Conversely, suppose liminf n_^oo |/*(«,x)| + | loga;n(jc)| = 0 a.e. We want to show 

that /* is //-superrecurrent. For this we show that 7/ is conservative. Given e > 0, 

by hypothesis, for a.e. x G X there exist infinitely many non-zero integers n such that 

|/*(w, JC)| +1 log ujn(x)\ < £. Call such an n good for x. For m G TV, let Em — X x Bm x Bm 

and F w = X x B(m+£)ee x # m + e . Since /x(X) = 1 it follows that p,(Fm) < oo for all m 

and X x R x R <ZUmEm. Now let (JC, r, s) G £ m and let n be good for x. It is easy to see 

that Tc(x, r, s) G Fm. Since JC has infinitely many good n it follows by Lemma 2 that 7/ 

is conservative and hence by Theorem 1 /* is //-superrecurrent. 

PROPOSITION 6. The H-cocyclef* is H-supertransient if and only if 

liminf |/*(«,JC)| + | logo;n(jc)| = oo a.e. 

PROOF. Clearly, if 

liminf |/*(n,jc)| + | logu;n(jc)| = oo a.e. 
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then/* is //-supertransient. 
For the converse we shall prove the contrapositive. Assume that the set B = { x G X : 

liminfn_>oo |/*0I,JC)| + I logo;n(x)| < 00} has positive measure. Choose N > 0 so that 
the set 

C = {x G B : liminf |/*(/I,JC)| + | \ogun(x)\ < N} 
n—KX) 

has positive measure. Let Em = C x Bmx Bm and Fm = X x BiN+m)eN x Bm+N where the 
sets Bi as defined above. It is easy to see that conditions (a), (b) and (c) of Lemma 2 are 
satisifed, which implies that 7/ is conservative, a contradiction. 

4. Examples. Example 1 : If /i is equivalent to v where v is a finite invariant mea
sure, and/: X —•» R a measurable function, then the //-cocycle of/ is //-recurrent if and 
only if it is //-superrecurrent. 

PROOF. Clearly, /* //-superrecurrent implies /* //-recurrent. Now, assume /* is //-

recurrent and observe that for n G Z and x G X,f*(n9x) = f- w ( / ^ ) («,*)• Let B G S 

with /i(fl) > 0. There exists M > 0 such that the set C = { JC G 5 : 1 / M < ^ ( J C ) < M} 
has positive measure. By //-recurrence of/*, there exists n ^ 0 such that 

/ i [ C n r n C n { j c : |/*(H,JC)| < e / M } ] > 0, 

which implies 

/j,(Cn T~nCn {x: <£)'«•* < e) > 0. 

This implies that (f^ )* is recurrent and hence superrecurrent (Schmidt [4]), so that there 
exists / n / 0 such that, 

or, 

CnT~nCn {JC: | ( / ^ ) * ( « > * ) | < £ / M J n { j c : |logo;n(jc)| < e} >o, 

/ i [ C f l r n C n {JC: |/*(W,JC)| < e} H {JC: | logo;n(jc)| < e } ] > 0. 

That is,/* is //-superrecurrent. 
Example 2: Let/(jc) = g(x) — uj\(x)g(Tx), that i s / is an //-coboundary. Then/ is 

//- superrecurrent. 

PROOF. Let h(x) — g(x) — g(Tx), then h(x) is a coboundary, hence recurrent, and by 
[4] h* is superrecurrent. Let e > 0 be given and let B G # be such /z(JB) > 0. Choose M 
sufficiently large so that the set C = {x G B : \g(x)\ < M} has positive measure. Also, 
there exists n ^ 0 such that 

/ i [ c n r n C n {JC: |/z*(n,jc)| < e / 2 } n {jc:logu;„(jc)| < log(l + £ / 2 M ) } ] > 0. 
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But Jt G CH r n C n {JC : \h*(n,x)\ < s/2} H {x : |log^„(jc)| < log(l + e/2M)}, 
implies 

i G C n T~nC, 

\g(Tnx)\ < M, 

\ujn(x)— 1| < s/2M, and 

\Mn,x)\ = \g(x)-u;n(x)g(Tnx)\ 

< \g(x) - g(Tnx)\ + \g(Tnx) - un(x)g(Tnx)\ 

- \g(x) - g(Tn(x))\ + |g ( rx) | \un(x) - 1| 

= |/z>,x)|+|g(rx)||^w-i| 
< e/l + Ms/lM 

Hence,//[CH T^CD {JC : |/*(/I,JC)| < e} Pi {JC : | logu;„(jc)| < log(l +e/2M)} ] > 0. 
Therefore,/ is //-superrecurrent. 

REMARKS. 

(a) If/* is //-superrecurrent and b is an //-coboundary then (f + b)* is //-super-
recurrent. 

PROOF. Let 1 > e > 0 be given, and let b(x) = g{x) — oj\(x)g(Tx). For each 
n G Z, let Aw - {JC G X : en < g(x) < e(n + 1)}. Then U„c2_0OA„ = X. Let £ G # with 
/x (/?) > 0. It is easy to see that there exist m ^ 0 and an integer n such that /x (An DB) > 0 
and 

/ z [#n r m f i f l {JC: | ( / + fc)*(m,jc)| < 3e} n {JC: | w m ( * ) - 1 | < e} 

> v[(BnAn)n T~m(BnAn)n {x : |/*(m,jc)| < e} 

n{x:\ujm(x)-\\ < e / ( |n | + l)} 

> 0. 

Hence, (f + b)* is //-superrecurrent. 
(b) If for almost every JC, the sequence/*(«, JC) is bounded then/ is an //-coboundary. 

PROOF. Let g(jc) = lim supn^00/*(«, JC), then 

ST. y r, ~ . y /*(>! + 1 , *) - / * (1 , *) 
g(Tx) = lim sup/*(/i, Tx) = lim sup -— , 

n—KX) n—+oo ^ l V V 

which implies, 

ujx{x)g{Tx) = limsup/*(n + l,x) -/*(1,*) = g(x) - / ( * ) . 

That is/(jc) = g(x) — ci;i(jc)g(Yjc), i.e.,/ is an //-coboundary. 
//-recurrence of//-cocycles was studied by Dan Ullman [5,6]. In [5] he showed that 

for / G /^(X),/* is //-recurrent if and only if Sfdfi = 0. The question is whether 

https://doi.org/10.4153/CMB-1991-008-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-008-7


ON SUPERRECURRENCE 57 

the result is still true if //-recurrence is replaced by //-superrecurrence? More generally 
whether //-recurrence is equivalent to //-superrecurrence, even in the case where J*/ does 
not exist. 

I would like to thank Arthur Robinson and Daniel Ullman for their encouragement, 
support and useful suggestions. 
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